用户名: 密码: 验证码:
杜鹃黄酮类化合物活性成分的动态变化及诱导子对其含量和相关酶活性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杜鹃花属是杜鹃花科中最大的一个属,而我国又是杜鹃花属植物种类最丰富的国家,是世界杜鹃花属植物的主要分布中心。该属植物除了具有极高的欣赏价值外,还具有较高的药用价值,在医药、食品等具有广阔的开发应用前景。黄酮类化合物是植物中重要的次生代谢产物,而杜鹃属植物是一种优良的类黄酮潜在资源。但是目前对杜鹃各方面的研究和开发主要是以野生品种为主,而由于对野生品种的盲目采集,导致杜鹃自然资源严重匮乏,可供利用的野生杜鹃资源越来越少,且目前对杜鹃黄酮类化合物也没有一个系统的研究,限制了人们对杜鹃属黄酮类化合物潜在资源的进一步开发和利用。本论文以目前人工栽培非常成功的锦绣杜鹃、白杜鹃等为材料,对杜鹃中黄酮类化合物进行了系统研究,为进一步利用栽培杜鹃的黄酮类化合物提供了重要的理论依据和技术支撑,同时也为今后黄酮类化合物扩大生产提供了资源保障。
     本文主要研究内容有:(1)将BP人工神经网络技术与传统的正交试验方法相结合对杜鹃黄酮类物质提取工艺进行优化,并对优化后杜鹃总黄酮提取液进行抑菌实验;(2)采用颜色反应、高效液相-质谱联用技术等分析方法分析杜鹃叶和花中黄酮类化合物的主要成分;(3)应用HPLC法,建立了同时测定杜鹃提取液中4种主要黄酮类成分的测定方法,同时,用建立的HPLC方法对锦绣杜鹃和白花杜鹃叶、枝的黄酮类主要成分含量的年动态变化进行分析研究;(4)研究不同类型不同浓度的外源诱导子对杜鹃黄酮类化合物含量的累积及叶片相关酶活性的影响,选择对黄酮类化合物含量提高最适的诱导子类型和诱导子浓度。主要的研究结果如下:
     1、在正交试验的基础上,应用BP人工神经网络模型确定锦绣杜鹃叶黄酮提取的最优化工艺:料液比1:20,超声波提取时间为40min,提取温度为50℃,乙醇质量分数为40%。应用优化工艺提取的总黄酮含量高于正交试验各结果,且节约了成本,降低了能耗。表明将BP人工神经网络技术与传统的正交试验方法相结合提出的试验设计和数据处理的方法是可行的,该原理和方法也可用于其他植物黄酮类物质提取工艺的优化。
     2、锦绣杜鹃和白杜鹃叶总黄酮提取液对青霉菌、黑曲霉等霉菌几乎无抑菌作用,对细菌则有不同程度的抑制作用,原液抑菌率都达到100%。其中对金黄色葡萄球菌抑菌效果最好,大肠杆菌和枯草芽孢杆菌次之,并且都随总黄酮提取液浓度的提高,抑菌效果增强。而白杜鹃叶总黄酮提取液的抑菌效果要好于锦绣杜鹃叶的,这可能是与其提取的总黄酮含量的高低有关。锦绣杜鹃叶总黄酮提取液的最低抑菌浓度(MIC):金黄色葡萄球菌抑菌和大肠杆菌为0.03125g/ml,枯草芽孢杆菌为0.0625g/ml。白杜鹃叶总黄酮提取液的最低抑菌浓度(MIC):金黄色葡萄球菌抑菌、大肠杆菌和枯草芽孢杆菌均为0.03125g/ml。
     3、本文用Waters C18(4.6mm×250mm,5μm)反相色谱柱,在甲醇和水的流动相梯度洗脱,洗脱程序为:0~24min,31%~42%B;24~30min,42%~50%B;30~35min,50%~60%B;35~40min,60%B;检测波长356nm,流速为0.7mL/min,柱温30℃条件下可以使锦绣杜鹃叶中的黄酮类化合物HPLC得到很好的分离效果。在HPLC分离的基础上,通过液质联用技术初步鉴定了杜鹃叶中的5个黄酮类化合物,分别是金丝桃苷、异槲皮苷、广寄生苷、槲皮苷、槲皮素。杜鹃花中的6个杜鹃花黄酮类化合物,分别为锦葵花素戊糖苷、杨梅黄素3-鼠李糖苷、槲皮素-3-半乳糖苷、槲皮素-3-O–阿拉伯糖苷、槲皮素-3-鼠李糖苷槲皮素。
     4、锦绣杜鹃叶总黄酮及黄酮主要成分含量的季节变化变化规律呈现出一定的相似性,黄酮含量随着春季气温回升,芽的发育,新枝叶的生长,黄酮的含量大幅度增加,在3~6月份杜鹃叶总黄酮含量均表现出较高水平,进入9月,总黄酮含量又有所回升,11月总黄酮大幅度下降。锦绣杜鹃叶四种主要黄酮类成分中槲皮苷含量最大,其次为槲皮素,最少为异槲皮苷。锦绣杜鹃枝总黄酮含量的季节性变化规律与叶有所不同,枝在进入9月份时,并没有象叶一样进入第二个黄酮的增长期,这可能与枝的含量太低,变化不明显有关,且杜鹃枝含量明显低于叶。白杜鹃枝叶总黄酮与其主要成分含量的季节性变化规律同锦绣杜鹃枝叶呈现出一定的相似性,但白杜鹃枝叶黄酮类化合物含量较高于锦绣杜鹃。
     5、不同浓度的SA处理,杜鹃总黄酮及主要成分含量均在处理第8天时,达到最高值。其中低浓度的SA (50μg/mL)对黄酮含量的影响最明显,高浓度的SA起抑制作用。PAL活性随着诱导子处理时间的增加而增加,且在第4天和第8天PAL活性均达到较高值,说明SA处理后,PAL活性维持较高水平的时间较长。100μg/mL浓度的SA处理,PAL活性增幅最大。50μg/mL浓度与100μg/mL浓度的SA处理后,PPO活性都有较大幅度的提高。POD活性在第4天就达到较高值,这可能与其对外界刺激作出的应激反应有关.研究结果说明不同浓度的SA处理对POD活性都有显著提高,是提高POD活性较好的诱导子。
     6、一定浓度的外源MeJA诱导子处理,杜鹃总黄酮及主要成分含量的影响显著,其中高浓度的MeJA(150μg/mL)对总黄酮及主要成分含量的影响最明显,但低浓度(50μg/mL)的MeJA对杜鹃黄酮含量基本没有影响。100~200μg/mL浓度的MeJA处理后,PAL活性都显著提高,说明对杜鹃喷施100μg/mL-200μg/mL浓度范围的MeJA后可显著提高PAL酶活性。100μg/mL浓度的MeJA处理后,PPO活性提高最明显。POD活性在第4天就达到最高值,且各处理POD活性均有大幅度的提高,这说明不同浓度的MeJA处理对POD活性都有显著提高,也是提高POD活性较好的诱导子。
     7、不同浓度的GA3处理杜鹃植株,浓度为100μg/mL的GA3处理对杜鹃总黄酮含量的影响最明显。而高浓度的GA3(200μg/mL)对杜鹃黄酮含量基起到抑制作用。不同浓度的MeJA处理对黄酮类4种成分含量的影响不同,金丝桃苷、槲皮苷2种黄酮类成分含量提高幅度最明显的处理浓度均为100μg/mL。而异槲皮苷和槲皮素2种黄酮类成分含量提高幅度最明显的处理浓度却为150μg/mL。50μg/mL、100μg/mL浓度的GA3处理后,对PAL活性的影响较为显著,PAL活性维持较高水平的时间较长。100μg/mL浓度的GA3处理后,PPO活性提高的幅度最显著。低浓度的GA3(50μg/mL)处理后,POD活性在处理第4天后有较大幅度的提高,其余浓度的GA3处理,反而降低了叶片POD的活性。、
     8、不同浓度的ABA处理杜鹃植株,结果表明,浓度为150μg/mL的ABA处理对杜鹃总黄酮及主要成分含量的影响较为显著。低浓度(50μg/mL)的ABA处理,PAL活性增加幅度最大。100μg/mL浓度的ABA处理后,PPO活性提高的幅度最明显,且在处理后第12天PPO活性还保持一定的水平,对PPO活性影响最少的浓度是50μg/mL。而对POD活性影响较大的浓度则是200μg/mL和150μg/mL。而50μg/mL和100μg/mL浓度的ABA处理,POD活性反而下降。结果表明,高浓度的ABA对POD活性起到提高作用,但低浓度的ABA对POD活性反而起到一定的抑制作用。
China is the country with richest species of Rhododendron Linn., it is the main distributioncenter of the Rhododendron Linn.in the world. Ii is the largest genus of the Ericaceae, it is notonly with extremely high appreciation value, but also has good medicinal value, so that it hasbroad prospects of its application in the fields such as foods, medicine. Flavonoids is the mostimportant secondary metabolites in the plants. The flavonoids compounds widely exist in theRhododendron Linn., which is a broad class of substances with bioactivity, so it is a kind of thepotential natural resources. Nowadays the main ways to research the Rhododendron Linn.arecentered on the feral breed, but the blind use of resources lead to a seriously storage of availablenatural resources of the Rhododendron Linn.. And at present there is not a systematical researchwith flavonoids so that it restricts peoples to develop and utilize them further. This paper usedthe Rhododendron pulchrum Sweet. and the Rhododendron mucronatum (BL.) which weresuccessfully grown by artificial cultivation as the materials, to research the flavonoidscompounds scientifically. Consequently, it can provide the important theoretical and techniquefoundation for further utilizing the flavonoids compounds in Cultivated Rhododendron.Simultaneously, it also can provides a guarantee for enlarging the flavonoids production.
