用户名: 密码: 验证码:
3000W灯泵浦脉冲Nd:YAG固体激光器技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对大功率脉冲Nd:YAG激光器技术进行了探讨和研究,在脉冲Nd:YAG单元模块优化设计的基础上,通过对多棒串接谐振腔中晶体棒对准精度的理论研究,进行了多棒串接实验,分别采用六棒串接谐振腔和四棒串接两棒放大的MOPA结构获得了3000W以上的脉冲激光输出,并对两种结构进行了对比分析。
     根据大功率脉冲Nd:YAG激光器的应用要求,对大功率固体激光器的技术方案进行对比分析,优化了脉冲Nd:YAG单元模块结构设计,给出了腔内六棒串接和四棒串接两棒放大的MOPA结构两种具体技术方案。
     对脉冲Nd:YAG单元模块的泵浦均匀性和热应力进行了模拟计算,通过对最佳工作参数的实验研究,获得了平均功率为586W,峰值功率为3.45kW,最高单脉冲能量为34.9J的脉冲激光输出。电光效率为4.04%,光束质量为22.5mm×mrad,连续工作输出功率不稳定度为1.1%。
     对不同切割方向Nd:YAG晶体的热退偏效应进行了理论和实验的探索研究,结果表明:[111]切割方向的Nd:YAG晶体,退偏大小不随偏振方向的变化而变化;[100]方向的Nd:YAG晶体热退偏与偏振方向有关,通过改变线偏振的方向可以获得热退偏最小的方向,这个方向上的热退偏小于[111]方向Nd:YAG棒的热退偏。
     对Nd:YAG脉冲单元模块进行了无锥度直孔打孔应用,通过实验研究了脉冲组合方式、激光焦点位置、组合脉冲个数等因素对激光冲击打孔孔锥度的影响。采用能量递增的组合脉冲,激光焦点位于材料表面上方1.1~1.7mm,通过控制脉冲组合个数,在厚度为1.5mm和3mm的镍基高温合金材料上,获得孔径分别为480μm和510μm的直孔,重复打孔孔径误差约30μm,孔锥度<1%。
     对六棒串接谐振腔晶体棒间距、热焦距对稳区范围的影响进行了理论分析。针对多棒串接脉冲激光器的串接需要,提出采用4×4矩阵研究晶体棒失调对谐振腔光轴、模体积和输出指向性的影响:(1)通过对谐振腔内晶体棒不同排列下失调导致的光轴变化的计算,给出了六棒串接谐振腔中晶体棒的对准精度范围,以及对光轴偏移影响最大的失调晶体棒排列方式;(2)通过对模体积损耗的模拟计算,给出了谐振腔内对模体积影响最大的晶体棒位置;(3)模拟了输出指向性随晶体棒失调量和热焦距的变化。
     实验中调整激光模块,使每根晶体棒的失调角度≤0.037°,实现了六棒串接脉冲Nd:YAG激光器。采取调整晶体棒泵浦功率的方法对晶体棒热焦距不匹配进行补偿,在输入电功率87kW,占空比为17%时,最高输出功率为3043W,峰值功率17.75kW,最高单脉冲能量66J,光束参数乘积为26.3mm×mrad,电光转换效率3.5%。
     研究了四棒串接两棒放大的MOPA结构中晶体棒失调对谐振腔光轴的影响,给出了MOPA结构中晶体棒的对准精度范围。研究了MOPA结构激光器中晶体棒间距、热焦距匹配的影响,结果表明:放大级晶体棒与振荡级晶体棒对称放置,热焦距相同时,可以有效利用晶体棒的模体积,提高放大级的能量提取效率,有利于获得高功率输出。
     实验中,激光器采用四棒振荡两棒放大的MOPA结构,调整激光模块,使每根晶体棒的失调角度≤0.042°,在输入电功率87kW,占空比17%时,最高输出功率为3011W,峰值功率17.7kW,最高单脉冲能量为67J,光束参数乘积为:25.2mm×mrad。电光转换效率3.46%,长时间输出功率不稳定度小于2%。
     与六棒串接脉冲激光器相比,MOPA结构具有以下优点:(1)MOPA结构谐振腔内晶体棒数量减少,更加容易实现棒间距和热焦距匹配;(2)MOPA结构晶体棒失调允许范围比六棒串接谐振腔的失调允许范围大,更容易达到串接精度要求;(3)在相同的角度失调量下,MOPA结构的的光轴偏移量更小。因而采用腔内四棒串接腔外两棒放大的MOPA结构,有利于实现高平均功率、高脉冲能量的激光输出,提高脉冲激光器工作的安全性。
In this paper, the technology of high power pulsed Nd:YAG laser is studied anddiscussed. Based on the optimized design of pulsed Nd:YAG module unit, thealignment accuracy of Nd:YAG rods in the resonator has been analyzed theoretically,and experiment of multi-rod series connection are carried out. Through six rodsseries connection resonator and a MOPA structure of four rods oscillator and tworods amplifier, the pulsed laser with an average power of more than3000W havebeen obtained. And the differences of the two structures are compared and analyzedAccording to the application requirements of high power pulsed Nd:YAG laser,several technical schemes are analyzed, then the design of pulsed Nd:YAG moduleunit is optimized, and two schemes of six rods resonator and a MOPA structure offour rods oscillator and two rods amplifier are given.
