用户名: 密码: 验证码:
基于草原综合顺序分类系统改进CASA模型及其在中国草地NPP估算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被净第一性生产力(NPP)是指绿色植物在单位面积和单位时间内所累积的有机物数量,是判定生态系统碳汇和调节生态过程的主要因子,在全球变化及碳平衡中扮演着重要的角色。草地NPP是草原生态系统中土、草、畜3个子系统之间及其与气候等外界环境因子之间综合作用的结果,反映了草地植被在自然条件下的生产能力。
     草原综合顺序分类系统(CSCS)是目前世界上唯一一个用定量化指标进行植被(主要是草地)分类的方法。CSCS以>0℃年积温(Σθ)和湿润度(K)为分类标准,其分类指标明确且信息量大,对草地畜牧业生产有较多指导意义。CSCS也是第一个可利用计算机定量检索的分类系统。目前已用计算机绘制出甘肃省、中国和北半球的CSCS分类图。将草地NPP与CSCS相结合进行研究是一种研究方法的创新,也是对该分类系统的一个补充和发展。
     CASA(Carnegie–Ames–Stanford Approach)模型是由计算植物生产力的方法发展而来的陆地植被NPP全球估算模型。由于积温(能量)和降雨(物质)是影响植物生存的两个关键因素,结合CSCS的定量分类特点和草地NPP的关系,本研究对CASA模型进行改进,建立了基于CSCS草地分类的NPP估算模型。在统一的GIS平台上,将相关的基础图件、MODIS遥感数据、气象观测数据、草地实测数据进行空间叠置分析,对建立的NPP估算模型进行了验证和精度评价。依据改进模型,估算和分析了2004~2008年中国草地NPP值及其时空变化,结合CSCS模拟了中国41个草地类的NPP变化趋势。主要结果和结论如下:
     1.模型的改进与验证
     将Σθ和K引入CASA模型,改进了该模型中水分胁迫影响系数W x,t的计算方法;同时利用实测数据模拟出中国41个草地类型的最大光能利用率max,使该模型能针对不同草地类型进行模拟。
     草地NPP的实测值和改进模型的模拟值基本分布在趋势线附近,二者呈线性相关,相关系数R~2为0.715;41类草地NPP的模拟值,除IID23略低于观测最小值外,其余均落在观测值的范围之内。草地NPP的模拟值与实测值总体平均值接近,分别为503.75gC/m~2/yr和567.312gC/m~2/yr;模拟值的离散程度较小,波动范围小于观测值,其总体标准差(108.598)远低于实测值总体标准差(248.091)。对实测样本点较多的12种草地类型的实测值与模拟值的相关性分析表明,这些类型草地的线性相关趋势较为明显,相关系数为0.54~0.93。
     41类草地NPP的模拟值与实测值之间的误差分布有以下规律:总体平均误差为4.85gC/m~2/yr,正向平均误差的样本数多于负向平均误差的样本数,模拟值整体上高于实测值;平均绝对误差介于3.423~241.783,平均为108.428gC/m~2/yr,说明误差的累积值较高;平均相对误差介于-23.3%到51%之间,平均值为7.6%。当样本数量较多时,模拟值与实测值的相对误差较小,这在一定程度上说明了模拟结果的可靠性。
     改进CASA模型中的光能转化率介于0.008~0.846之间,平均值为0.345,高于其他研究者的估算结果。其可能原因,一是其最大值和最小值之间的跨度较大,从而使得的平均值较高;二是个别草地类型的m ax估算值较高。
     改进CASA模型的估算结果小于Miami模型和Thornthwaite Memorial模型的估算结果。从各草地类型的统计数据与实测值的比较来看,Miami模型和Thornthwaite Memorial模型的估算结果与实测值偏差较大,而本研究模拟的结果具有较高的准确性。改进CASA模型与Miami模型或Thornthwaite Memorial模型的相关性研究表明,改进CASA模型与Miami模型估算结果的相关性较好,相关系数达0.868;改进CASA模型与Thornthwaite Memorial模型相关性稍差,相关系数为0.683。因此,改进CASA模型模拟精度较高,可运用于中国不同草地类NPP的估算。
     2.中国草地NPP时空变化分析
     (1)空间变化
     2004~2008年中国草地NPP年总量为6.79810~9gC/yr,年平均为489.361gC/m~2/yr。中国草地NPP空间分布的基本特点是东高西低,南高北低,从西北向东南逐渐增加。中国区域内的NPP自西北向东南逐渐增大(青藏高原除外)的NPP分布规律与CSCS类的检索图的分布规律吻合度较高,能够体现出K和Σθ的水平和垂直地带性分布规律。
     中国草地NPP随经度的递增而逐渐增大,随纬度的增大而逐渐减小,但存在一定的波动性。草地NPP的经度地带性规律与气候的经向变化密切相关。随着经度的递增,气候更有利于植被的生长。与CSCS相对应,在同一热量带上,随着K值的增大,相应的自然景观从荒漠、半荒漠到草原、森林,其NPP呈逐渐增加的趋势。不同纬度草地NPP的分布格局在一定程度上反映了其对热量梯度的响应。随纬度的增加,由热变冷,Σθ降低。与CSCS相对应,在K值相同的情况下,Σθ越低,其NPP值也就越低。
     (2)时间变化
     2004~2008年中国草地NPP年总量分布在5.9910~9~7.3610~9gC/yr之间,年均为428.9~527.5gC/m~2/yr。在5年里,草地NPP除2005年有一定的波动外,总体呈现增加趋势,总量增加了22.9%。月均值分析表明,草地NPP的积累期主要发生在水、热搭配较好的4~10月,其草地NPP总量为957.017gC/m~2,占了全年总量的89.1%。10月中旬至次年的4月中旬,由于气温较低,植物生长缓慢,草地NPP总量仅占到全年NPP总量的11%左右。春(3~5月)、夏(6~8月)、秋(9~11月)和冬(12~2月)四季的草地NPP平均值分别为45.826gC/m~2、136.849gC/m~2、39.935gC/m~2和10.228gC/m~2,各自占全年总量的18.6%、59.6%、17.4%和4.5%。
     由年际,月份和季节的NPP变化可知,适宜的水热搭配是草地NPP积累的关键。而Σθ和K为CSCS的分类标准,因而CSCS的草地类与其对应的草地NPP之间存在着必然的联系。
     (3)不同草地类型NPP变化
     2004~2008年中国草地NPP年均值在不同植被类型中差异显著,最高的为VIF41(亚热潮湿常绿阔叶林类),其次为VIIF42(炎热潮湿雨林类),最低的为IVA4(温暖极干暖温带荒漠类)。研究期间NPP总量最大的是VIF41,其次为VF40(暖热潮湿落叶—常绿阔叶林类)和IF36(寒冷潮湿多雨冻原、高山草甸类),总量最低的是VIA6(亚热极干亚热带荒漠类),这与其分布面积最小相一致。VIF41和VIIF42的K值相同,均大于2.0,而在K值相同的情况下,随着Σθ的减小,其NPP总量也减小。IVA4对应的湿润度级为极干,而Σθ较高,其水热条件不利于植物的生长,导致NPP值较低。这也进一步验证了适宜的水热比才是决定植被NPP高低的关键。
     不同草地类型NPP在2004~2008年,除IVB11(暖温干旱暖温带半荒漠类)为下降趋势外,其它类型均呈增长趋势。增长幅度最大的为VD26(暖热微润落叶阔叶林类),达52.7%;其次为IVE32(暖温湿润落叶阔叶林类),增长率为44.2%;IVC18(暖温微干暖温带典型草原类)、IVD25(暖温微润森林草原类)、VC19(暖热微干亚热带禾草、灌木草原类)、VE33(暖热湿润常绿—落叶阔叶林类)和VID27(亚热微润硬叶类和灌丛类)增长幅度相近,均为40%左右;增长幅度最小的为IF36,仅为3.4%。
     对41类草地2004~2008年的年均NPP值进行系统聚类分析,可将其划分为3大类。第1大类K值和Σθ均较高,水热比适宜,其NPP值较高;第2大类K值较低,Σθ较高,其NPP值较小。可见,草地NPP与CSCS的类与类组之间耦合度较高。
     3.中国草地NPP与其影响因子的关系
     (1)NPP与各影响因子的相关性
     2004~2008年中国草地年均NPP与NDVI呈显著正相关,相关性最强;其次为降水和K值;NPP与Σθ呈负相关,与太阳辐射相关性最弱。可见,在改进CASA模型中NDVI、降水和K值是草地NPP的主要决定因子。
     不同类组草地的NPP与各影响因子的相关性也不尽相同。2004~2008年中国10类天然草地年均NPP值与NDVI、K值和降水均呈正相关;冻原高山草地、温带湿润草地和温带森林草地的年均NPP与太阳辐射和Σθ均呈负相关;冷荒漠草地NPP与Σθ的相关性较低,与NDVI和降水的相关性非常高;半荒漠草地年均NPP与NDVI的相关性较高;斯太普草地年均NPP与降水的相关性较高;亚热带森林草地的年均NPP与降水和K值相关性较强。
     滞后相关分析表明,2004~2008年中国草地NPP对NDVI、K和降水均无滞后期,对太阳辐射的响应滞后1个月,对Σθ的响应滞后2个月。草地NPP对太阳辐射和降水均无累积滞后效应,对Σθ累积滞后期为4个月。
     偏相关分析表明,当NDVI、太阳辐射、K、Σθ和降水分别作为控制变量时,中国草地NPP与K值的相关系数接近。因此,除K值之外, NDVI、太阳辐射、Σθ和降水对草地NPP值的影响相互干扰,不是相互独立的。各影响因子之间,K值与其它因子的相关性相对较低。NDVI、太阳辐射、Σθ和降水等因子中,NDVI与降水的相关性最高,其次为Σθ和降水。因此,气候变化对草地NPP的影响较复杂,水热搭配良好是草地NPP增长的关键因素。
     (2)NPP对影响因子的敏感性
     改进CASA模型模拟的中国草地NPP值对NDVI的敏感度最高,其次为Σθ,再次为K值和降水,对太阳辐射最不敏感。CSCS是以K值和Σθ进行量化分类,而这两个参数对NPP值较为敏感。Σθ和K值差异越大,NPP值之间的差异也就越大。因此,这在一定程度上实现了CSCS与草地NPP的耦合。
Net primary productivity (NPP) of vegetation, which is defined as the net flux ofcarbon from the atmosphere into green plants per unit time and unit area, plays crucialroles in global change and carbon balance. NPP is a major determinant of carbonsinks on land and a key regulator of ecological processes. Grassland NPP isdetermined together by soil, grass, and livestock in grassland ecosystem andenvironmental factors such as climate. Grassland NPP can directly reflect theproduction capacity of grassland communities in a natural environment.