     The major research contents of this paper were:(1) By combining BP artificial neuralnetwork with traditional orthogonal tests, optimiz the extraction processes for flavonoids inRhododendron and then conducted the antibacterial experiments.(2) Analysed flavonoids in theleaves and flower of Rhododendron with color reaction and HPLC-MS.(3) Established a HPLCmethod for determination the major compounds of flavonoids and study the dynamic variation ofthe contents of flavonoids in the leaf and stem of Rhododendron.(4) By studying on theinfluences of the different exogenous elicitor on the content of flavonoids and related enzymeactivities of Rhododendron, selected the exogenous elicitor with fit types and concentration toincrease the content of flavonoids. The main results were as follows:
     1. On the base of the orthogonal tests, apply BP artificial neural network to determine theoptimal conditions for extraction of total flavonoids in Rhododendron pulchrum Sweet. was thatthe solid-liquid ratio of1:20,40min of extraction time,50℃of extraction temperature,40%ofethanol concentration. Thwas optimal process was better than traditional orthogonal tests, it canreduce the cost and the energy consumption. The results show artificial neural network combinedwith traditional orthogonal design constitute the baswas on which a new method of test data analyzing and processing was put forward and we also can use it to optimize the extractionprocess of flavonoids in other plants.
     2. The flavonoids of Rhododendron pulchrum Sweet. and Rhododendron mucronatum(BL.) had almost no bacteriostaswas to molds such as penicillin sp. and aspergillus niger, buthad different inhibition effects to bacteria. The antibacterial rate of the extraction reach100%.The inhibition effects on staphylococcus aureus was the best, and next were escherichia coli andbacillus subtilwas. The higher concentration of the flavonoids extraction, the more inhibitioneffects increased. The inhibition effects of the extracts in Rhododendron mucronatum (BL.) wasbetter than Rhododendron pulchrum Sweet.. Thwas could be due to the content of theflavonoids. The MIC of the flavonoid extracts from Rhododendron pulchrum Sweet. were asfollows:0.03125g/ml for staphylococcus aureus and escherichia coli;0.0625g/ml for bacillussubtilwas. The MIC of the flavonoid extracts from Rhododendron mucronatum (BL.) was0.03125g/ml for staphylococcus aureus, escherichia coli and bacillus subtilwas.
     3. In thwas paper, the separation was performed on Waters C18column (4.6mm×250mm,5μm) by gradient elution(0~24min,31%~42%B;24~30min,42%~50%B;30~35min,50%~60%B;35~40min,60%B) using methanol(B) and water(B) as the mobile phase. Thedetection wavelength was356nm and the flow rate was0.7mL/min with column temperature at30℃. By the HPLC-MS/MS with electrospray ionization, five constituents were identified asquercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-0-arabinoside,quercetin-3-rhamnoside, quercetin in the leaf and six constituents were identified asmalvidin-pentoside, myricetin-rhamnoside, quercetin-3-galactoside, quercetin-3-0-arabinoside,quercitrin, quercetin in the flower of Rhododendron pulchrum Sweet..
     4. The seasonal dynamic variation of the contents of the total flavonoids and the maincomponent in the leaf of Rhododendron pulchrum Sweet.had some similarities. With the springtemperatures rebound and the development of the bud, the content of flavonoids increasedsignificantly. In3~6months, the content of flavonoids was in a high standard, and then it fellrapidly. In September, the contents started to climb back up. When it turned cold in November, itfell rapidly again. In the four components of the flavonoids, the most abundant content wasquercetin-3-glucoside, and then was quercetin, wasoquercitrin was lease. The seasonal dynamicvariation of the contents of the total flavonoids in the stem was different from leaf. It didn’t enterthe second growth in September. Thwas may be related to the low contents in stem which had noobvious change. The content in stem was lower than leaf dwastinctly. The seasonal dynamicvariation of the contents of the total flavonoids in the leaf of Rhododendron mucronatum (BL.)and Rhododendron pulchrum Sweet. was similar, but the content of the former was higher than the latter.
     5. Spraying the Rhododendron pulchrum Sweet with SA of different concentration, thecontents of the total flavonoids and the main component all reached the maximum value on theeighth day. The low concentration of SA (50μg/mL) had the most dwastinct influence on thecontent of flavonoids. The high concentration of SA had an inhibitory effect. The PAL activityincreased with the induction processing time increased. On the eighth day, it reached the highestvalue. On the4th and8th day, PAL activity was in a higher standard. So using SA can make thePAL preserve high activity in a longer period. With100μg/mL concentration of SA, the PALactivity had the biggest increase. The activity of PPO could reach a high level on the8th day.When the concentration of SA was50μg/mL or100μg/mL, the activity had a higher increase.The was phenomenon explained that the concentration ranged50μg/mL to100μg/mL of SAcould increase the activity of PAL and PPO. The PPO activity could reach a higher value on the4th day. It may be correlated with the respond to external stimuli.Thwas results indicateddifferent concentration of SA was a better elicitor for improving POD activity.
     6. Spraying the Rhododendron pulchrum Sweet with MeJA of different concentration, thecontents of the total flavonoids and the main component were affected observably. The highconcentration of MeJA (150μg/mL) had the most dwastinct influence on them, while the lowconcentration (50μg/mL) of MeJA had almost no effect. The was phenomenon indicated that thehigher concentration of MeJA has an stronger effect on the contents of flavonoids. When theconcentration of MeJA ranged from100μg/mL to200μg/mL, the activity of PAL improvedmarkedly, so spraying rhododendron with the range of the concentration of MeJA could improvethe activity of PAL observably. Using100μg/mL concentration of MeJA, the activity of PPOimproved most obviously. The POD activity could reach maximum value on the4th day, thenthey came down rapidly. The activity of POD increased substantially with differentconcentration of MeJA, so it was also a better elicitor for improving POD activity.
     7. Using GA3of different concentration dwasposed Rhododendron pulchrum Sweet.,when the concentration was100μg/mL, the influence on the contents of the total flavonoids wasmost obvious. The high concentration of GA3(200μg/mL)had an inhibitory effect. Theinfluence on the contents of the4main components was different with different concentration ofMeJA. The best concentration for quercetin3-galactoside and quercetin-3-rhamnoside was100μg/mL. The best concentration for isoquercitrin and quercetin was150μg/mL. Using MeJA of50μg/mL or100μg/mL concentration, the activity of PAL changed much obviously The activityof PAL sustained at a high level for a long time. The was phenomenon indicated that theconcentration ranged from50μg/mL to100μg/mL of GA3had a greater impact on the activity of PAL. with the100μg/mL concentration of GA3, the activity of PPO improved most obviously.With the lower concentration of GA3(50μg/mL), the activity of POD increased by a widermargin after the4th day, and other concentrations actually reduced the activity.
     8、Using different concentration of ABA dwasposed Rhododendron pulchrum Sweet.,when the concentration was150μg/mL, the influence on the contents of the total flavonoids andthe main components was obvious. When the concentration was low (50μg/mL), the activity ofthe PAL had a biggest augment. With the100μg/mL concentration of ABA, the activity of PPOimproved most obviously. When the concentration of ABA was200μg/mL and150μg/mL, theinfluence on the activity of POD was bigger. With50μg/mL and100μg/mL, the activity ofPOD was reduced. So the high concentration of ABA could increase the activity of POD, and thelower had an inhibitory action.
引文
[1]方瑞征,闵天禄.杜鹃属植物区系的研究[J].云南植物研究,1995,17(4):359-379.
    [2]周三云,李蓉涛.杜鹃花属植物化学成分及生物活性研究进展[J].云南中医中药杂志,2008,29(5):51-53.
    [3]付晓丽,张立伟,林文翰,等.满山红化学成分的研究[J].中草药,2010,41(5):704-707.
    [4]戴胜军,陈若芸,于德泉.烈香杜鹃中的黄酮类成分研究[J].中国中药杂志,2004,29(1):44.
    [5]戴胜军,于德泉.烈香杜鹃中的黄酮类化合物Ⅱ[J].中国中药杂志,2005,30(23):1830.
    [6]杨海荣,王生新.大坂山杜鹃化学成分的1.四种酚类成分的分离鉴定[J].植物学报,1978:20(4):355-359.
    [7]王生新,杨海荣.大坂山杜鹃化学成分的研究II.(+)-儿茶酸、金丝桃苷及毒性成分的分离鉴定[J].植物学报,1981:23(1):47-51.
    [8]黄辉强,冯毅凡,芮雯等.紫花杜鹃中黄酮类成分的UPLC/Q-TOF-MS分析[J].中国中药杂志,2009,34(7):875-878.
    [9]韩公羽.魔角杜鹃有效成分的研究[J].第二军医大学学报,1984,5(2):161-165.
    [10]王生新,纪兰菊,伊甫申,等.头花杜鹃的化学成分[J].植物学报,1984,26(1):7-75.