     The distribution of pump energy and thermal stress of the module unit are simulated,and the optimum operating parameters are studied experimentally. An output laserwith an average power of586W, a peak power of3.45kW, a maximum single pulseenergy of34.9J and a beam parameters product of22.5mm×mrad has been obtained.The electro-optical conversion efficiency is4.04%, and the instability of the outputpower is1.1%.
     The thermal depolarization effect of Nd:YAG rods of different cut directions aretheoretically and experimentally studied. The results show that, for [111]-cutNd:YAG rod, the thermal depolarization does not change with the polarizationdirection. However, thermal depolarization of [100]-cut direction Nd:YAG rodvaries with the polarization direction, the minimum depolarization can be obtainedby adjusting the direction of linear polarization, the thermal depolarization of thisdirection is less than that of [111]-cut Nd:YAG rod.
     Experiments of laser percussion drilling are carried out on nickel-based superalloyusing pulsed Nd:YAG module unit. The influence of combination of pulses, focalposition and the number of pulses are experimentally studied. Through applyingpulse combination with increasing pulse energy, placing the focal position1.1~1.7mm above the top surface of the sample, and adjusting the number of pulses,non-tapered holes with diameters of480μm and510μm are drilled on nickel-based superalloy samples with thickness of1.5mm and3mm. Error of diameter in repeatdrilling is about30μm, and the hole taper is <1%.
     The range of stable region and the influence of rod spacing and thermal focal lengthfor six rods series connection resonator are theoretical analyzed. Considering theneed of multi-rods series connection pulsed lasers, a method is presented, and4×4matrices are used to analyze the deviation of resonator optical axis, the mode volumeand the output direction affected by offset of rods:(1) Through calculating thedeviations of optical axis of every arrangement of offset rods, the required alignmentaccuracy of Nd:YAG rods in six rods series connection resonator and thearrangements producing the maximum deviation of optical axis are given;(2)Through calculating the loss of mode volume, the rod positions which producing themaximum loss are given;(3) The changes of the output direction varying with theoffset and the thermal focal length of rods are simulated.
     In experiment, through adjusting module unit, the offset angles of all rods are≤0.037°, six rods series connection pulsed Nd:YAG laser is achieved. Thermal lensfocal length of rods is compensated by adjusting pump power. With input electricpower of87kW and a duty cycle of17%, a maximum average output power of3043W, a peak power of17.75kW, a maximum single pulse energy of66J and a beamparameters product of26.3mm×mrad have been obtained. The electro-opticalconversion efficiency is3.5%.
     The deviations of optical axis affected by offset rods of the MOPA structure of fourrods oscillator and two rods amplifier are analyzed theoretically, and the requiredalignment accuracy of Nd:YAG rods in the MOPA laser is given. The influence ofrod spacing and thermal focal length are analyzed. The results show that, when therod of amplifier is placed symmetrically and the thermal focal length is same withthe rod of oscillator, the mode volume can be effectively used, which can improvethe amplification level of energy extraction efficiency, it is helpful for high poweroutput.
     A MOPA system of four rods oscillator and two rods amplifier has been used in theexperiment, and the offset angle of all rods is adjusted to≤0.042°. With inputelectric power of87kW and a duty cycle of17%, a maximum average output powerof3011W, a peak power of17.7kW, a maximum single pulse energy of67J and abeam parameters product of25.2mm×mrad have been obtained. The electro-optical conversion efficiency is3.46%, and instability of the laser is less than2%.