     Comprehensive and sequential classification system of grasslands (CSCS) is aunique vegetation classification system (mainly for grassland) that is dependent onquantitive measurement indexes. In CSCS, differentiation between class groups isdetermined by an integrated index of>0oC average annual cumulative temperature(Σθ) and moisture index (K). Thus, the classification indicators of CSCS are clear andinvolve a great amount of information and it can be used as a reference for animalhusbandry on the grasslands. Additionally, CSCS is the first classification system thatmay retrieve quantitively by computer. Up to data, the distribution maps for grasslandclasses in Gansu province, China, and northern hemisphere have been completed byCSCS, respectively. The study of coupling of simulating grassland NPP and CSCS isnot only a creative research method, but also is supplement and development forCSCS.
     Carnegie Ames Stanford Approach (CASA) model is a process-based ecosystemdepiction of NPP, which has taken full account of environmental conditions andvegetation characters. As cumulative temperature (energy) and precipitation(substance) are two key factors that affect vegetation exist, the CASA model havebeen improved based on the relationship of the quantitive classification of CSCS andgrassland NPP. As a result, we established a new model for grassland NPP in thispaper. On the uniform GIS platform, the spatial overlay analysis of basic map,MODIS data, observed meteorological data, and measured data was carried out. Afterthe comparison with observed data and other NPP product data, the validation andprecision of the improved CASA model were analyzed. Then, the grassland NPP from2004to2008in China and its spatio-temporal variations were estimated and analyzed.We also simulated the potential trend of NPP of41grassland classes in China based on CSCS. The followings are the main results and conclusions of this study.
     1. The improvement and validation of CASA model
     Here, Σθ and K in CSCS were introduced in CASA model, and the calculation ofW x,t in model was improved. To estimate the NPP of different grassland classesby the improved model, the maximum light-use efficiency (max) of41grasslandclasses in China was simulated according to the measured data. The values ofobserved data and estimation data of the improved model were distributed round thetrend line. There were likely linear relationship between observed data and estimationdata and the correlation coefficient (R~2) was0.715. The estimation data of41grassland classes was included in the range of observed data except IID23. Averagevalue of observed data was503.75gC/m~2/yr and estimation data was567.312gC/m~2/yr, indicating the difference between them was small. The variation andfluctuation of the simulated values was small, and its total standard error was108.598,which was lower than that of observed data (248.091). Correlation analysis ofobserved data and estimation data from12grassland classes which have manysamples revealed that the linear correlation trend was obvious (R2=0.54~0.93).The characters of errors distribution of observed data and estimation data from41grassland classes are as follows:(1) total average error was4.85gC/m~2/yr; thesamples of positive average error were more than those of negative average error;estimation data was higher than observed data.(2) the average absoluteness error was3.423~241.783, and its average was108.428gC/m~2/yr, indicating that theaccumulation value of error was relative high; the average relative error was-23.3%~51%, and its average was7.6%.(3) when the number of samples was enough,the relative error between observed data and estimation data was small, suggestingthat the estimation results were reliable.
     The light-use efficiency () in the improved CASA model was0.008~0.846,and its average was0.345, which were higher than that estimated by other researchers.The reason for this may be:(1) the span between the maximum value and theminimum value was high, resulting in the average of was high;(2) the estimationvalue ofmaxof some grassland classes was high.The estimation data of the improved model was lower than that of Miami model andThornthwaite Memorial model. The difference between the estimation data of Miamimodel or Thornthwaite Memorial model and the observed data was high, while theestimation data of the improved model was more precise. Statistically significant relationships were determined between the improved CASA model and Miami modelor Thornthwaite Memorial model. The results showed that there were likelysignificant (high) correlations between the improved CASA model and Miami model(R2=0.868). The improved model had relative low correlations with ThornthwaiteMemorial model, and its correlation coefficient was0.683. This confirmed that theprecision of the improved CASA model is enough for the estimation of differentgrassland classes in China.
     2. Spatio-temporal variations of NPP in China
     (1) Spatial variations
     The annual total and average of grassland NPP in China were6.79810~9gC/yrand489.361gC/m~2/yr from2004to2008, respectively. There were clearly strongregional variations in grassland NPP. The grassland NPP in east was higher than thatin west, and that in south was higher than that in north. It increased from NorthwestChina toward Southeast China except Tibetan Plateau. This was consistent with theindex chart for determining grassland class in CSCS, which may show thecharacteristic of horizontal and vertical distribution of Σθ and K.