    [11]胡梅,刘永催,肖培根.皱皮杜鹃的化学成分[J].植物学报,1990,32(10):777-782.
    [12]杨书慧,田瑄.秀雅杜鹃化学成分的研究[J].西北植物学报,2007,27(2):0364-0370.
    [13]赵磊,吴定慧,余晓晖,等.秀雅杜鹃中的二氢黄酮类成分[J].中国中药杂志,2010,35(6):722-744.
    [14]杨鸣华,孔令义.露珠杜鹃的化学成分[J].药学与临床研究,2007,15(3):109-201.
    [15]吴丽媛,罗向东,戴亮芳,等.杜鹃花色素的分离与鉴定分析[J].食品科学,2011,32(133):19-22.
    [16]吴奶珠,黄帅,王友松,等.藏药樱草杜鹃的黄酮类成分研究[J].中草药,2011,42(7):1279-1281.
    [17]李雪峰,金慧子,陈刚,等.樱草杜鹃中的黄酮类化合物[J].天然产物研究与开发,2009,21:612-615.
    [18]周先礼,秦长虹,梅莹,等.髯花杜鹃叶的化学成分研究[J].中草药,2010,41(2):206-208.
    [19] Chosson E, Chaboud A. Dihydr of lavonolglycosides from Rhododendron ferrugineu[J]. Phytochemwastry,1998,49(5):1431-1433.
    [20] Hrionobu Takahashi,Sachiyo Hirata.Triterpen and flavanone glycoside from Rhododendron simsii[J],Phytochemwastry,2001,56:875-879.
    [21]张均田.若干中草药药理和化学研究[J].中国医学科学院学报,1979,1(2):154-160.
    [22] Fan C Q.Zhao WM.Ding B Y.Qin G W.Cinstituents from the leaves of Rhododendron latoucheae[J].Phytochemical communication,2002,(72):449-452.
    [23] Fan C Q.Yang G J.Zhao WM.Ding B Y.Qin G W.Phenolic components fromRhodedendron latoucheae[J].Chinese chemical letters,1999,10(7):567-570.
    [24] Hotta Y,Takeya K,Kobayashi Set al.Relationship between structure,positive inotropic potency and lethaldose of grayanotoxins in guimea pig[J]. Arch Toxicol,1980,44(4):259-267.
    [25]中国医学科学院药物研究所.中药志(第3册)[M].北京:人民卫生出版社,1982,111-115.
    [26]汪为群,张艳,方志炼.金丝桃苷对心肌脂质过氧化的影响[J].中国药理学通报,1995,11(2):123-125.
    [27]曹文军,陈瑞芬,刘国贞.槲皮素对缺血再灌大鼠心肌损伤的保护作用[J].首都医科大学学报,2004,25(3):311-313.
    [28]范一菲,孔德虎,陈志武等.杜鹃花总黄酮对心肌缺血损伤的保护作用[J].安徽医科大学学报,2006,41(2):157-160
    [29]范一菲,王云海,张建华等.杜鹃花总黄酮对在体大鼠心肌缺血再灌注损伤的保护作用及其机制[J].中草药,2008,39(2):240-244
    [30]宋小平,陈志武,张建华.映山红总黄酮的镇痛作用[J].安徽医科大学学报,2003,41(4):406-408
    [31]宋小平,陈志武,张建华.杜鹃花总黄酮的镇痛作用研究[J].山东医药,2007,47(14):14-16
    [32]夏德超,杨天明.羊踯躅的研究进展[J].中药材,2002,25(11):828-831
    [33]任茜,李强,李万波等.十种秦岭杜鹃的抗菌作用研究[J].陕西林业科技,1990,8(3):31-32
    [34]刘成梅,游海.天然产物有效成分的分离与应用[M].北京:化学工业出版社,2002,170-231.
    [35]肖崇厚.中药化学[M].上海:上海科学技术出版社,1997,265-299.
    [36]许智宏,刘春明.植物发育的分子机理[M].北京:科学出版社,1998,107-119.
    [37] Zhao,R.;Li,Q.-W.;Long,L.;Li,J.;Yang,R.-J.;Gao,D.-W. Int. J. Food Sci. Technol.2006,42(1),80.
    [38]孟申.中药有效成分抗氧化作用的实验研究[J].中国药理学通报,1992,8(5):326-330.
    [39] Fukai T, Satoh K, Nomura T,et al. Antinephritwas and radical scavenging activity of prenylflavonoids[J].Fitoterapia,003,74(7/8):720-724.
    [40]张彦文.查耳酮药理活性和结构的相关性[J].国外医学药学分册,1996,8(23):218-223.
    [41]叶怀义,龚赋岚,等.甘草黄酮抗衰老作用的研究[J].哈尔滨商业大学学报,2004,20(1):23-25.
    [42]盛幼珍,王丽梅,余龙江,等.几种天然植物黄酮的抗氧化对比研究[J].食品科技,2008,3(7):176-178.
    [43]张纪宁,杨洁.黄酮类化合物的生物活性研究进展[J].伊犁师范学院学报(自然科学版),2009,2:29-31.
    [44]玄红专,胡福良.黄酮类化合物抑制微生物活性及其作用机制[J].天然产物研究与开发,2010,22:171-175.
    [45]梁英,韩鲁佳.黄芩中黄酮类化合物药理学作用研究进展[D].北京:中国农业大学学报,2003,8(6):9-14.
    [46] T.P.Tim Cushnie,Andre wJ. Antimicrobial activity of avonoids[J]. International Journal of AntimicrobialAgents,2005,26:343-356.
    [47]宋爱清,刘杰. HPLC法测定蜂胶中黄酮类化合物的含量[J].中国养蜂,2001,3:10-11.
    [48] Cafarchia C,DeLaurentwas N,Milillo MA,LosaccoV,Puccini V. Antifungal activity of Apulia regionpropolwas[J]. Parassitologia,1999,41:587-590.
    [49] Dastidar SG,Manna A,,Kumar KA,et al. Studies on the antibacterial potentiality of wasoflavones. Int JAntimicrob Agents,2004,23:99-102.
    [50]焦翔,殷丽君,程永强.沙棘叶黄酮的提取及抑菌作用研究[J].食品科学,2007,28:124-129.
    [51]帕孜来提·拜合提,文雪梅,阿不都拉·阿巴斯.新疆红景天总黄酮及多糖的分离提取及抑菌活性初探[J].食品科学,2006,27(7):114-118.
    [52]李国章,于华忠,卜晓英,等.桑椹籽中黄酮的CO2超临界流体萃取及抑菌作用研究[J].现代食品科技,2006,22(2):86-88.
    [53]林宣贤.荷花黄酮类的提取及其生物活性的研究[J].中国食品添加剂,2007,(3):65-68.
    [54]冯煦,王鸣,赵友谊,等.北柴胡茎叶总黄酮抗流感病毒的作用[J].植物资源和环境学报,2002,11(4):15-18.
    [55]龚金炎,张英,吴晓琴.确良黄酮类化合物抗病毒活性的研究进展[J].中草药,2008,4(4):623-627.
    [56] ONO K,NAKANE H,FUKUSHIMA M,etal. Inhibition by reverse transcriptase activity of a flavonoidcompound,5,6,7-trihydroxyflavone[J]. Biochem Biophys Res Commum,1989,160(3):982.
    [57] Critcbfield JW.Butera ST,Folks TM. Inhibition of HIV activation in latenfly infected cells by flavonoidcompounds[J]. AIDS Res Hum Retroviruses,1996,12:39-46.
    [58] SHI Y,SHI R B,LIU B. Studies on antiviral flavonoides in yingqiaosan powder[J]. China Journal of ChineseMaterial Medica,2001,26(5):320-323.
    [59]江勤,董六一,方明,等.黄蜀葵花总黄酮体外抗单纯疱疹病毒作用[J].安徽医药,2006,10(2):93-94.
    [60] Lee W J,Shim J Y,Zhu B T. Mechanwasms for the inhibition of DNA methyltransferases by tea catechin andbioflavonoids[J]. Mol Pharmacol,2005,68(4):1018-1030.
    [61] Selway JWT. Antiviral activity of avones and avans. Plant avonoids in biology and medicine:biochemical,pharmacological,and structure–activity relationships[M]. New York,NY:AlanR. Lwass,Inc.
    [62]梁荣感,刘卫兵,唐祖年,等.荔枝核黄酮类化合物体外抗呼吸道合胞病毒的作用[D].西安:第四军医大学学报,2006,27(20):1881-1883.
    [63]龚金炎,张英,吴晓琴.黄酮类化合物抗病毒活性的研究进展[J].中草药,2008,4(4):623-627.
    [64]苏锐,崔丽霞.黄酮类化合物抑菌抗病毒活性的研究[J].农业技术与装备,2011,208(02):30-35.
    [65]谢明均. Apigenin对肿瘤的抑制作用及其机制研究进展[J].泸州医学院院报,2006,29(6):467.
    [66]李茂,刘明华,肖顺汉,等.黄酮类化合物抗肿瘤作用研究进展[J].泸州医学院学报,2011,34(3):309-310
    [67]曾适,杨勇,郭青龙.黄酮类化合物诱导肿瘤细胞凋亡的机制及其实验研究进展[J].药学进展,2009,33(9):402.