     Comparing with six rods series connection pulsed laser, MOPA pulsed system hasthe following advantages:(1) MOPA system reduces the number of oscillator, thematch of thermal focal length is more easily achieved;(2) The rod tolerance ofMOPA system is bigger, the requirement of precision of series connection is moreeasily achieved;(3) With the same offset angle, the deviation of optical axis of theMOPA system is less than that of six rods resonator. It is helpful to improve thesecurity performance of multi-rod pulsed laser, and obtain high average outputpower and high pulse energy.
引文
[1] G Overton, Anderson S G, Belforte D A, et al. Laser marketplace2010: how wide is thechasm[J]. Laser Focus World,2010,46(1):32-49.
    [2]王忠生,王兴媛,孙继凤.激光的应用现状与发展趋势[J].光机电信息,2007,8:27-33
    [3]左铁钏,现代激光制造及其未来发展[J],北京工业学报,2004,30(2):259-264
    [4]左铁钏,陈虹,21世纪的绿色制造—激光制造技术及应用[J],机械工程学报,2009,45(10):106-110
    [5]王涛,古桂茹等,激光在机械制造技术中的应用[J],激光杂志,2006,27(3):75-76
    [6] P. W. French, M. Naeem, K.G. Watkins, Laser Percussion Drilling of Aerospace Materialusing a10kW Peak Power Laser using a400μm Optical Fibre Delivery System.Proceedings of ICALEO2003,2003,95(595): P503
    [7]范滇元,中国激光技术发展的回顾与展望[J],科学中国人,2003,3:33-35
    [8]钟如涛,王玉涛,黄治军,高功率激光器的发展现状及应用[J],激光杂志,2011,32(2):4-7
    [9]林学春,侯玮等,6kW高效、高功率全固态连续波激光器[J],中国激光,2007,7:900
    [10] Xiaodong Yang, Qinjun Peng, et al., Highly efficient diode-pumped seven-rod resonatorwith a3.79-kW output[J], CHINESE OPTICS LETTERS,2009,7(8):703-705
    [11]房明星,李强,姜梦华,左铁钏,四棒串接连续灯泵浦Nd:YAG大功率激光器[J],强激光与粒子束,2005,17(11):1644~1648
    [12]孙中发,“十一五”激光技术发展规划设想[J],激光与光电子学进展,2007,44(8):75-80
    [13]刘学胜,夏姣贞等,56J高能长脉冲Nd:YAG固体激光器[J],光电子激光,2009,20(2):160-163
    [14]左铁钏,陈继民,先进制造技术—现代光制造技术[J],电加工与模具,2003,2:10-13
    [15]刘珍峰,李正佳.激光熔覆技术在航空工业中的应用[J],航空精密制造技术,2007,43(1):37-40
    [16] M. V. Allmen, Laser beam interactions with materials. Heidelberg: Springer Verlag.,1987
    [17] Narayan J et al., Laser solid interactions and transient thermal processing of materials.New York: North Holland,1983
    [18] Boyd I. W. Laser processing of silicon. Nature,1983,303:481
    [19] A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the rayoptics regime. BioPhys.,1992,61(2):569~582
    [20] A. Ashkin et al., Observation of a single beam gradient laser trap on a dielectric sphere,Nature,1990,348:346-348
    [21] David A. Belforte,2010Annual economic review and forecast [J], Industrial LaserSolutions,2011,26(1):4-8
    [22] Gail Overton, Stephen G. Anderson, Annual Review and Forecast: Skies may be clearing,but fog still lingers [J], Laser Focus World, Jan1,2011
    [23]中国工业激光器市场正进入黄金时代,中国光电网,http://www.optochina.net/html/news/chuanganjiguangyuhongwai/13524.html
    [24] David A. Belforte, Keeping the economy in perspective [J], Industrial Laser Solutions,2009,24(1):4-11
    [25] Ken-ichi Matsuno, Toshio Sato, Development of high-power all-solid-state lasers in theJapanese MITI project [J], Proc. SPIE,2000,3389:172-181
    [26]姚远,激光加工技术在汽车工业中的应用[J],汽车工艺与材料,2004,02:19-21
    [27]左铁钏,激光制造在国内外船舶制造中的应用与前景[J],电焊机,2007,37(6):28-31
    [28] Ripple P., Laser beam welding with robots in automotive industry, Proc. ECLAT’94.5thEuropean Conference on Laser Treatment of Materials, DVS.1994.151-164
    [29]陈根余,梅丽芳等,激光焊接、切割在汽车制造中的应用[J],激光与光电子学进展,2009,9:17-23
    [30]宋威廉,国外汽车工业中激光加工的应用[J],激光集锦,1997,7(5):7-10
    [31] Loeffler Klaus, The latest laser applied technology of the auto industry in europe on theexample of the body in white applications of the volkswagen golf V, Journal of the JapanWelding Society,2004,73(8):15-18
    [32]姚远,激光加工技术在国内外汽车工业中的应用概况[J],金属加工(热加工),2008,5:24-28
    [33]郄芳,代云红,汽车板成形技术及国内外发展现状[J],钢铁研究,2010,(增刊1):182-186.