     The grassland NPP increased with the increasing longitude and the decreasinglatitude, although there were some fluctuations. The characteristic of longitudezonation of grassland NPP had a highly correlation with longitudinal variabilities ofclimate. Climate becomes more benefit for the vegetation growth with the increasinglongitude. In CSCS, with the suitable natural landscape from desert and semidesert tomeadow and forest with the increasing K value, the NPP has an increasing trend. Thedistribution pattern of grassland NPP of different latitude reflected the NPP responseto thermal gradient. With the increasing latitude, climate became from hot to cold, andΣθ decreased accordingly. NPP decreased with the decreasing Σθ when K value wasthe same.
     (2) Temporal variations
     From2004to2008, the annual total NPP of grassland in China ranges from5.9910~9to7.3610~9gC/yr, and its annual average ranges from428.9to527.5gC/m~2/yr. The trend of grassland NPP in China from2004to2008was increaseexcept some fluctuation, and the NPP increased by22.9%in these5years. From thetrend of monthly variation, it can be drawn that the NPP accumulative period wasmainly between April and October when the combination of water and thermal is in agood condition for grassland vegetation growth. The quantity of NPP in these seven months was957.017gC/m~2, which was about89.1%of the annual total. FromOctober to April in the next year, its NPP was about11%of the annual total for thetemperature is too low to inhibit grassland vegetation grow. The grassland NPP inspring, summer, autumn and winter was45.826gC/m~2,136.849gC/m~2,39.935gC/m~2and10.228gC/m~2, respectively, which was about18.6%,59.6%,17.4%and4.5%each of the total annual NPP.
     According to the annual, monthly and seasonal variation of grassland vegetationNPP, the suitable combination of water and thermal plays key roles in grasslandvegetation growth. In CSCS, differentiation between class groups is determined by anintegrated index of moisture (K-value) and temperature (Σθ). Thus, there existsinherent relationship between grassland classes in CSCS and its NPP.
     (3) NPP variation of different grassland classes
     The variations of annual average NPP in different grassland classes weresignificant in China from2004to2008. VIF41(sub-tropical perhumid evergreenbroad leaved forest) had the highest annual average NPP value, and then VIIF42(tropical-perhumid rain forest). However, IVA4(warm temperate-extrarid warmtemperate zonal desert) had the lowest annual average NPP. During the experiment,VIF41had the highest total NPP value, and then VF40(warm-perhumiddeciduous-evergreen broad leaved forest) and IF36(frigid perhumid rain tundra,alpine meadow), VIA6(Subtropical-extrarid subtropical desert) had the lowest totalNPP, it agree with its minimum area. The K-values of VIF41and VIIF42were same,which were both greater than2.0. When K-value is same, the total grassland NPPdecreased with the decreasing Σθ. As the humidity grades of IVA4is extrarid and itsΣθ is high, the combination of water and thermal is not good for grassland vegetationgrowth, resulting in low NPP. The results further confirmed the idea that the suitablecombination of water and thermal is a key factor for vegetation NPP.
     The NPP showed a decrease from2004to2008for all grassland classes exceptIVB11(warm temperate-arid warm temperate zonal semidesert). VD26(warm-subhumid deciduous broad leaved forest) had the greatest increase range of52.7%, then IVE32(warm temperate-humid deciduous broad leaved forest,44.2%).IVC18(warm temperate semiarid warm temperate typical steppe), IVD25(warmtemperate-subhumid forest steppe), VC19(warm-semiarid subtropicalgrasses-fruticous steppe), VE33(warm-humid evergreen-deciduous broad leavedforest), and VID27(subtropical-subhumid sclerophyllous forest) all had the similar increase range of about40%. IF36had the lowest increase range of3.4%.
     System clustering analysis was conducted based on the annual average NPP of41grassland classes from2004to2008. The41grassland classes were clustered intothree groups: the groups1had high NPP for its high K-values and Σθ and suitableratio of moisture and temperature. However, the NPP of the groups2was low for itslow K-values and high Σθ. Therefore, the degree of coupling between grassland NPPand the classes and super-classes in CSCS was high.
     3. Relationship between grassland NPP in China and its influencefactors
     (1) Correlation analysis between NPP and influence factors
     There were significant positive linear correlations between the annual averageNPP in China from2004to2008and NDVI, precipitation, and K-values. Σθ had anegative direct effect on NPP. NPP had the highest correlation with NDVI and had theweakest correlation with solar radiation. The above results demonstrated that NDVI,precipitation, and K-values are the main factors for grassland NPP in the improvedCASA model.
     The correlation between NPP of various grassland super-classes and its influencefactors are different. The NPP of10zonal grassland super-class groups in China from2004to2008had positive correlation with NDVI, precipitation, and K-values. Intundra alpine steppe, temperate zonal humid grassland, and temperate zonal foreststeppe, annual NPP had negative correlation with solar radiation and Σθ. The NPP offrigid desert had relatively high correlation with NDVI and precipitation, while it hadrelatively weak correlation with Σθ. In semidesert, there were high correlationbetween annual NPP and NDVI. The annual NPP of steppe had high correlation withprecipitation. In sub-tropical zonal forest steppe, annual NPP had high correlationwith precipitation and K-values.
     According to the lag-linear correlations analysis, the response of grassland NPPin China from2004to2008to NDVI, precipitation, and K-values did not show a timelag effect. However, the time lag as to responses of NPP to solar radiation and Σθ wasaround1month and2months, respectively. There was no accumulated time lag effectof solar radiation and precipitation on grassland NPP. The accumulated time lagperiods as to responses of NPP to Σθ were4months.The results of partial correlation analysis showed that when NDVI, solar radiation,K-values, Σθ and precipitation were regarded as control varies respectively, the correlation coefficients between grassland NPP in China and K-values were all similar.Thus, the effects of NDVI, solar radiation, Σθ and precipitation on grassland NPPwere interaction but not independent. Among various influence factors, the correlationcoefficients between K-values and other factors were relatively low. NDVI andprecipitation had the highest correlation, and Σθ and precipitation had the second highcorrelation coefficients. Therefore, the effects of climate changes on grassland NPPwere complex, and the integration of moisture and thermal is the key factors for theincrease of grassland NPP.
     (2) Sensitive analysis on NPP to its influence factors
     NDVI was the most sensitive variable to the grassland NPP in China simulatedby the improved CASA model in general in this study, followed by Σθ, K-values,precipitation, and solar radiation. K-values and Σθ were used to quantitiveclassification in CSCS, and these two parameters were sensitive to NPP. Thedifferences of NPP values of different grassland classes increased with the increasingdifference of Σθ and K-values. In conclusion, the coupling of CSCS and grasslandNPP has been completed to a certain extent in this study.
引文
[1]方精云,柯金虎,唐志尧,等.生物生产力的―4P‖概念、估算及其相互关系[J].植物生态学报,2001,25(4):414-419.
    [2] Melillo J M,McGuireAD,Kicklighter D W,et al. Global climate change and terrestrialnet primary production[J]. Nature,1993,363:234-240.
    [3] Roxburgh S H,Berry S L,Buckley T N,et al. What is NPP? Inconsistent accounting ofrespiratory fluxes in the definition of net primary production[J]. Functional Ecology,2005,19:378-382.
    [4] Murakami K,Sasai T,Yamaguchi Y. A new one-dimensional simple energy balance andcarbon cycle coupled model for global warming simulation[J].Theoretical and AppliedClimatology,2009,101(3-4):459-473.