    [68]王晓雪,彭志刚.黄酮类化合物诱导肿瘤细胞凋亡作用机制研究进展[J].内科,,2009,4(4):595.
    [69]杨博,尤启东.黄酮类化合物的抗肿瘤作用机制研究进展[J].药学进展,2008,32(9):391.
    [70] Yuan Lili,Gan Pinggan,Zhan Hui,et al. A flavonoid glycoside wasolated from Smilax china L. rhizome invitro anticancer effects on human cancer cell lines[J]. Science Direct,Journal of Ethnopharmacology,2007,113.
    [71]童玲玲,李小玲.金雀异黄素抗肿瘤的研究进展[J].美国中华临床医学杂志,2005,7(1):74.
    [72]胡福良,朱威.不同方法提取的蜂胶液中总黄酮含量的测定及抗肿瘤与抗炎作用研究[J].中国食品学报,2005,5(3):12.
    [73]甄汉深,周燕园,袁叶飞,等.青天葵中黄酮类化合物的体外抗肿瘤实验研究[J].中国实验方剂学杂志,2008,14(3):36
    [74] Chang Hui,Mi Mantian. Lins Wenhua structurally related cytotoxic effects of flavonoids on human cancercells in vitro[J]. Arch Pharm Res,2008,31(9):1137.
    [75] Huey May Chen,Hsueh Ling Chang,Jinu Huang,et al, Protoapigenone,a novel flavonoid,inhibits ovariancancer cell growth in vitro and in vivo[J]. Cancer,,2008,267:85.
    [76] Young Kyoon Kim,Young Sup Kim,Sang Un Choi,et al. Wasolation of flavonol rhamnosides fromloranthus tanakae and cytotoxic effect of them on human tumor cell lines[J]. Arch Pharm Res,2004,27(1):44.
    [77] Steinberg F M,Guthrie N L,Villablanca A C,et a1. Soy protein with wasoflavones has favorable effects onendothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women[J]. Am J Clin Nutr,2003,78(1):123~130.
    [78]王倩,常丽新,唐红梅.黄酮类化合物的提取分离及其生物活性研究进展[J].河北理工大学学报(自然科学版),2011,33(1):110-115.
    [79]宋雪鹏.葛根素对自发高血压大鼠的降压作用及对其血浆肾素活性的影响[J].中国药理学报,1998,9(1):55.
    [80]刘成梅,游海.天然产物有效成分离与应用[M].北京:化学工业出版社,2003,181-202.
    [81] AjayM,GilaniAU,MustafaM R. Effectsof flavonoidson vascular smoothmuscle of the wasolated rat thoracicaorta[J]. Life Sci,2003,74(5):603-612.
    [82]丁之恩.银杏叶的利用价值及其研究进展[J].经济林研究,2003,21(4):128-130.
    [83]白凤梅,蔡同一.类黄酮生物活性及其机理的研究进展[J].食品科学,1999,1(8):11-13.
    [84] Sakata K,Hirose Y, Qiao Z,at al. Inhibition of InducibleWasoforms of Cyclooxygenase and Nitric OxideSynthase by Flavonoid Hesperidin in Mouse Macrophage Cell Line[J]. Cancer Letters,2003,199:139-145.
    [85]邱江匀,杨亚玲,杨国荣,等.鱼腥草中总黄酮提取及其抗过敏活性的研究[J].云南大学学报(自然科学版),2005,27(3):239-244.
    [86]陈艳芬,江涛,唐春萍,等.高良姜总黄酮抗炎镇痛作用的实验研究[J].广东药学院学报,2009,25(2):188-191.
    [87]赵铁华,杨鹤松,邓淑华,等.黄芩茎叶总黄酮解热作用的实验研究[J].中国中医药科技.2001,8(3):174-175.
    [88]张黎,陈志武,王瑜,等.银杏叶总黄酮抗炎作用及机制的探讨[J].安徽医科大学学报,2001,36(4):350-352.
    [89]张建.金花葵花总黄酮解热抗炎作用的实验研究[J].中国医科大学学报,2011,40(8):763-764.
    [90] Kim Y.-W.,Hackett J. C.,Brueggemeier R. W. J. Med.Chem,2004,47(16),4032.
    [91] Shivayogi PH,Shrwashailappa B,Shanmukhaswamy KH,et al.Antifertility and hormonal properties offlavones of Striga orobanchioides[J].Eur J Pharmacol,2000,391(1-2):193.
    [92] Zafir A,Ara A,Banu N. In vivo antioxidant status: A putative target of antidepressant action [J]. Prog Neuro-Psychoph,2009,33(2):220-228.
    [93] Shang Q,Liu W,Xu W R,et al. Virtual evaluation on activities of flavonoids from Scutellaria baicalenswas[J]. Chin Herb Med,2010,2(2):136-140.
    [94]龚金炎,吴晓琴,毛建卫,等.黄酮类化合物抗抑郁作用的研究进展[J].中草药,2011,42(1):195-200.
    [95]原爱红,黄哲,等.桑叶黄酮的提取及其降糖作用的研究[J].中草药,2004,11(35):1242-1243.
    [96]卢艳花,魏东芝,蒋晓萌,等.中药有效成分提取分离技术[M].北京:化学工业出版社,2008:92.
    [97]杨云,张晶.天然药物化学成分提取分离手册[M].北京:中国中医药出版社,2003:78.
    [98]张剑亮.观赏向日葵花色形成的机理研究[D].福建农林大学,博士论文,2008.
    [99]汪秋安,周冰,单杨.天然黄酮类化合物的抗氧化活性和提取技术研究进展[J].化工生产与技术,2004,11(5):30-33.
    [100]李南薇,唐晓恩,钟银链.大豆异黄酮提取和应用研究进展[J].广东农业科学,2010(5):118-120.
    [101]张斌,许莉勇.超声萃取技术研究与应用进展[J].浙江工业大学学报,2008,36(5):558.
    [102]滕海鹏,仲山民,吴峰华,等.超声波辅助提取菊米中的总黄酮[J].中南林业科技大学学报,2009,29(3):146-149.
    [103]周桂,邓光辉,梁达文.超声波法水提取山楂叶中黄酮的研究[J].西南农业大学学报,2005,27(5):605-607.
    [104]李云志,曾凡骏,李帆.黄酮的提取研究[J].食品与生物技术学报,2006,25(1):28-32.
    [105]高中松,丁文,高亮.超声波提取桑叶中总黄酮的工艺研究[J].中国农学通报,2006,22(4):116,119.
    [106]钟平,黄桂萍.超声波/微波法提取银杏叶总黄酮的对比研究[J].粮油加工,2010,8:147-149.
    [107]顾瑶华.HPLC法测定鱼腥草不同生长期及不同部位中槲皮素的含量[J].西北药学杂志,2009,24(5):364-365.
    [108]吴景林.鱼腥草中槲皮素提取方法的研究[J].四川化工,2010,13(1):17-21.
    [109]卞杰松,邓斌,王存嫦,等.超声波提取马鞭草中黄酮类化合物的工艺研究[J].时珍国医国药,2009,20(6):1420.
    [110]刘璐,付明哲,王侠,等.植物黄酮类化合物提取及测定方法研究进展[J].动物医学进展,2011,32(6):151-155.
    [111]袁连山.微波对提取过程的强化[J].香料香精化妆品,2005;2(1):29.
    [112]陈金娥,赵丽婷,赵二劳,等.微波萃取一正交优化设计沙棘黄酮提取工艺[J].中成药,2007,29(11):1612.
    [113]赵二劳,郭青枝,赵德千.微波辅助提取葛根素的研究[J].时珍国医国药,2009:20(2):321.
    [114]王小华,又斌,张晓军,等.微波辅助提取贯叶连翘总黄酮的工艺研究[J].安徽农业科学,2009,37(14):6431.
    [115]陈斌,郁颖佳,归靓,等.微波辅助萃取-高效液相色谱法测定鱼腥草药材中槲皮素的含量[J].复旦学报(医学版),2008,35(1):142-144.
    [116]陈伟,刘青梅,杨性民,等.微波技术在杜仲黄酮提取工艺中的应用研究[J].食品科学,2006,27(10):285-287.
    [117]白建华,赵昀,郭晓霞,等.微波辅助提取玉米须黄酮工艺研究[J].中国农学通报,2010,26(2):71-73.
    [118]唐课文,易健民,张跃超.微波辅助法从黎蒿中提取黄酮类化合物的研究[J].天然产物研究与开发,2005,(17)5:622-624.
    [119] Sofia Cavero,Monica R.,Garcia-Rwaseo,et al. Supercritical fluid extraction of Antioxidant compoundsfrom oregano: Chemical and functional characterization via LC-MS and in vitro assays[J]. The Journal ofsupercritical Fluids,2006,38(l):62-69.
    [120]杨桂林,袁叶.中药有效成分提取分离方法的研究进展[J].泸州医学院学报,2011,34(4):434-436.
    [121]孙婷.超临界法萃取银杏叶黄酮及其含量测定的研究[J].中国食品学报,2005,5(3):126-129.
    [122]谢建华,单斌,彭云,等.超临界CO2流体萃取苦瓜总黄酮工艺及其抗氧化活性[J].生物加工过程,2010,8(1):66-71.