    [34] Chang Ho Jung, Heui Bom Lee et al., Laser welding application for side panel in car bodymanufacturing, ICALEO2002.21st International Congress on Applications of Lasers andElectro-Optics,2002,1:223-231
    [35] Ribolla A et al., The use of Nd:YAG laser weld for large scale volume assembly ofautomotive body in white[J], Journal of Materials Processing Technology,2005,164:1120-1127.
    [36] Yang Xiaodong, Sun Zhipei et al., A Simple and efficient diode-pumped Nd:YAGmaster-oscillator power-amplifier laser system with2.35J/100Hz Output[J]. ACTAPHOTONICA SINICA,2007,36(8):1373-1376
    [37]姚震宇,蒋建锋等,1.5kW激光二极管抽运Nd:YAG薄片激光器[J],中国激光,2007,34(1):37-40
    [38] http://www.trumpf-laser.com/en/products/solid-state-lasers/disk-lasers/trudisk.html
    [39] http://www.cn.trumpf.com/202.index.html
    [40]李强,王志敏等,647W灯泵浦大功率连续Nd:YAG激光器[J],强激光与粒子束,2004,16(9):1097-1100
    [41]侯学元,孙渝明等,三双棒串接Nd:YAG激光器[J],光子学报,2001,30(6),757-760
    [42]孙文,周钢,大功率光纤传输连续激光焊接系统[J],中国机械工程,2002,13(21):1834-1837
    [43] Ripple P., Laser beam welding with robots in automotive industry, Proc. ECLAT’94.5thEuropean Conference on Laser Treatment of Materials, DVS.1994.151-164
    [44]吕百达,高功率固体激光和工业应用研究的进展[J].激光与红外,1999,24(1):27-30
    [45]吕百达,面对21世纪机遇与挑战的高功率固体激光[J].物理1996,25(8):466-472
    [46]陈秀娥,国外固体激光器的新进展及其激光晶体的新发展[J].国外激光1994,12:1-7
    [47]邓树森,我国激光加工产业的兴起与腾飞[J],新材料产业,2008,6:44-47
    [48]周寿桓,固体激光技术研究.[J].激光与红外,1994,1:18-22
    [49]孙文,周钢,大功率光纤传输连续激光焊接系统[J],中国机械工程,2002,13(21):1834-1837.
    [50]王海林,周卓尤等,三棒串接Nd:YAG激光谐振腔的稳定性研究[J],华中科技大学报(自然科学版),2003,31(5):72-74
    [51]李强,姜梦华等,工业用大功率固体激光加工系统[J],中国激光,2008,35(11):1847-1852
    [52]王海林,高功率固体激光器性能优化与实验研究[D],华中科技大学,2004
    [53]王宝华,李强等,高功率高光束质量脉冲Nd:YAG激光器[J],强激光与粒子束,2009,21(5):663-666
    [54] http://www.ct-laser.com/product_view.asp?p_id=201
    [55] http://www.518168.cn/yagpulse.asp
    [56] http://www.hklaser.net/Display/product.aspx?id=13
    [57]刘学胜,夏姣贞等,单级静态高峰值功率灯抽运脉冲Nd:YAG固体激光器[J],中国激光,2008,35(9):1313-1317
    [58]2009-2012年中国激光行业调研及战略咨询报告,光机电信息,2009,8:47
    [59] I.Y.Milev, S.S.Dimov et al., Optimization of the Pumping Conditions for Nd:AYG Lasers[J], Applied Optics,1990,29(6):772-776
    [60] I.Peshk, O.G.galich et al., High power CW Solid-state multilaser system [J], Optical&Laser technology,1997,29(4):211-215
    [61] Toshinori Ishida,Takuya Togawa et al.,6kw and10kw, High Power Lamp Pumped MOPANd:YAG Laser Systems, Proceedings of SPIE,2000,3888:568-576
    [62]赵鹏飞,侯玮等,3kW工业用光纤耦合全固态激光器[J],中国激光,2010,37(3):662
    [63] K.P.DRIEDGER, R.M.IFFLANDER, AND H.WEBER, Multirod Resonators forHigh-Power Solid-State Laser with Improved Beam Quality[J], IEEE JOURNAL OFQUANTUM ELECTRONICS,1988,24(4):665-673.