    [5] Foley J A. Numerical models of the terrestrial biosphere[J]. Journal of Biogeography.1995,22:837-842.
    [6] Ma W,Fang J,Yang Y,et al. Biomass carbon stocks and their changes in northernChina’s grasslands during1982-2006[J]. Science China (Life Sciences),2010,53(7):841-850.
    [7] Lieth H,Whittaker R H. Primary Productivity of the Biosphere[M]. New York:Springer-Verlag Press,1975:237-263.
    [8] McGuire A D,Melillo J M,Joyce L A,et al. Interactions between carbon and nitrogendynamics in estimating net primary productivity for potential vegetation in NorthAmerica[J]. Global Biogeochemical Cycles,1992,6:101-124.
    [9] Sala O E,Parton W J,Joyce L A,et al. Primary production of the central grassland regionof the United States[J]. Ecology,1988,69:40-45.
    [10] Ni J. Estimating net primary productivity of grasslands from field biomass measurementsin temperate northern China[J]. Vegetatio,2004,174(2):217-234.
    [11] Alexandrov G A,Oikawa T,Yamagata Y. The scheme for globalization of aprocess-based model explaining gradations in terrestrial NPP and its application[J].Ecological Modelling,2002,148(3):293-306.
    [12] Cramer W,Kicklighter D W,Bondeau A,et al. Comparing global models of terrestrialnet primary productivity (NPP): Overview and key results[J]. Global Change Biology,1991(suppl.):1-15.
    [13]王莺,夏文韬,梁天刚,等.基于MODIS植被指数的甘南草地净初级生产力时空变化研究[J].草业学报,2010,19(1):210-201.
    [14] Ruimy A,Sougier B. Methodology for the estimation of terrestrial net primaryproductivity from remotely sensed data[J]. Journal of Geophysical Research,1994,99:5263-5283.
    [15] Potter C S,Randerson J T,Field C B,et al. Terrestrial ecosystem production: A processmodel based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7:811-841.
    [16] Prince S D,Goward S N. Global primary production: A remote sensing approach[J].Journal of Biogeography,1995,22:815-835.
    [17] Running S W,Coughlan J C. A general model of forest ecosystem process for regionalapplications I. Hydrologic balance, canopy gas exchange and primary productionprocesses[J]. Ecological Modelling,1988,42:125-154.
    [18] Running S W,Hunt E R. Generalization of a forest ecosystem process model for otherbiomes, BIOME-BGC, and an application for global-scale models[A]. In: Ehleringer J R,eds. Scaling Physiological Processes: Leaf to Globe [C]. San Diego, CA: AcademicPress,1993,141-158.
    [19] Parton W J,Scurlock J M O,Ojima D S,et al. Observations and modeling of biomass andsoil organic matter dynamics for the grassland biome worldwide[J]. GlobalBiogeochemical Cycles,1993,7:785-809.
    [20] Lieth H,Box E. The gross primary production pattern of the land vegetation: A firstattempt[J]. Journal of Tropical Ecology,1977,18:109-115.
    [21]牛建明.气候变化对内蒙古草原分布和生产力影响的预测研究[J].草地学报,2001,9(4):277-282.
    [22] Lieth H. Modeling the primary productivity of the world[J]. Nature and Resources,1972,8(2):5-10.
    [23]刘明春,马兴祥,尹东,等.天祝草甸、草原草场植被生物量形成的气象条件及预测模型[J].草业科学,2001,18(3):65-68.
    [24] Golubyatnikov L L,Denisenko E A. Modeling the values of net primary production forthe zonal vegetation of European Russia[J]. Biology Bulletin,2001,28(3):293-300.
    [25]龙爱华,王浩,程国栋,等.黑河流域中游地区净初级生产力的人类占用[J].应用生态学报,2008,19(4):853-858.
    [26]高浩,潘学标,符瑜.气候变化对内蒙古中部草原气候生产潜力的影响[J].中国农业气象,2009,30(3):277-282.
    [27]刘洪杰. Miami模型的生态学应用[J].生态科学,1997,16(1):52-55.
    [28] Lieth H,Box E. Evapotranspiration and primary productivity. In:Thornthwaite W.(Eds.),Memorial Associates,New Jersey,1972,37-46.
    [29]何玉斐,赵明旭,王金祥,等.内蒙古农牧交错带草地生产力对气候要素的响应—以多伦县为例[J].干旱气象,2008,26(2):84-89.
    [30]杨泽龙,杜文旭,侯琼,等.内蒙古东部气候变化及其草地生产潜力的区域性分析[J].中国草地学报,2008,30(6):62-66.
    [31]韩芳,苗百岭,郭瑞清,等.内蒙古高原荒漠草原植物气候生产力时空演变特征[J].安徽农业科学,2010,38(18):9717-9719.
    [32]任继周.草地农业生态学[M].北京:中国农业出版社,1995.
    [33] Uchijima Z,Seino H. Agroclimatic evaluation of net primary productivity of naturalvegetations (1) Chikugo model for evaluating net primary productivity[J]. Journal ofAgricultural Meteorology,1985,540(4):343-352.
    [34]候光良,游松才.用筑后模型估算我国植物气候生产力[J].自然资源学报,1990,5(1):60-65.
    [35]林慧龙,常生华,李飞.草地净初级生产力模型研究进展[J].草业科学.2007,24(12):26-29.
    [36]王胜兰.基于5种气候生产力模型的乌鲁木齐地区NPP计算分析[J].沙漠与绿洲气象,2008,2(4):40-44.
    [37]朱志辉.自然植被净初级生产力估计模型[J].科学通报,1993,38(15):1422-1426.
    [38]公延明,胡玉昆,阿德力·麦地,等.高寒草原对气候生产力模型的适用性分析[J].草业学报,2010,19(2):7-13.
    [39]周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    [40]周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996,20(1):11-19.
    [41]孙善磊,周锁铨,石建红,等.应用三种模型对浙江省植被净第一性生产力(NPP)的模拟与比较[J].中国农业气象,2010,31(2):271-276.
    [42]赵传燕,程国栋,邹松兵,等.西北地区自然植被净第一性生产力的空间分布[J].兰州大学学报,2009,45(1):42-49.
    [43]普宗朝,张山清,王胜兰.近47年天山山区自然植被净初级生产力对气候变化的响应[J].中国农业气象,2009,30(3):283-288.
    [44]李镇清,刘振国,陈佐忠,等.中国典型草原区气候变化及其对生产力的影响[J].草业学报,2003,12(1):4-10.
    [45]王景升,张宪洲,赵玉萍,等.羌塘高原高寒草地生态系统生产力动态[J].应用生态学报,2010,21(6):1400-1404.
    [46] Ren J Z,Hu Z Z,Zhao J,et al. A grassland classification system and its application inChina[J]. The Rangeland Journal,2008,30:199-209.
    [47] Lin H L. A new model of grassland net primary productivity (NPP) based on theintegrated orderly classification system of grassland[C]. The Sixth InternationalConference on Fuzzy Systems and Knowledge Discovery,2009,1:52-56.
    [48]任继周,梁天刚,林慧龙,等.草地对全球气候变化的响应及其碳汇潜势研究[J].草业学报,2011,20(2):1-22.
    [49] Zaks D P M,Ramankutty N,Barford C C,et al. From Miami to Madison: Investigatingthe relationship between climate and terrestrial net primary production[J]. GlobalBiogeochemical Cycles,2007,21:GB3004.