    [123]淘清,吕鉴泉. CO2超临界流体萃取法提取竹叶中黄酮的研究[J].湖北师范学院学报:自然科学版,2010,30(1):96.
    [124]靳学远,安广杰.超临界流体提取金银花中总黄酮研究初报[J].食品科学,2007,24(9):156-158.
    [125]吕程丽,欧阳玉祝,梅杰,等. CO2超临界萃取葛根总黄酮的研究[J].食品与发酵科技,2009,45(5):21.
    [126]朱廷风,廖传华.螺旋藻中β-胡萝卜素的超临界CO2萃取实验研究[J].粮油加工与食品机械,2003(4):66-68.
    [127]刘志伟,吴和明.酶法提取仙人草黄酮类化合物的用机制的研究进展[J].实用临床医药杂志,2009,13(7):110-112.
    [128]邢秀芳,于宏芬.纤维素酶在葛根总黄酮提取中的应用[J].中草药,2001,32(1):37.
    [129]王晓,李林波,马小来.酶法提取山楂叶中总黄酮的研究[J].食品工业科技,2002,23(3):37-39.
    [130]王白强.酶法工艺提取鱼腥草有效杀菌成份的研究及其应用[J].福建轻纺,2008(1):20-25.
    [131]陈丛瑾,黄克瀛,杨国恩,等.香椿叶总黄酮不同提取方法的比较[J].食品研究与开发,2008,(3):57-59.
    [132]王芸芸,李莉,李香玉,等.复合酶法提取甘草渣中总黄酮[J].化学与生物工程,2008,25(8):49-51.
    [133]贾立革,刘锁兰,李秀青,等.中药提取分离新技术的研究进展[J].解放军药学学报,2004,20(4):279.
    [134] ZHAN G Zhao2wang,SUN Xiu2mei. China Journal of Chinese Materia Medical [J].1995,20(11):670.
    [135]汪春军,陈红艳,宋可珂.植物黄酮类化合物的提取分离研究进展[J].广东化工,2011,218(38):91-92.
    [136] CHEN Xiao2juan,ZHOU Chun2shan. Fine Chemical[J].2006,23(3):257.
    [137]陈丛瑾,黄克瀛,李德良.正交试验法优选香椿叶总黄酮的半仿生提取工艺[J].食品科技,2007,6:119-121.
    [138]王蕙,付燕,郎久义等.酶法及半仿生法提取银杏黄酮的工艺研究[J].辽宁中医院大学学报,2009,11(2):146-148.
    [139]孙秀梅,张兆旺.建立中药用“半仿生提取”研究的技术平台[J].中成药,2006,28(4):614.
    [140]宋晓凯.天然药物化学[M].北京:化学工业出版社,2010,220-253
    [141]赖毅勤,周宏兵.近年来黄酮类化合物提取和分离方法研究进展[J].食品与药品,2007,9(4):54~58.
    [142]赵国文,张丽萍,龚靖,等.鱼腥草中黄酮类化合物提取分离方法的研究进展[J].广东农业科学,2011,6:158-167.
    [143]唐浩国,李叶,向进乐等.超滤分离纯化麻竹叶黄酮的研究[J].食品科学,2008,29(5):117~180.
    [144]盛占武,孙志高,黄学根,等.超滤法提取橙皮苷工艺研究[J].食品与科学,2008,29(2):188.
    [145]郭京波,王向东,张燕,等.不同提取方法对苦荞类黄酮提纯得率的影响分析[J].食品科学,2006,27(10):433-436.
    [146]王克勤,罗军武,陈静萍,等.芹菜提取物中芹菜素的HPLC与HPTLC定量分析研究[J].食品科学,2008,30(4):291-293.
    [147]赖毅勤,周宏兵.近年来黄酮类化合物提取和分离方法研究进展[J].食品与药品,2007,9(4):54~58.
    [148]姜红芳,张玖,单承莺.毫菊花中黄酮类化合物的分离鉴定[J].中国野生植物资源。2008。27(5):50-52.
    [149]梁鸿,赵玉英,崔艳君,等.北柴胡中黄酮类化合物的分离鉴定[J].北京医科大学学报,2000,32(3):223-225.
    [150]杨武英,上官新晨,等.聚酰胺树脂精制青钱柳黄酮的研究[J].天然产物的研究与开发,2008,20(2):320~324.
    [151]杨海艳,宋先亮.川楝黄酮分离与结构研究[J].北京林业大学学报,2009,,31(1):48-49.
    [152]李文霞,颜彦,陈忠光,等.柱色谱-分光光度法测定菝葜中总黄酮的含量[J].华西药学杂志,2007,22(2):212-214.
    [153] WANG Hongyan,HAN Jingxian,XU Suixu,et al. Flavonoids of the stems and leaves of Scutellariabaiealenswas Georfi as ligands of the GABAA receptor benzodizaepingbinding wasite [J]. Chinese Journalof Medicinal Chemwastry.2002,12(5):265-267.
    [154]张静泽,颜艳.吸附树脂分离技在中药研究中的应用[J].中国中药杂志,2004,29(7):628-630.
    [155] Hua Lei,Zhang Wenqing,Xia Wei. Purification of totalflavones from Mulberry Leaves by macroporousresion[J]. Chinese Traditional Patent Medicine,2007,29(12):1758.
    [156]翟梅枝,郭琪,贾彩霞,等.大孔树脂分离纯化核桃青皮总黄酮的研究[J].生物质化学工程,2008,42(3):21-25.
    [157]]蒋建春,朱华云. HPLC法测定不同产地黄蜀葵花中黄酮类成分含量[J].药学与临床研究,2010,18(6):537-539.
    [158]]马森林,陈四平.天然黄酮类化合物分离方法研究进展[J].综述,2011,8(21):8-10.
    [159]]田娜,刘仲华,黄建安.高效制备液相色谱法从荷叶中分离制备黄酮类化合物[J].色谱,2007,25(1):88-92.
    [160]]陈丛瑾,杨国恩.高速逆流色谱法分离纯化黄酮类化合物的研究进展[J].西北药学杂志,2011,26(4):306-309.
    [161]] Sannomiy a M,Ro drigues C,Coelho RG,et al. Application of preparative high-speed counter-currentchromatography for the separation of flavonoids from the leaves of Byrsonima crassa Niedenzu (IK)[J].J Chromatogr A,2004,1035(1):47-51.
    [162]]苏静,谈锋,谢峻,等.循环高速逆流色谱从银杏叶提取物中制备异鼠李素和山柰酚[J].西南大学学报:自然科学版,2009,31(10):96-100.
    [163]] Han X,Ma XF,Zhang TY,et al. Wasolation of high-purity casticin from Artemwasia annua L. by high-speed countercurrent chromatography[J]. J Chromatogr A,2007,1151(1/2):180-182.
    [164]] Ye H Y,Chen LJ,Li YF,et a l. Preparative wasolation and purification of three rotenoids and onewasoflavone from the seeds of Millettia pachycarpa Bent h by high-speed counter-currentchromatography [J]. J Chromatog r A,2008,1178(1/2):101-107.
    [165]] Yuan ED,Liu BG,Ning ZX,et al. Preparative separation of flavonoids in Adinandra nitida leaves by high-speed counter-current chromatography and their effects on human epidermal carcinoma cancer cells[J].Food Chem,2009,115(3):1158-1163.
    [166]] Wu T,Lin JB,Yang Y,et al. Preparative wasolation of three flavonoids from Flos Gossypii by high-speedcounter-current chromatography [J]. Separ&Purif Techno l,2009,66(2):295-298.
    [167] Wang KB, Liu ZH, H uang JA, et al. Preparative wasolation and purification o f theaflavins and catechinsby high speed counter-current chromatography [J]. J Chromatogr B,2008,867(2):282-286.
    [168]张莹,施兆鹏,聂洪勇,等.制备型逆流色谱分离绿茶提取物中儿茶素单体(英文)[J].湖南农业大学学报:自然科学版,2003,29(5):408-411,417.
    [169] Sav itr i Kuma r N,Maduwanth WM A,Wijekoo n B, et al. Separation of proanthocyanidins wasolated fromtea leaves using high-speed counter-current chromatography [J]. J Chromatogr A,2009,1216(19):4295-4302.
    [170]于荣敏,张德志.天然药物化学成分波谱解析[M].北京:中国医药科技出版社,2008:190-192.
    [171]张莉,张丽萍,孙成春.液-质联用技术在中药研究中的应用[J].解放军药学学报,2010,26(6):558-561.
    [172] Dudley H.有机化学中的光谱方法[M].北京:北京大学出版社,2001:123-133.
    [173]黄量,于德泉.紫外光谱在有机化学中的应用[M].北京:科学出版社,2000:154-158.
    [174]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005:181-186.
    [175]葛丹丹,陈秋,许晶晶,等.瘤果黑种草中黄酮类成分的分离与结构鉴定(I)[J].沈阳药科大学学报,2011,28(6):420-424.
    [176]杨伟俊,顾政一,满尔哈巴,等.芳香新塔花中黄酮类成分的研究[J].时珍国医国药,2011,22(2):375-376.
    [177]覃红萍,鲁静,林瑞超,等.黄芪中异黄酮类成分的研究[J].药物分析杂志,2009,29(5):746-751.