    [64]林学春,侯玮等,6kW高效、高功率全固态连续波激光器[J],中国激光,2007,34(7):900
    [65]王运谦,秘国江等,高峰值功率大能量Nd:YAG激光器[J],激光与红外,2003,33(3):188-191
    [66]王宝华,李强等,高功率高光束质量脉冲Nd:YAG激光器[J],强激光与粒子束,2009,21(5):663-666
    [67]冯国英,吕百达,多段阵列式钕玻璃激光放大器的漫反射器的研究[J],激光技术,1997,21(6):375-379。
    [68]张华,徐世祥等,用蒙特卡罗方法计算棒状放大器内的泵浦能量分布[J],光学学报,1997,17(12):1601-1608
    [69]陈炎兴,李元康等,光束方法计算固体激光棒内泵浦能的分布[J],中国激光,1980,3:21-27
    [70]吕百达,固体激光器件[M],北京邮电大学出版社,2003,99-105
    [71] Vittorio M. Resonator for solid-state laser with large-volume fundamental mode and highalignment stability [J]. Appl. Opt.,1986,25(1):107-117.
    [72] T. J. Gleason, J. S. Kruger et al., Thermally induced focusing in a Nd:YAG laser rod at lowinput powers[J], Appl. Opt.1973(12):2942-2946
    [73] W. Koechner. Thermal lensing in a Nd:YAG laser rod[J].Appl. Opt.,1970,9(11):2548-2553
    [74] C. Pfistner, R. Weber, et al., Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGGand Nd:YLF rods[J]. IEEE J. Quantum Electron.,1994,30(7):1605-1616
    [75] B. Ozygus, Qincheng Zhang. Thermal lens determination of end-pumped solid state lasersusing primary degeneration modes [J]. Appl. Phys. Lett.,1997,71(18):2590-2592
    [76]郭蕊香,李凤琴等,一种间接测量全固化激光器热焦距的方法[J],中国激光,2001,28(8):721-724
    [77] Li Qiang, Wang Zhimin et al., A method measuring thermal lens focal length of all rayspolarized in radial and tangential direction of high power Nd:YAG laser[J]. Opt. Comm,2004,241:155-158.
    [78] K.B.Steinbruegge, T.Henningsen, et al., Appl.Opt.,1972,11:999-1003
    [79] W. Koechner, Solid-State Laser Engineering,(Springer, Berlin,1996):248–276.
    [80] M. P. Murdough, and C. A. Denman. Mode-volume and pump-power limitations ininjection-locked TEM00Nd:YAG rod lasers[J], Appl. Opt.1996,35(30):5925–5936.
    [81] Khazanov EA, Novel Faraday rotator for high average power lasers[J], Optical Pulse andBeam Propagation III,2001,4271:339-348
    [82] Khazanov EA, A new Faraday rotator for high average power lasers[J], QuantumElectronics,2001,31(4):351-356
    [83] Khazanov EA, Suppression of self-induced depolarization of laser radiation in Faradayisolators[J], Optical Pulse and Beam Propagation,1999,3609:181-192
    [84] James Sherman. Thermal compensation of a cw-pumped Nd:YAG laser[J], Appl Opt,1998,37(33):7789-7796
    [85] W. C. Scott and M. de. Wit, Birefringence Compensation and TEM00ModeEnhancement[J], Appl. Phy. Lett.1971,18(1):3-4
    [86] J. Richards, Birefringence compensation in polarization coupled lasers[J], Appl. Opt.,1987,26(13):2514-2517.
    [87] W. A. Clarkson, N. S. Felgate, and D. C. Hanna, Simple method for reducing thedepolarization loss resulting from thermally induced birefringence in solid-state lasers[J],Optics Letters,1999,24(12):820-822.