    [50] Del G S,Parton W,Stohlgren T,et al. Global potential net primary production predictedfrom vegetation class, precipitation, and temperature[J]. Ecology,2008,89:2117-2126.
    [51] Goetz S J,Prince S D,Goward S N,et al. Satellite remote sensing of primary production:an improved production efficiency modeling approach[J]. Ecological Modelling,1999,122:239-255.
    [52] Bloom A J,Chapin F S,Mooney H A. Resource limitation in plants-An economicanalogy[J]. Annual Review of Ecology,1985,16:363-392.
    [53] Monteith J L. Solar radiation and productivity in tropical ecosystems[J]. Journal ofApplied Ecology,1972,9(3):747-766.
    [54] Begue A. Leaf area index, intercepted photosynthetically active radiation, and spectralvegetation indices: Sensitivity analysis for regularly shaped canopies[J]. Remote SensingEnvironment,1993,46:45-49.
    [55] Sellers P J. Canopy reflectance, photosynthesis, and transpiration II.The role ofbiophysics in the linearity of their interdependence[J]. Remote Sensing Environment,1987,21:143-183.
    [56]朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志,2005,24(3):296-300.
    [57] Verstraeten W W,Veroustraete F,Feyen J. On temperature and water limitation of netecosystem productivity: Implementation in the C-Fix model[J]. Ecological Modelling,2006,199:4-22.
    [58] Lafont S,Kergoat L,Dedieu G,et al. Spatial and temporal variability of land CO2fluxesestimated with remote sensing and analysis data over western Eurasia[J]. Tellus, Series B:Chemical and Physical Meteorology,2002,54:820-833.
    [59] Heinsch F A,Zhao M,Running S W,et al. Evaluation of remote sensing based terrestrialproductivity from MODIS using regional tower eddy flux network observations[J]. IEEETransactions on Geoscience and Remote Sensing,2006,44:1908-1923.
    [60] Sasai T,Ichii K,Yamaguchi Y,et al. Simulating terrestrial carbon fluxes using the newbiosphere model―biosphere model integrating eco-physiological and mechanisticapproaches using satellite data‖(BEAMS)[J]. Journal of Geophysical Research,2005,110:G02014.
    [61] Field C B,Behrenfeld M J,Randerson J T,et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science,1998,281:237-240.
    [62] Field C B,Randerson J T,Malmstr m C M. Global net primary production: combiningecology and remote sensing[J]. Remote Sensing Environment,1995,51:74-88.
    [63]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5):603-608.
    [64] Nayak R K,Patel N R,Dadhwal V K. Estimation and analysis of terrestrial net primaryproductivity over India by remote-sensing-driven terrestrial biosphere model[J].Environmental Monitoring and Assessment,2010,170(1-4):195-213.
    [65] Hicke J A,Asner G P,Randerson J T,et al. Trends in North American net primaryproductivity derived from satellite observations,1982-1998[J]. Global BiogeochemicalCycles,2002,16(2):1019-1040.
    [66] Xing X, Xu X, Zhang X. Simulating net primary production of grasslands in northeasternAsia using MODIS data from2000to2005[J]. Journal of Geography Science,2010,20(2):193-204.
    [67]朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
    [68]高清竹,万运帆,李玉娥,等.基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局[J].应用生态学报,2007,18(11):2526-2532.
    [69] Gao Q Z,Li Y E,Wan Y F. et al. Dynamics of alpine grassland NPP and its response toclimate change in Northern Tibet[J]. Climatic Change,2009,97:515-528.
    [70]裴志永,周才平,欧阳华,等.青藏高原高寒草原区域碳估测[J].地理研究,2010,129(1):102-110.
    [71]李刚,辛晓平,王道龙,等.改进CASA模型在内蒙古草地生产力估算中的应用[J].生态学杂志,2007,26(12):2100-2106.
    [72]张峰,周广胜,王玉辉.基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟[J].植物生态学报,2008,32(4):786-797.
    [73]韦莉,赵军,潘竟虎,等.基于MODIS数据的黄土高原草地净初级生产力的估算研究[J].遥感技术与应用,2009,24(5):660-664.
    [74]崔林丽,史军,唐娉,等.中国陆地净初级生产力的季节变化研究[J].地理科学进展,24(3):8-16.
    [75]王兆礼,陈晓宏.珠江流域植被净初级生产力及其时空格局[J].中山大学学报(自然科学版),2006,45(6):106-110.
    [76]樊江文,邵全琴,刘纪远,等.1988-2005年三江源草地产草量变化动态分析[J].草地学报,2010,18(1):5-10.
    [77] Gao Z Q,Liu J Y,Cao M K. Impacts of land use and climate change on regional netprimary productivity[J]. Journal of Geographical Sciences,2004,14(3):349-358.
    [78] Veroustraete F,Sabbe H,Rasse D P,et al. Carbon mass fluxes of forests in Belgiumdetermined with low resolution optical sensors[J]. International Journal of RemoteSensing,2004,25:769-792.
    [79] Verstraeten W W,Veroustraete F,Heyns W,et al. On uncertainties in carbon fluxmodelling and remotely sensed data assimilation: The Brasschaat pixel case[J]. Advancesin Space Research,2008,41:20-35.
    [80] Chhabra A,Dhadwall V K. Estimating terrestrial net primary productivity over Indiausing satellite data[J]. Current Science,2004,86(2):269-271.
    [81]卢玲,李新,Frank V.黑河流域植被净初级生产力的遥感估算[J].中国沙漠,2005,25(6):823-830.
    [82]卢玲,李新,Frank V.中国西部地区植被净初级生产力的时空格局[J].生态学报,2005,25(5):1026-1032.
    [83]陈斌,王绍强,刘荣高,等.中国陆地生态系统NPP模拟及空间格局分析[J].资源科学,2007,29(6):45-53.
    [84] Ito A,Oikawa T. A simulation model of the carbon cycle in land ecosystems(Sim-CYCLE): A description based on dry-matter production theory and plot-scalevalidation[J]. Ecological Modelling,2002,151:143-176.
    [85] McGuire A D,Melillo J M,Kicklighter D W,et al. Equilibrium responses of soil carbonto climate change: Empirical and process-based estimate[J]. Journal of Biogeography,1995,22:785-796.
    [86] Warnant P,Francois L,Strivay D,et al. CARAIB: A global model of terrestrial biologicalproductivity[J]. Global Biogeochemical Cycles,1994,8:255-270.
    [87] White M A,Thornton P E,Running S W,et al. Parameterization and sensitivity analysisof the BIOME-BGC terrestrial ecosystem model: net primary production controls[J].Earth Interactions,2000,4:1-85.
    [88] Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulatorusing remote sensing inputs[J]. Remote Sensing of Environment,1997,62:158-175.
    [89] Dong WJ,Qi Y,Li H M,et al. Modeling carbon and water budgets in the Lushi Basinwith Biome-BGC[J]. Chinese Journal of Population, Resources and Environment,2005,3(2):27-34.
    [90]国志兴,王宗明,张柏,等.2000年~2006年东北地区植被NPP的时空特征及影响因素分析[J].资源科学,2008,30(8):1226-1235.
    [91]董明伟,喻梅.沿水分梯度草原群落NPP动态及对气候变化响应的模拟分析[J].植物生态学报,2008,32(3):531-543.
    [92]肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应[J].植物学报,1996,38(1):45-52.
    [93]周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79.
    [94] Nemani R R,Keeling C D,Hashimoto H,et al. Climate-driven increases in globalterrestrial net primary production from1982to1999[J]. Science,2003,300:1560-1563.