    [178] Jun Chen,Yue Song,Ping Li. Capillary high-performance liquid chromatography with massspectrometry for simultaneous determination of major flavonoids, iridoid glucosides and saponins inFlos Lonicerae. Journal of Chromatography A,2007,1157:217~226.
    [179] Schijlen E G W M, Ricde Vos CH, van Tunen A J,et al. Modification of flavonoid biosyntheswas in cropplants[J]. Phytochemwastry,2004,65:2631-26481.
    [180] Clegg M T,Durbin M L. F lower color variation: A model for the experimental study of evolution[J].PANS,2000,97(13):7016-70231.
    [181] Dixon RA, Steele CL. Flavonoids and wasoflavonoids a gold mine for metabolic engineering [J]. Trends inPlnat Seienees,1999,4(10):394-400.
    [182]徐文燕,高微微,何春年.环境因子对植肠黄酮类亿合物生肠合成的影响[J].世界科学技术-中医药现代化
    综述,2006,8(6):68-72.
    [183]刘忠松.植物雄性不育机理的研究及应用[M].北京:中国农业出版社,2001,60.
    [184]高亦珂,张秀海,孙佳琦,等.植物花青素生物合成相关基因的研究及应用[J].植物研究,2011,31(5):633-640.
    [185]陈丽.植物转录因子的结构与功能[J].植物生理学通讯,1997,33(6):40l-409.
    [186]高亦珂,张秀海,孙佳琦,等.植物花青素生物合成相关基因的研究及应用[J].植物研究,2011,31(5):633-640.
    [188]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1988,24(3):9-16.
    [188] Ols en K M,Lea U S,S limest ad R,et al. Dif ferential expression of four Arabidopswas PA L genes;PAL1and PAL2have functional specialization in abiotic environmental-triggered flavonoidsyntheswas[J]. J Plant Physiol,2008,165(14):1491-1499.
    [189]程水源,杜何为,许锋.银杏苯丙氨酸解氨酶基因的克隆和序列分析[J].林业科学研究,2005,18(5):573-577.
    [190]周小理,王青,杨延利,等.植物中查尔酮酶合成黄酮类化合物的研究进展[J].食品工业,2009,6:72-74.
    [191] Huang J X,Qu L J,Yang J,et al. Apreliminary study on the origin of chalcone synthase (CHS) gene:molecular cloning of CHS-like gene from liverwort (Lunularia cruciata) and evolution of CHS genes inangiosperms. Acta Botanica Sinica,2004,46:10-19.
    [192] Ferr er J L, Jez J M, Bowman M E, et al. Structure of chalcone synthase and the molecular baswas of plantpolyketide biometabolwasm[J]. Nat Struct Biol,1999,6(8):775-784.
    [193] Reimold U,Kroger M,Kreuzaler F,et al. Coding and3' noncoding nucleotide sequence of chalconesynthase mRNA and assignment of amino acid s equence of the enzyme[J]. EMBOJ,1983,2(10):1801-1805.
    [194] Pang Y Z, Shen G A,Wu W S, et al. Characterization and expression of chalcone synthase gene fromGinkgo bioloba[J]. Plant Sci,2005,168:1525-1531.
    [195] MOUSTAFA E,WONG E. Purification and kinetic properities of chatcone-flavanone wasomerase fromsoya bean [J]. Eurj Biochem.1975,50(2):383-389.
    [196] MU IR S R,COLL INS G J,ROB INSON S,et al. Over expression of petunia chalcone wasomerase intomato results in fruit containing increased levels of flavonols [J]. Nat Biotechnol,2001,19(5):470-474.
    [197] Li F,Jin Z,Qu W,Zhao D,and Ma F. Cloning of a cDNA encoding the Saussurea medusa chalconewasomerase and its expression in transgenic tobacco. Plant Physiol Biochem,2006,14:455-461.
    [198] Gensheimer M and Mushegian A. Chalcone wasomerase family and fold: No longer unique to plants.Protein Sci,2004,13:540-544.
    [199] WOOD A J,DAV IES E. A cDNA Encoding Chalcone lsomerase from Aged Pea Epicotyls[J]. PlantPhysiol,1994,104(4):1465-1466.
    [200] L I F,J IN Z,QUW,et al. Cloning of a cDNA encoding the Saussurea medusa chalcone wasomerase and itsexpression in transgenic tobacco[J]. Plant Physiol Biochem,2006,44(729):455-461.
    [201] MCKHANN H I,H IRSCH AM. Wasolation of chalcone synthase and chalcone wasomerase cDNAs fromalfalfa (Medicago sativa L): highest transcript levels occur in young roots and root tip s [J]. PlantMol Biol,1994,24(5):767-777.
    [202]高亦珂,张秀海,孙佳琦,等.植物花青素生物合成相关基因的研究及应用[J].植物研究,2011,31(5):633-640.
    [203] Britsch L,Ruhnau-Brich B,Forkmann G. Molecular cloning,sequence analyswas,and in vitro expressionof flavanone3β-hydroxylase from Petunia hybrida. J Biol Chem,1992,267:5380-5387.
    [204] Shen GA, Pang YZ, Wu WS, et al. Cloning and characterization of a flavanone3-hydroxylase gene fromGinkgo biloba. Biosci Rep,2006,26:19-29.
    [205] Lukacin R,Groning I,Schiltz E,e t al. Purification of recombinant flavanone3β-hydroxylase from Petuniahybrida and assignment of the primary site of proteolytic degradation [J].Arch Biochem Biophys,2000,375(2):364-370.
    [206] Owens D K, Crosby K C, Run ac J, et al. Biochemical and genetic characterization of Arabidopswasflavanone3β-hydroxylase[J]. Pl ant Physiol Biochem,2008,46(10):833-843.
    [207] Punyasiri P A N, A beysinghe I S B, Kumar V, et al. Flavonoid biosyntheswas in the tea plant Cam elliasinenswas: properties of enzymes of the prominent epicatechin and catechin pathways [J]. Arch BiochemBiophy,2004,431:22-30.
    [208] Rosati C,Cadic A,Duron M,et al.Molecular characterization of the anthocyanidin synthase gene inForsythia intermedia reveals organ-specific expression during flower development[J]. Plant Sci,1999,149:73-79.
    [209]白新祥,戴思兰.反义RNA技术在花色育种中的应用[J].植物学通报,2005,22(3):284-291.
    [210] Forkmann G.,Martens S. Metabolic engineering and applications of flavonoids[J]. Curr. Opin.Biotechnol.,2001,12(2):155-160.
    [211] Britsch L, Heller W, Grwasebach H. Conversion of flavanone to flavone, dihydroflavonol and flavonol withan enzyme system from cell cultures of parsley[J]. Z Naturforsch,1981,36c:742-750.
    [212] Holton TA,Brugliera F,Tanaka Y. Cloning and expression of flavonol synthase from Petunia hybrida[J].Plant J,1993,4:1003-1010.
    [213] Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. Asmall family of MYB-Regulatory genes controls floral pigmentation intensity and patterning in the genusAntirrhinum[J]. Plant Cell,2006,18(4):831-851.
    [214]马春雷,陈亮.茶树黄酮醇合成酶基因的克隆与原核表达[J].基因组学与应用生物学,2009,28(3):433-438.
    [215]肖春桥,高,洪,池汝安.诱导子促进植物次生代谢产物生产的研究进展[J].天然产物研究与开发,2004,16(5):473-476.
    [216]王军妮,黄艳红,牟志美,等.植物次生代谢物黄酮类化合物的研究进展[J].蚕业科学,2007,33(3):499-505.
    [217]谢秋玲,郭勇华.诱导剂对植物细胞生产次生代谢物的作用[J].食品科学,1998,19(10):7-9.
    [218]刘春朝,王玉春,赵兵,等.生物诱导子调节植物组织次生代谢的研究[J].植物学通报,1999,16(2):131-137.
    [219]施中东,未作君,元英进,等.南方红豆杉细胞培养合成紫杉醇诱导子浓度的优化[J].天然产物研究与开发,2000,12(4):36-40.
    [220]曹英杰,贾景明.一氧化氮、茉莉酸甲酯与水杨酸对肉苁蓉悬浮细胞生长及苯乙醇苷生物合成的影响[J].中国药学杂志,2011,46(14):1069-1073.
    [221] Creelman R A, Tiemey M L, Mullet J E. Jasmonic acid/methyl jasmonate accumulate in wounded soybeanhypocotyls and modulate wound gene expression[J]. Proc Natl Acad Sci USA,1992,89(11):4938-4941.
    [222]马君兰,赵越.外源茉莉酸甲酯(MeJA)对大豆异黄酮合成途径的影响[J].东北农业大学学报,2011,42(5):14-18.
    [223]杨英,郑辉,李赟,等.茉莉酸甲酯与二氢茉莉酮酸甲酯对悬浮培养的甘草细胞生长和黄酮积累的影响[J].植物生理学通讯,2008,44(5):903-906.
    [224]向小亮,宁书菊,黄延龄,等.外源水杨酸对马蓝叶片中蛋白水平表达的影响[J].应用生态学报,2010,21(3):689-693.
    [225]周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医学院学报,2003,25(2):76-78.
    [226]苗志奇,未作君,元英进.水杨酸在紫杉醇生物合成中诱导作用的研究[J].生物工程学报,2000,16(4):510-513.