    [88] R. Fluck, M. R. Hermann, and L. A. Hackel, Birefringence compensation in singlesolid-state rods[J], Appl. Phy. Lett.2000,76(12):1513-1515.
    [89] Jianghua Ji, Xiaolei Zhu, Shutao Dai, et al. Depolarization loss compensated resonator forelectro-optic Q-switched solid-state laser[J], Opti. Comm.2007,270:301–304.
    [90] J. J. Morehead, Compensation of laser thermal depolarization using free space[J], IEEE J.Sel. Top. Quantum Electron.2007,13(3):498-501.
    [91] W. Koechner, D. K. Rice, Effect of birefringence on the performance of linearly polarizedYAG:Nd lasers[J], IEEE J. of Quantum Electronics,1970,6(9):557-566.
    [92] W. Koechner, D. K. Rice, Birefringence of YAG:Nd Laser Rods as a Function of GrowthDirection[J]. J. Opt. Soc. Am,1971,61(6):758-766.
    [93] L N. Soms, A. A. Tarasov, V. V. Shashkin. Problem of depolarization of linearly polarizedlight by a Nd:YAG laser-active element under thermally induced birefringenceconditions[J], Sov. J. Quantum Electron.1980,10(3):350-351.
    [94] Ichiro Shoji, Takunori Taira, Intrinsic reduction of the depolarization loss in solid-statelasers by use of a [110]-cut Y3Al5O12crystal[J], Appl. Phy. Lett.2002,80(17):3048-3050.
    [95] I. B. Mukhin, O. V. Palashov, I. A.Ivanov, Influence of the orientation of a crystal onthermal polarization effects in high-power solid-state lasers[J], JETP Lett.2005,81(3):90-94.
    [96] I. B. Mukhin, O. V. Palashov, E. A. Khazanov, Reduction of thermally induceddepolarization of laser radiation in [110] orientation cubic crystals[J], Opt.Exp.2009,17(7):5496-5501.
    [97] O. Puncken, H. Tunnermann, James J.Morehead, Intrinsic reduction of the depolarizationin Nd:YAG crystals[J], Opt. Exp.2010,18(19):20461-20474
    [98] J.F.Nye: Physical Properties of Crystals (Clarendon, Oxford, UK1985, reprinted1993);L.A.Shuvalov(ed) Modern Crystallography IV, Springer Ser. Solid-State Sci,. Vol.37(Spring, Berlin Heidelberg1988)
    [99] G. Overton, S.G. Anderson. Laser Marketplace2009: Photonics enters a period of highanxiety[J]. Laser Focus World,2009,45(1):54-78
    [100] Giering. A, Beck. M, Bahnmuller. J, Laser drilling of aerospace and automotivecomponents, Proc. of ICALE0'99, C80-87,1999
    [101]卢飞星,激光加工在工业制造业中的市场分析[J],激光与光电子学进展,2009,9:24-28
    [102]陈根余;梅丽芳;张明军;刘旭飞;王祖建;激光焊接、切割在汽车制造中的应用[J],激光与光电子学进展,2009,9:17~23
    [103] P.J.Dismile, et al., An experimental investigation of the airflow characteristics of laserdrilled holes[J], Journal of Laser Applications,1998,10(2):78~84.
    [104] Hamoudi, Parameters Affecting Nd:YAG Laser Drilling of Metals[J], International Journalfor Joining of Materials,1995,7:63~69
    [105] B.S.Yilbas, Parametric study to improve laser hole drilling process[J], J. Mat. Proc. Tech.1997,70:264~273
    [106] D.K.Y. Low, et al. Taper control during laser percussion drilling of NIMONIC alloy usingsequential pulse delivery pattern control (PSPDPC)[C]. ICALEO99. LIA.1999:11~19.
    [107] P. W. French et al., Investigation into the influence of pulse shaping on drillingefficiency[C]. ICALEO2006:P310
    [108] L. Li, et al., Hole Taper Characterization and Control in Laser Percussion Drilling[J], CIRPAnnals-Manufacturing Technology,2002,51(1):153~156
    [109]张晓兵,激光加工涡轮叶片气膜孔的现状及发展趋势[J],应用激光,2002,22(2):227-229
    [110]宫磊, Nd:YAG激光器激光打孔实验研究[D],2006
    [111]史建国,张永康,顾永玉.金属板料激光冲孔成形技术研究[J].激光技术,2007,31(6):639-641.