    [95]王军邦,刘纪远,邵全琴,等.基于遥感-过程耦合模型的1988~2004年青海三江源区净初级生产力模拟[J].植物生态学报,2009,33(2):254-269.
    [96]张杰,潘晓玲,高志强,等.基于遥感-生态过程的绿洲-荒漠生态系统净初级生产力估算[J].干旱区地理,2006,29(2):255-261.
    [97]郑凌云.基于卫星遥感与BEPS生态模式的藏北草地变化及NPP动态研究[D].北京:中国气象科学研究院,2006.
    [98] Scurlock J M O,Johnson K,Olson R J. Estimating net primary productivity fromgrassland biomass dynamics measurements[J]. Global Change Biology,2002,8:736-753.
    [99]朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    [100]Lauenroth W K,Wade A A,Williamson M A,et al. Uncertainty in calculations of netprimary production for grasslands[J]. Ecosystems,2006,9:843-851.
    [101]任继周,胡自治,牟新待,等.草原的综合顺序分类法及其发生学意义[J].中国草地学报,1980(1):12-24.
    [102]胡自治.草原分类方法研究的新进展[J].国外畜牧学—草原与牧草,1994,(4):1-9.
    [103]任继周.分类、聚类与草原类型[J].草地学报,2008,16(1):4-10.
    [104]胡自治.草原分类学概论[M].北京:中国农业出版社,1997.
    [105]任继周,胡自治,牟新待.我国草原类型第一级——类的生物气候指标[J].甘肃农业大学学报,1965,2(5):33-40.
    [106]胡自治,高彩霞.草原综合顺序分类法的新改进:I类的划分指标及其分类检索图[J].草业学报,1995,4(3):1-7.
    [107]马轩龙,李文娟,陈全功.基于GIS与草原综合顺序分类法对甘肃省草地类型的划分初探[J].草业科学,2009,26(5):7-13
    [108]徐吉宏,柳小妮,张德罡.天祝县草地综合顺序分类及生态系统服务价值评价[J].中国草地学报,2009,31(5):23-29.
    [109]徐吉宏,柳小妮,张德罡,等.基于ArcGIS的天祝草地综合顺序分类研究[J].草业科学,2011,28(5):866-870.
    [110]李红梅,马玉寿.改进的综合顺序分类法在青海草地分类中的应用[J].草业学报,2009,18(2):76-82.
    [111]邹德富,冯琦胜,王莺,等.基于GIS的甘南地区草原综合顺序分类研究[J].草业科学,2011,28(1):27-32.
    [112]蒲小鹏,武学敏,张德罡. WindowsXP系统下草原综合顺序分类法草地类的计算机检索工具开发[J].数字技术与应用,2011,6:93-95.
    [113]赵军,胡自治.从生态信息图谱的角度看草原综合顺序分类法检索图[J].草原与草坪,2005,(2):12-14.
    [114]胡自治.人工草地分类的新系统—综合顺序分类法[J].中国草地,1995,95(4):1-4.
    [115]赵军.草原生态信息图谱与草业生态信息学理论与实践研究[D].兰州:甘肃农业大学,2007.
    [116]郭婧.基于草地综合顺序分类系统(IOCSG)的中国草地分类研究[D].兰州:甘肃农业大学,2011.
    [117]高怀瀛,郭婧,任正超,等.世界草地综合顺序分类图的制作[J].草原与草坪,2011,31(3):15-19.
    [118]梁天刚,冯琦胜,黄晓东,等.草原综合顺序分类系统研究进展[J].草业学报,2011,20(5):252-258.
    [119]任继周.按照苏联先进理论划分我国草原类型的原则之商榷[J].草中国畜牧兽医杂志,1957,(4):21-24.
    [120]戈棠,陈全功.―草原综合顺序法‖第一级分类的模糊数学表述及典型指数的计算[C].第一届全国草原生态学术讨论会论文集,1984:192-197.
    [121]常中央.草原综合顺序分类法的新改进III.类的典型性判别与判别系统[J].草业科学,1995,12(6):2-24.
    [122]高彩霞,胡自治,龙瑞军,等.草原综合顺序分类法的新改进II.类的计算机检索[J].草业科学,1995,12(5):5-8.
    [123]张永亮,魏绍成.用综合顺序分类法对内蒙古草原分类的研究[J].中国草地,1990,5:14-20.
    [124]杜铁瑛.用综合顺序分类法对青海草地分类的探讨[J].草业科学,1992,9(5):28-32.
    [125]刚永和.乐都县天然草地分类探讨[J].草业科学,1997,14(4):8-12.
    [126]郭孝,张莉.河南草地的分类[J].国外畜牧学—草原与牧草,1998,(1):11-13.
    [127]马红彬,王宁.宁夏草地的分类[J].宁夏农学院学报,2000,21(2):63-67.
    [128]马红彬,王宁,韩丙芳,等.用改进的综合顺序分类法对黄土高原草地分类的探讨[J].中国草地,2002,24(2):1-5.
    [129]陈钟.青藏高原天然草地综合顺序分类与遥感监测研究[D].兰州:兰州大学,2010.
    [130]杨梅.基于综合顺序分类法的甘南草原亚类划分[D].兰州:西北师范大学,2011.
    [131]任继周,胡自治,张自和.中国草业生态经济区初探[J].草业学报,1999,8(S1):12-22.
    [132]陈全功,任继周,王珈谊.中国草业开发与生态建设专家系统[M].北京:电子工业出版社,2006.
    [133]梁天刚,陈全功,任继周.甘肃省草地资源类型空间分布特征II基于GIS的草原综合顺序分类系统电子地图[J].兰州大学学报(自然科学版),《甘肃省生态建设与草业开发专家系统》项目论文专辑,2001,37:59-66.
    [134]梁天刚,陈全功,任继周.甘肃省草业开发专家系统的结构与功能[J].草业学报,2002,11(1):70-75.
    [135]Liang T G,Chen Q G,Ren J Z,et al. AGIS-based expert system for pastoral agriculturaldevelopment in Gansu Province P R China[J]. New Zealand Journal of AgriculturalResearch2004,47:313-325.
    [136]Tan K,Piao S L,Peng C H,et al. Satellite based estimation of biomass carbon stocks fornortheast China's forests between1982and1999[J]. Forest Ecology and Mnagement,2007,240:114-121.
    [137]Liu J, Chen J M, Chen W. Net primary productivity distribution in the BOREASregion from a process model using satellite and surface data[J]. Journal of GeophysicalResearch,1999,104(D22):27735-27754.
    [138]朴世龙,方精云.1982-1999年我国植被净第一性生产力及其时空变化[J].北京大学学报(自然科学版),2001,37(4):563-569.
    [139]朴世龙,方精云.1982-1999年青藏高原植被净第一性生产力及其时空变化[J].自然资源学报,2002,17(3):373-380.
    [140]王艳艳,杨明川,潘耀忠,等.中国陆地植被生态系统生产有机物质价值遥感估算[J].生态环境,2005,14(4):455-459.
    [141]朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算--以中国内蒙古为例[J].遥感学报,2005,9(3):300-307.
    [142]高清竹,万运帆,李玉娥,等.藏北高寒草地NPP变化趋势及其对人类活动的响应[J].生态学报,2007,27(11):4612-4619.
    [143]林慧龙,王军,徐震.草地净第一性生产力与≥0℃年积温、湿润度指标间的关系[J].草业科学,2005,22(6):8-10.
    [144]Saxton K E,Rawls W J,Romberger J S,et al. Estimating generalized soil-watercharacteristics from texture[J]. Soil Science Society of America Journal.1986,50:1031-1036.