    [227] Gao Y, Zeng Q, Guo J, et al. Genetic characterization reveals no role f or the reported ABA receptor GCR2in ABA control of seed germination and early seedling development in A rabidopswas[J]. Plant J.,2007,52:1001-1013.
    [228]田晓艳,刘延吉等.脱落酸对南果梨色素及部分合成关键酶的影响[J].北方园艺,2008,(12):155-156.
    [229]程水源,王燕,李俊凯等.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学,2004,40(6):45-49.
    [230]李保珠,赵翔,安国勇.赤霉素的研究进展[J].中国农学通报,2011,27(01):1-5.
    [231]夏春华,蔡世英.植物生长调节剂提高花烛佛焰苞花青苷含量的效应[J].热带作物学报,2004,25(1):32-35.
    [232]张强,苏印泉,徐咏梅.采样时间对赤霉素处理杜仲叶次生代谢物含量的影响[J].西北林学院学报,2010,25(6):130-133.
    [1]肖崇厚.中药化学[M].上海:上海科学技术出版社,1997,265-299.
    [2]刘成梅,游海.天然产物有效成分的分离与应用[M].北京:化学工业出版社,2002,170-231.
    [3] Hnie,Andrew J. Antimicrobial activity of avonoids[J]. International Journal of Antimicrobial Agents,T.P.Tim Cus2005,26:343-356.
    [4]焦翔,殷丽君,程永强.沙棘叶黄酮的提取及抑菌作用研究[J].食品科学,2007,28:124-129.
    [5]帕孜来提·拜合提,文雪梅,阿不都拉·阿巴斯.新疆红景天总黄酮及多糖的分离提取及抑菌活性初探[J].食品科学,2006,27(7):114-118.
    [6]李国章,于华忠,卜晓英,等.桑椹籽中黄酮的CO2超临界流体萃取及抑菌作用研究[J].现代食品科技,2006,22(2):86-88.
    [7]卢艳花,魏东芝,蒋晓萌,等.中药有效成分提取分离技术[M].北京:化学工业出版社,2008:92.
    [8]杨云,张晶.天然药物化学成分提取分离手册[M].北京:中国中医药出版社,2003:78.
    [9]汪秋安,周冰,单杨.天然黄酮类化合物的抗氧化活性和提取技术研究进展[J].化工生产与技术,2004,11(5):30-33.
    [10]陈丛瑾,黄克瀛,李德良,等.植物中黄酮类化合物的提取方法研究概况[J].生物质化学工程,2007,41(3):42-44.
    [11]叶春,阚健全,谭书明,等.鱼腥草叶总黄酮提取工艺研究[J].食品科学,2007,28(9):192-195.
    [12]蒋益虹.荷叶抑菌活性成分的研究[D].浙江大学,博士论文,2007,40-56.
    [13]福建省科学技术委员会.福建植物志[M].福州:福建科学技术出版社,1989,4:235-237.
    [14]张梅,潘大仁、周以飞等. BP神经网络结合正交试验优选锦绣杜鹃总黄酮的提取工艺[J].信阳师范学院学报.自然科学版,2011.4,24(2):261~264.
    [15]魏永生,王永宁,石玉平等.分光光度法测定总黄酮含量的实验条件研究[J].青海大学学报:自然科学版,2003,21(3):61-63.
    [16]汪洪武,刘艳清.紫花杜鹃中总黄酮的提取工艺优选[J].精细化工,2009,26(3):252-254.
    [17]王玲霞,牛雪平,马建永,等.正交试验法优选田七花总黄酮的提取工艺[J].内蒙古大学学报:自然科学版,2009,40(1):75-78.
    [18]熊勇,李永春,赵春艳.正交设计优选密蒙花总黄酮提取工艺研究[J].云南民族大学学报:自然科学版,2010,19(2):146-149.
    [19]周以飞,黄华康.作物品种试验与统计分析[M].福建科学技术出版社,2004:257-274.
    [20] MontanaDJ. Training feed forward neural network using genetic algorithm. Proeeeding of the Eleventh InternationalJoint Conference on Artificial Intelligence,1989,34(3):762-767.
    [21]西广成.神经网络的学习过程探索.自动化学报,1991,17(3):311-316.
    [22] Raymond K,Boeeor H,Mwastair P. An artificial neural network model for Predicting flavour intensity in black-currantconcentrates. Food Quality and Preferenee,2002,(13):117-128.
    [23]唐启义. DPS数据处理系统[M].北京:科学出版社,2010,1085-1089.
    [24]蒋益虹,沈益民.人工神经网络用于红曲杨梅果酒生产工艺的优化[J].浙江大学学报:农业与生命科学版,2003,29(3):275-279.
    [25]沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,2004.
    [26]周邦靖.常用中药的抗菌作用及其测定方法[M].重庆:科学技术出版社重庆分社,1987.
    [27]张显忠,郭爱军,王德才,等.丁香等中草药有效成分的提取方法和抗菌活性关系的研究[J].泰山医学院学报,2008,29(10):760-763.
    [28]吴国娟,张中文,李焕荣,等.中草药对奶牛乳房炎6种致病菌的抑茵效果观察[J].北京农学院学报,,2003,18(3):195-2198.
    [29]张培花,罗文富,杨艳丽.紫茎泽兰汁液及其萃取物对马铃薯晚疫病菌的抑制作用[J].西南农业学报,2006,19(2):246-250.
    [30]韩淑琴,杨洋,黄涛,等.仙人掌提取物的抑菌机理[J].食品科技,2007,3:38-39.
    [31] Katarzyna Ulanowska,Aleksandra Tkaczyk,Grazyna Konopa,et al. Differentialantibacterial activity of genwasteinarwasing from global inhibition of DNA,RNA and protein syntheswas in some bacterial strains [J]. Archives ofMicrobiology,2006,184(5):271-278.
    [32] Della Loggia R,Sosa S. Anti-inflammatory activity of Ginkgobiloba flavonoids [J]. Planta Med,1993,59(4):A588.
    [33]张金桐,宋仰弟.黄酮类化合物的生物活性与电子结构关系的量子化学研究、山西农业大学学报:自然科学版,1993,13(2):134-140.
    [1]付晓丽,张立伟,林文翰,等.满山红化学成分的研究[J].中草药,2010,41(5):704-707.
    [2]杨海荣,王生新.大坂山杜鹃化学成分的1.四种酚类成分的分离鉴定[J].植物学报,1978:20(4):355-359.
    [3]王生新,杨海荣.大坂山杜鹃化学成分的研究II.(+)-儿茶酸、金丝桃苷及毒性成分的分离鉴定[J].植物学报,1981:23(1):47-51.
    [4]戴胜军,陈若芸,于德泉.烈香杜鹃中的黄酮类成分研究[J].中国中药杂志,2004,29(1):44.
    [5]戴胜军,于德泉.烈香杜鹃中的黄酮类化合物Ⅱ[J].中国中药杂志,2005,30(23):1830.
    [6]黄辉强,冯毅凡,芮雯等.紫花杜鹃中黄酮类成分的UPLC/Q-TOF-MS分析[J].中国中药杂志,2009,34(7):875-878.
    [7] Hrionobu Takahashi,Sachiyo Hirata.Triterpen and flavanone glycoside from Rhododendron simsii[J],Phytochemwastry,2001,56:875-879.
    [8] Chosson E, Chaboud A. Dihydr of lavonolglycosides from Rhododendron ferrugineu[J]. Phytochemwastry,1998,49(5):1431-1433.
    [9]张玉峰.基于液质联用技术的中药化学成分鉴定方法学研究[D].博士论文,淅江大学,2008:11-15.
    [10] Anton K, Patrick B, Kathryn M, et al. Ultra2performance liquid chromatography coup led to time of flightmassspectrometry (UPLC–TOF): A novel tool for multiresidue screening of veterinary drugs in urine[J]. Anal Chim Acta,2007,586(1-2):13-21.
    [11] Wang X J, SunW J, Sun H, et al. Analyswas of the constituents in the rat p lasma after oral adminwastration of YinChen Hao Tang by UPLC/Q2TOF2MS/MS [J]. J Pharm B iom ed Anal,2008,46(3):477-490.
    [12]张莉,张丽萍,孙成春,等.液质联用技术在中药研究中的应用[J].解放军药学学报,2010,26(6):558-561.
    [13]张梅,潘大仁,周以飞,等. BP神经网络结合正交试验优选锦绣杜鹃总黄酮的提取工艺[J].信阳师范学院学报.自然科学版,2011.4,24(2):261-264.
    [14]宋晓凯.天然药物化学[M].北京:化学工业出版社,2010,83-86.
    [15]陈晓青.中草药成分分离分析技术与方法[M].北京:化学工业出版社,2006:57-112.
    [16]吴丽媛,罗向东,戴亮芳,等.杜鹃花色素的分离与鉴定分析[J].食品科学,2011,32(13):19-22.
    [17] JINUH, LEE JY, KANG SK, et al. Aphenolic compound,5-caffeoylquinic acid (chloro-genic acid), was a new type andstrongmatrixmetalloproteinase-9inhibitor: Wasolation and identification frommethanol extract ofEuonymus alatus[J].Life Sciences,2005,77(22):2760-2769.
    [18]许福泉,刘红兵,罗建光,等.萹蓄化学成分及其归经药性初探[J].中国海洋大学学报(自然科学版),2010,40(3):101-104.