    [112]郑义军,李强,刘长娥等,激光打孔用声光调Q阶跃脉冲Nd:YAG激光器[J],北京工业大学学报,2003,29(2):218-220.
    [113]汪刚,杨洗陈,利用超短脉冲激光打孔技术制备金属膜的探索[J].激光与光电子学进展,2006,43(1):56-58
    [114]王广安,章玉珠,倪晓武,离焦量对空气中纳秒激光打孔效率的影响[J].中国激光,34(12):1621-1624
    [115]冯驰,李强,姜梦华等. Nd:YAG调Q脉冲激光器微孔实验研究[J].北京工业大学学报,2010,36(3):420-424
    [116] A. Corcoran, et al. The laser drilling of multi-layer aerospace material systems[J], Journalof Materials Processing Technology,2002,123(1):100~106
    [117] Kuhn.a, French.P et al, Preparation of fiber optics for the delivery of high-energyhigh-beam-quality Nd:YAG laser pulses[J]. Applied Optics,2000,39(33):6136~6143
    [118]党东显,盛晓军等,喷嘴工件距对激光切缝中气体流场的影响[J].中国激光,2010,37(10):2626~2631
    [119] M. Bass, M. A. Nassar, and R. T. Swimm, Impulse coupling to aluminum resulting fromNd:glass laser irradiation induced material removal[J]. J. Appl. Phys.1987,61,1137~1144
    [120] Kumkar M, Wedel B, Richter K. Beam quality and efficiency of high average powermultirod lasers [J]. Optics and Laser Technology,1992,24(2):67-72
    [121]张玲等,氪灯侧面泵浦Nd:YAG激光器热透镜效应研究[J],北方交通大学学报,2002,26(3):69-73
    [122] Hongru Yang,41W cw TEM00(M2=1.2)1064nm beam generation from adiode-side-pumped Nd:YAG laser by use of a dual-telescopic optics configuration[J],Optics Communications,2002,204:263-266
    [123]王海林,周卓尤,曹红兵,黄维玲.双棒串接Nd:YAG激光器的稳定特性研究[J],光电子·激光,2003,14(2):149-152
    [124]席再军;郑启光;秦应雄等,多棒串接固体激光器谐振腔的研究,物理学报[J],2003,52(6):1396-1401
    [125]杨盛谊,王振家,侯延冰等.三棒Nd:YAG激光谐振腔的分析[J].激光杂志,1999,20(4):50-52
    [126] Cui Qian-Jin, Peng Qin-Jun, Zhang Hong-Bo, et al. Highly Efficient Diode Side PumpedSix-Rod Nd:YAG Laser[J]. Chin.Phys.Lett.2008,25(11):3991-3994
    [127]杨盛谊,陈莹,王振家等,双棒Nd:YAG激光谐振腔的模体积[J],激光技术,2001,25(1):73-76
    [128] W. Koechner, Thermal lensing in a Nd:YAG laser rod[J], Appl Opt.,1970,9(11):2548-2553
    [129] Li Q, Wang Z M, Zuo T C. A method measuring thermal lens focal length of all rayspolarized in radial and tangential direction of high power Nd:YAG laser[J]. Opt Comm,2004,241:155-158
    [130]吕百达,激光光学[M].成都:四川大学出版社,1992,339~346.
    [131] Eduard Wyss, Thermal optical Compensation Methods for High-Power Lasers[J], IEEEJournal of Quantum Electronics,2002,38(12):1620-1628
    [132] Sungman Lee, Mijeong Yun, Stability analysis of a diode pumped, thermalbirefringence-compensated two-rod Nd:YAG laser with770-W output power[J], AppliedOptics,2002,41(27):5625-5631
    [133] Kim Hyun Su; Lee Sungman; et al, Dependence of the stability and the beam quality onthe distance between two rods in a double laser-head resonator [J], OpticsCommunications,2002,201(4-6):381-389
    [134]王运谦,秘国江等,高峰值功率大能量Nd:YAG激光器[J],激光与红外,2003,33(3):188-191
    [135] Li Q, Wang Z M, Zuo T C. A method measuring thermal lens focal length of all rayspolarized in radial and tangential direction of high power Nd:YAG laser[J]. Opt. Comm,2004,241:155-158.
    [136] Li Q, Wang Z M, Wang Z Y. et al.600W lamp pumped CW Nd:YAG laser[J]. ChineseOptics Letters,2003,1(9):535-537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700