    [145]李世华,牛铮,李壁成.植被净第一性生产力遥感过程模型研究[J].水土保持研究,2005,12(3):126-128.
    [146]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报,2000,25(1):36-45.
    [147]张新时.研究全球变化的植被-气候分类系统[J].第四纪研究,1993,2:157-169.
    [148]周广胜,张新时.全球变化的中国气候-植被分类研究[J].植物学报,1996,38(1):8-17.
    [149]Russell G,Jarvis P,Jarvis P. Absorption of radiation by canopies and stand growth. In:Plant canopies: Their Growth, Form and Function. Russell G,Jarvis P,Monteith J.eds[M]. Cambridge:Cambridge University Press,1989,21-40.
    [150]彭少麟,郭志华,王伯荪.利用GIS和RS估算广东植被光能利用率[J].生态学报,2000,20(6):903-909.
    [151]Hunt E J. Relationship between woody biomass and PAR conversion efficiency forestimating net primary production from NDVI[J]. International Journal of RemoteSensing,1994,15:1725-1730.
    [152]罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京:中国科学院地理科学与资源研究所,1996.
    [153]Sellers P J,Tucker C J,Collatz G J. A revised land surface parameterization (SiB2) foratmospheric GCMs. Part II: The generation of global fields of terrestrial biophysicalparameters from satellite[J]. Journal of Climate,1996,9(4):706-737.
    [154]Churkina G,Running S W,Schloss A L. Comparing global models of terrestrial netprimary productivity (NPP): the importance of water availability [J]. Global ChangeBiology,1999,5(Suppl.1):46-55.
    [155]Yuan W P,Liu S G,Zhou G S,et al. Deriving a light use efficiency model from eddycovariance flux data for predicting daily gross primary production across biomes[J].Agricultural and Forest Meteorology,2007,143(3-4):189-207.
    [156]朱文泉,潘耀忠,何浩,等.中国典型植被最大光利用率模拟[J].科学通报,2006,51(6):700-706.
    [157]廖国藩,贾幼陵.中国草地资源[M].北京:中国科学技术出版社,1996,5-7.
    [158]陈佐忠,汪诗平.中国典型草原生态系统[M].北京:中国科学出版社,2000,1-5.
    [159]刘钟龄,王炜,梁存柱,等.内蒙古草原植被在持续牧压下退化演替的模式与诊断[J].草地学报,1998,6(4):244-251.
    [160]李青丰,李福生,乌兰.气候变化与内蒙古草地退化初探[J].干旱地区农业研究,2002,20(4):98-102.
    [161]张美玲,蒋文兰,陈全功,等.草地净第一性生产力估算模型研究进展[J],草地学报,2011,19(2):356-366
    [162]Suttie J M,Reynolds S G,Batello C. Grasslands of the World[M]. Food and AgricultureOrganization of the United Nations. Roma,2005,1-16.
    [163]Pan Y Z,Li X B,Gong P,et al. An integrative classification of vegetation in China basedon NOAA AVHRR and vegetation-climate indices of the Holdridge life zone[J].International Journal of Remote Sensing,2003,24(5):1009-1027.
    [164]Eidenshink J C,Faundeen J L. The1km AVHRR global land data set: First stages ofimplementation[J]. International Journal of Remote Sensing,1994,15:3343-3462.
    [165]Stow D,Hope A,McGuire D,et al. Remote sensing of vegetation and land-cover changein Arctic Tundra Ecosystems[J]. Remote Sensing of Environment,2004,89:281-308.
    [166] Hope A,Boynton W,Stow D,et al. Inter-annual growth dynamics of vegetation in theKuparuk River watershed based on the normalized difference vegetation index[J].International Journal of Remote Sensing,2003,24(17):3413~3425
    [167]马轩龙,李春娥,陈全功.基于GIS的气象要素空间插值方法研究[J].草业科学,2008,25(11):13-19.
    [168]Zimmerman D,Pavlik C,Ruggles A,et al. An experimental comparison of ordinary anduniversal kriging and inverse distance weighting[J]. Mathematical Geology,31(4):375-390.
    [169]姜晓剑,刘小军,黄芬,等.逐日气象要素空间插值方法的比较[J].应用生态学报,2010,21(3):624-630.
    [170]Hernández-Stefanonia J L,Gallardo-Cruzb J A,Meaveb J A,et al. Combininggeostatistical models and remotely sensed data to improve tropical tree richnessmapping[J]. Ecological Indicators,2011,11(5):1046-1056.
    [171]Donmeza C,Berberoglua S,Curran P J. Modelling the current and future spatialdistribution of NPP in a Mediterranean watershed[J]. International Journal of AppliedEarth Observation and Geoinformation,2011,13(3):336-345.
    [172]游松财,李军.海拔误差影响气温空间插值误差的研究[J].自然资源学报,2005,20(1):140-145.
    [173]蔡福,于贵瑞,朱青林,等.气象要素空间化方法精度的比较研究—以平均气温为例[J].资源科学,2005,27(5):173-179.
    [174]Holdaway M R. Spatial modeling and interpolation of monthly temperature usingKriging[J]. Climate Research,1996,24:1835-1845.
    [175]冉慧.基于CASA模型的吉林省区域NPP遥感研究[D].长春:吉林大学,2010.
    [176]Shabanov N,Zhou L,Knyazikhin Y,et al. Analysis of Inter-annual Changes in NorthernVegetation Activity Observed in AVHRR Data From1981to1994[J]. IEEE Transactionson Geoscience and Remote Sensing,2002,40(1):115-130.
    [177]Price D T,McKenney D W,Nalder I A,et al. A comparison of two statistical methodsfor spatial interpolation of Canadian monthly mean climate data[J]. Agricultural andForest Meteorology,2000,101(2-3):81-94.
    [178]李贵才.基于MQDIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D],北京:中国科学院遥感应用研究所,2004.
    [179]陶波,曹明奎,李克让,等.1981~2000年中国陆地净生态系统生产力空间格局及其变化[J].中国科学.D辑:地球科学,2006,36(12):1131-1139.
    [180]Xu B,Guo Z,Piao S,et al. Biomass carbon stocks in China’s forests between2000and2050: A prediction based on forest biomass-age relationships[J]. Science China (LifeSciences),2010,53(7):776-783.
    [181]Seaquist J W,Olsson L,Ard c J. A remote sensing-based primary production model forgrassland biomes[J]. Ecological Modelling,2003,169:131-155.
    [182]Piao S,Fang J,He J. Variations in vegetation net primary production in theQinghai-Xizang plateau, China, from1982to1999[J]. Climatic Change,2006,(74):253-267.
    [183]Melillo J M,McGuire A D,Kicklighter D W,et al. Global climate change and terrestrialnet primary production[J]. Nature,1993,363:234-240.
    [184]Goetz S J,Prince S D,Small J,et al.. Inter-annual variability of global terrestrial primaryproduction: results of a model driven with satellite observations[J]. Journal ofGeophysical Research,2000,105(D15):20077-20091.
    [185]Raich J W,Rastetter E B,Mellillo J M,et al. Potential net primary productivity in SouthAmerica: Application of a global model[J].. Ecological Applications,1991(1):399-429.
    [186]Scurlock J M O,Cramer W,Olson R J,et al. Terrestrial NPP: Towards a consistent dataset for global model evaluation[J]. Ecological Applications,1999,9(3):913-919.
    [187]Ding M J,Zhang Y L,Liu L S,et al. The relationship between NDVI and precipitationon the Tibetan Plateau[J]. Acta Geographica Sinica,2007,17(3):259-268.