    [19]李雪峰,金慧子,陈刚,等.樱草杜鹃中的黄酮类化合物[J].天然产物研究与开发,2009,21:612–615.
    [20] De Loose R. The flower pigments of the Belgian hybrids of Rhododendron simsii and other species and varieties fromRhododendron subseries obtusum[J]. Phytochemwastry,1969,8(1):253-259.
    [21] De Loose R. Flavonoid glycosides in the petals of some Rhododendron species and hybrids[J]. Phytochemwastry,1970,9(4):875-879.
    [22] Chosson E,Chaboud A,Chulia A J, Raynaud J. Dihydroflavonol glycosides from Rhododendron ferrugineum[J].Phytochemwastry,1998,49(5):1431-1433.
    [23] CUYCKENS F, CLAEYSM. Mass spectrometry in the structural analyswas of flavonoids[J]. Journal of MassSpectrometry,2004,39(1):1-15.
    [24] Swiderski A,Muras P,Koloczek H. Flavonoid composition in frost2reswastant Rhododendron cultivars grown inPoland[J]. Scientia Horticulturae,2004,100(1-4):139-151.
    [25] Pietta P G, Mauri P L,Gardam C. Identification of the main flavonoids by use of chromatographic electrophoretic and‘on-line’ spectral data[J]. J High Resolution Chromatogr,1994,17:616.
    [26]黄辉强,冯毅凡,芮雯等.紫花杜鹃中黄酮类成分的UPLC/Q-TOF-MS分析[J].中国中药杂志,2009,34(7):875-878.
    [27]李崇晖,王亮生,舒庆艳,等.迎红杜鹃花色素组成及花色在开花过程中的变化[J].园艺学报,2008,35(7):1023-1030.
    [1]陈立群,杨中林.不同采收期杜仲叶中种黄酮成分动态变化研究[J].海峡药学,2007,19(4):29-30.
    [2]秦民坚,吉文亮,王峥涛. HPLC测定射干中6种异黄酮含量的动态变化[J].中国中药杂志,2006,31(20):1681-1683.
    [3]李晓花.沙棘有效成分动态变化研究[D].吉林农业大学,2003:1-2.
    [4]陈封政,吴三林.马齿苋不同生长期黄酮含量的动态变化[J].乐山师范学院学报,2006,21(5):54-55.
    [5]谢娟平,孙文基.生长期巫山淫羊藿不同部位5种黄酮类成分的动态积累研究[J].中草药,2009,40(9):1480-1483.
    [6]李西文,马小军.半夏不同生长发育时期总生物碱含量动态变化的研究[J].中国中药杂志,2006,31(8):687-688.
    [7]郑荣庆,李光秀.高效液相色谱法在中药材资源开发等方面的应用[J].西北药学杂志,1994,9(4):183-184.
    [8]张建州,刘超峰,李凤菊. HPLC法测定樟脑丸中茶含量及与GC法的比较[J].应用化工,2007,(6):28.
    [9] Tian Q G. Screening for Limonoid gLueosides in Citrus tangerine(Tanaka)Tseng by high-Performance Liquidchromatography-eLectrospray ionization mass spectrometry[J]. JournaL of Chromatography A,2000,874(1):13-19.
    [10]张梅,潘大仁,周以飞,等. BP神经网络结合正交试验优选锦绣杜鹃总黄酮的提取工艺[J].信阳师范学院学报.自然科学版,2011.4,24(2):261-264.
    [11]福建省科学技术委员会.福建植物志[M].福州:福建科学技术出版社,1989,4:235-237.
    [12]林乐维,蒋林,郑国栋.不同产地和采收期广陈皮中三种黄酮类成分的含量测定[J].中药材,2010,33(2):173-176.
    [13]孔昭琰,巢建国,谷巍,等.不同采收期凤丹皮中3种药效成分动态变化研究[J].中国中医药信息杂志,2011,18(1):63-64.
    [1] M. Roitto,P. Rautio,R. Julkunen-Tittod,E. Kukkola,S. Huttunen. Changes in the concentrations of Phenolicsand Photosynthates in Scots Pine(Pinus sylvestrwas L.) seedlings exposed to nickel and copper. Environmentalpollution,2005,137:603-609.
    [2] An Y,Shen YB,Wu LJ,Zhang Z X. A change of phenolic acids content in poplar leaves induced by methylsalicylate and methyl jasmonate. Joumal of Forestry Research,2006,17(2):107-110.
    [3] M. S. Padda,D. H. Picha. Effect of low temperature storage on phenolic composition and antioxidant activityof sweet potatoes. Post harvest Biology and Technology,2008,47:176-180.
    [4]杨英,郑辉,李赟,等.茉莉酸甲酯与二氢茉莉酮酸甲酯对悬浮培养的甘草细胞生长和黄酮积累的影响[J].植物生理学通讯,2008,44(5):903-906.
    [5]王军妮,黄艳红,牟志美,等.植物次生代谢物黄酮类化合物的研究进展[J].蚕业科学,2007,33(3):499-505.
    [6]杨英,何峰,季家兴,等.外源水杨酸对悬浮培养甘草细胞中甘草黄酮积累的影响[J].植物生理学通讯,2008,44(3):504-506.
    [7]吴劲松,种康.茉莉酸作用的分子生物学研究[J].植物学通报,2002,19(2):164-170.
    [8]倪细炉,谭玲玲,王玲丽,等.不同诱导子处理对鱼腥草幼苗槲皮素含量的影响[J].鲁东大学学报(自然科学版),2008,24(3):254-259.
    [9]李保珠,赵翔,安国勇.赤霉素的研究进展[J].中国农学通报,2011,27(01):1-5.
    [10] Wewass D., van der Luit A. and Knegt E.. Identification of endogengous gibberellins in petunia flower,induction of anthocyanin biosynthetic gene expression and the antagonwastic effect of abscwasic acid. PlantPhysio,1995,107:695-702.
    [11]张迎迎,何祖华.高等植物赤霉素的代谢与信号转导[J].植物生理学通讯,2010,7(46):623-630.
    [12]程水源,王燕,李俊凯等.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学,2004,40(6):45-49.
    [13]王学奎.植物生理生化实验原理和技术(第二版)[M].北京:高等教育出版社,林业科学,2006,224-225.
    [14]胡增辉,沈应柏,王宁宁,等.不同挥发物诱导的合作杨叶片中POD,PPO及PAL活性变化[J].林业科学,2009,45(10):44-48.
    [15]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003:120-121.
    [16]周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医学院学报,2003,25(2):76-78.
    [17]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1988,24(3):9-16.
    [18]徐晓梅,杨署光.苯丙氨酸解氨酶研究进展[J].安徽农业科学,2009,37(31):15115-15119,15122.
    [19]贺立红,宾金华.高等植物中的多酚氧化酶[J].植物生理学通讯,2001,37(4):340-345.
    [20]孙万春,薛高峰,张杰,等.硅对水稻防御性关键酶活性的影响及其与抗稻瘟病的关系[J].植物营养与肥料学报,2009,15(5):1023-1028.
    [21] Mittler R, Lam E, Shulaev V, et al. Signals controlling the expression of cytosolic ascorbate peroxidaseduring pathogen-induced programmed cell death in tobacco[J]. Plant Molecular Biology,1999,39(5):1025-1035.
    [22]胡海英,贺海明,梁新华,等.茉莉酸甲酯对乌拉尔甘草种子萌发和过氧化物酶活性的影响[J].时珍国医国药,2011,22(7):1579-1580.
    [23]张艳芬,蒋娟,姜丽,等.荠菜中酚类物质与过氧化物酶作用底物研究[J].食品科学,2011,32(12)):324-326.
    [23] Liechti R, Farmer E E. The ja sm ona te pathw ay [J]. Science,2002,296(5573):1649-1650.
    [24] Gundlach H, MullerM J, Kutchan TM, et al. Jasmonic acid was a signal transducer in elicitor-induced plantcell cultures[J]. Proc Natl Acad SciUSA,1992,89:2389.
    [25] Tamogami S, Rakwal R, Kodama O. Phytoalexin production elicited by exogenously applied jasmonic acid inrice leaves (Oryza sativa L.) was under the control of cytokinins and ascorbic acid [J]. FEBS Lett,1997,412:61.
    [26]王忠.植物生理学[M].北京:中国农业出版社,2000:278.
    [27]李保珠,赵翔,安国勇.赤霉素的研究进展[J].中国农学通报,2011,27(01):1-5.
    [28]胡尚连,贾攀庆,曹颖等. GA3和IAA对慈竹黄酮含量动态积累的调控效应[J].安徽农业科学,2008,36(8):3114.
    [29]陈顺钦,黄璐琦,袁媛,等.光照对黄芩悬浮细胞内源激素与有效成分相关性的影响[J].中国实验方剂学杂志,2010,16(4):72.
    [30] CUTLER S R, RODRIGUEZ P L, FINKELSTE IN R R, eta.l Abscwasic acid: emergence of a core signalingnetwork[J]. Annu Rev Plant Bio,2010,61:651-679.
    [31] K IM T H, BOHMER M, HU H, eta.l Guard cell signal transduction network: advances in understandingabscwasic acid, CO2, and Ca2+signaling [J]. Annu Rev Plant Bio,2010,61:561-591.
    [32]程水源,王燕,李俊凯等.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学,2004,40(6):45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700