    [188]赵玉萍,张宪洲,王景升,等.1982年至2003年藏北高原草地生态系统NDVI与气候因子的相关分析[J].资源科学,2009,31(11):1988-1998.
    [189]谢小萍.基于MODIS数据估算区域光合有效辐射和光能利用率的方法研究[D].南京:南京信息工程大学,2009.
    [190]朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D].北京:北京师范大学,2005.
    [191]徐丹.基于CASA修正模型的中国植被净初级生产力研究[D].北京:北京师范大学,2004.
    [192]王臣立.雷达与光学遥感结合在森林净初级生产力研究中应用[D].北京:中国科学院应用遥感研究所,2006.
    [193]刘广.京津冀地区森林植被净初级生产力遥感估算研究[D].北京:北京林业大学,2008.
    [194]陶波,李克让,邵雪梅,等.中国陆地净初级生产力时空特征模拟[J].地理学报,2003,58(3):372-380.
    [195]刘明亮.中国土地利用/土地覆被变化与陆地生态系统植被碳库和生产力研究[D].北京:中国科学院遥感应用研究所,2001
    [196]张海龙.近五年来中国陆地植被净第一性生产力时空变化特征分析[D].南京:南京师范大学,2006.
    [197]Paruelo J M,Epstei H E,Lauenroth W K,et al. ANPP estimates from NDVI for thecentral grassland region of the United States. Ecology,1997,78(3):953-958.
    [198]Rayner D. Wind run changes: The dominant factor affecting pan evaporation trends inAustralia[J]. Journal of Climate,2007,20(14):3379-3394.
    [199]VEMAP Members. Vegetation/ecosystem modeling and analysis project: Comparingbiogeography and biogeochemistry models in a continental-scale study of terrestrialecosystem responses to climate change and CO2doubling [J]. Global BiogeochemicalCycles,1995,(9):407-437.
    [200]Cramer W and the participants of the Potsdam’95NPP Model Intercomparison Workshop.Net primary productivity model intercomparison activity (NPP). Sahagian D (Editor)[R].IGBP/GAIM Report Series,Report#5,1999.
    [201]Cramer W,Kicklighter D W,Bondeau A,et al.1997. Comparing global models ofterrestrial net primary productivity (NPP):Overview and key results[R]. PIK Report,30.
    [202]Reich P B,Tuier D P,Bolstad P. An approach to spatially distributed modeling of netprimary production (NPP) at the landscape scale and its application in validation of EOSNPP products[J].Remote Sensing of Environment,1999,70:69-81.
    [203]Chen W,Chen J,Liu J,et al. Approaches for reducing uncertainties in regional forestcarbon balance. Global Biogeochemical Cycles.2000,14(3):827-838.
    [204]Chen W,Chen J,Cihlar J. An integrated terrestrial ecosystem carbon-budget model basedon changes in disturbance, climate, and atmospheric chemistry. Ecological Modelling,2000,135:55-79.
    [205]柏延臣.遥感信息的不确定性研究,分类与尺度效应模型[M].北京:中国地质出版社,2003.
    [206]葛咏,王劲峰.遥感信息的不确定性研究:误差传递模型[M].北京:中国地质出版社,2003.
    [207]李三平,葛咏,李德玉.遥感信息处理不确定性的可视化表达[J].国土资源遥感,2006,68:20-25.
    [208]王军邦.中国陆地净生态系统生产力遥感模型研究[D].杭州:浙江大学,2004.
    [209]Friedl M A,McGwire K C,Mclver D K. An overview of uncertainty in optical remotelysensed data for ecological applications[M]. Spatial Uncertainty in Ecology, edited byHunsaker C T,Goodchild M F,Friedl M A,Case T J. Springer-Verlag New York,Inc.,New York,2001.
    [210]Giles M F. Status of land cover classification accuracy assessment[J]. Remote Sensing ofEnvironment,2002,80:185-201.
    [211]Smith J E,Heath L S. Identifying influences on model uncertainty: An application usinga forest carbon budget model[J]. Environmental Management,2001,27(2):253-267.
    [212]Franklin S E. Modeling forest net primary productivity with reduced uncertainty byremote sensing of cover typer and leaf area index[M]. Spatial Uncertainty in Ecology,edited by Hunsaker C T,Goodchild M F,Fridl M A,Case T J. Springer-Verlag NewYork,Inc.,New York,2001.
    [213]刘广,张晓丽.森林生态系统碳通量遥感估算中若干问题的探讨[J].世界林业研究,2007,(6):17-22.
    [214]Crawley M J,Harral J E. Scale dependence in plant biodiversity[J]. Science,2001,291:864-868.
    [215]Wiwatanadate P,Claycamp H G. Exact propagation of uncertainties in multiplicativemodels[J]. Human and Ecological Risk Assessment.2000,6(2):355-368.
    [216]陈佐忠.草原生态系统研究(第三集)[M].北京:中国科学出版社,1988.
    [217]李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I.碳循环的分室模型、碳输入与贮量[J].植物学通报,1998,15(2):14-22.
    [218]罗玲,王宗明,宋开山,等.吉林省西部草地NPP时空特征与影响因素[J].生态学杂志,2009,28(11):2319-2325.
    [219]蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版),2008,44(1):9-16.
    [220]Privette J L,Myneni R B,Emery W J,et al. Optimal sampling conditions for estimatinggrassland parameters via reflectance model inversions[J].. IEEE Transactions onGeoscience and Remote Sensing,1996,34(1):272-284.
    [221]梁丽乔,李丽娟,张丽,等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008,24(5):1-5.
    [222]王培娟,谢东辉,张佳华,等.长白山森林植被NPP主要影响因子的敏感性分析[J].地理研究,2008,27(2):323-331.
    [223]李刚.内蒙古草地生产力和锡林浩特市草畜空间管理模拟研究[D].中国农业科学院,2006.
    [224]张春敏.长江源区植被净初生产力及水分利用效率的估算研究[D].兰州:兰州大学,2008.
    [225]许晓桃.黄河源区NPP及植被水分利用效率时空特征分析[D].兰州:兰州大学,2008.
    [226]任正超.基于CASA模型的俄罗斯布里亚特共和国植被NPP变化及其对气候的响应[D].兰州:甘肃农业大学,2010.
    [227]Fang J Y,Piao S L,Tang Z Y. Interannual variability in net primary productivity andprecipitation[J]. Science,2001,293:1723.
    [228]Pan Y,McGuire A D,Kicklighter D W,et al. The mportance of climate and soils forestimates of net primary production: A sensitivity analysis with the terrestrial ecosystemmodel. Global Change Biology,1996,2:5-23.
    [229]季劲钧,黄玫,刘青.气候变化对中国中纬度半干旱草原生产力影响机理的模拟研究[J].气象学报,2005,63(3):257-266.
    [230]黄珏.中国陆地植被NPP对气候变化响应及其敏感性分析[D].南京:南京信息工程大学,2011.
    [231]Lagergren F,Grelle A,Lankreijer H,et al. Current carbon balance of the forested area inSweden and its sensitivity to global change as simulated by Biome-BGC[J]. Ecosystems,2006,9:894-908.
    [232]Parton W J,Schimel D S,Cole C V,et al. Analysis of factors controlling soil organiclevels of grasslands in the Great Plains[J].Soil Science Society of America Journal,1987,51:1173-1179.
    [233]Mao J,Wang B,Dai Y. Sensitivity of the carbon storage of potential vegetation tohistorical climate variability and CO2in continental China[J]. Advances in AtmosphericSciences,2009,26(1):87-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700