用户名: 密码: 验证码:
蛋白用花生加工特性与品质评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了111个花生品种的蛋白质亚基组成、氨基酸组成等特征成分指纹图谱,建立了氨基酸近红外快速无损检测技术,分析了花生感官品质、理化营养品质及加工品质与蛋白质凝胶性、溶解性之间的关系,构建了适宜加工凝胶型和溶解型蛋白质的花生品质评价方法、评价标准,确定了花生的加工适宜性,并在此基础上建立了花生加工专用品种品质基础数据库。本研究明确了花生加工特性,建立了花生加工品质评价方法和标准,实现花生品种品质的科学评价和分类,促进花生加工业的健康发展。
     本试验选取我国12个花生主要种植省份的111个花生品种作为试验材料。SDS-PAGE指纹图谱分析表明,花生蛋白质由花生球蛋白(Arachin)和伴花生球蛋白(Conarachin)组成,各品种花生球蛋白亚基组成有差异,双纪2号、粤油14号等26个品种缺失35.5kDa蛋白质亚基;不同花生品种Arachin/Conarachin比值变化范围较大,介于0.87~1.68。氨基酸指纹图谱分析表明,天门冬氨酸(3.07±0.60g/100g花生)、精氨酸(3.14±0.53g/100g花生)含量显著高于其他作物,因此被称为花生中的特征性氨基酸。采用PCA和PLS建立花生氨基酸的近红外预测模型,Asp、Thr、Ser、Glu、Gly、Leu、Arg、Cys等预测模型的R2为0.83~0.96,表明近红外预测结果的准确性和精确性接近化学方法。
     在此基础上,系统全面分析了花生的感官品质、理化营养品质及加工品质之间关系。结果表明,百果重与百仁重(r=0.923),粗脂肪与粗蛋白(r=-0.399),Arachin与Conarachin(r=-0.996),粗脂肪与果形(r=0.661)等在0.05水平上呈显著的关系。
     花生蛋白质溶解性与凝胶性的硬度、弹性、内聚力相关性分析表明,蛋白质的溶解性与凝胶性的硬度(r=-0.687)和内聚力(r=-0.588)分别呈显著的负相关,初步说明蛋白质溶解性好的品种凝胶性较差,反之亦然。采用Minkowski方法建立了花生蛋白质凝胶性的评价方程:凝胶性0.02680.1618硬度0.3781弹性1.1573内聚力,该方程计算结果与硬度、弹性和内聚力的相关系数分别为0.87、0.41和0.47,该方程预测凝胶性综合值与原始值接近。利用有监督主成分回归分析建立适宜加工凝胶型和溶解型蛋白质花生品质评价模型,通过外部验证确定模型的准确性和可靠性。得到适宜加工凝胶型蛋白质的花生品质评价模型(理论分析)为:该模型预测值和实际值的相关系数为0.937,表明预测值与实际值基本吻合。适宜加工溶解型蛋白质的花生品质评价模型(理论分析)为:溶解性=0.770362粗脂肪-0.60393粗蛋白-0.91626总糖-8.32449胱氨酸+3.214817精氨酸-0.21846伴花生球蛋白-1.1688537.5k Da+1.8193423.5k Da+1.01813915.5kDa-0.44476蛋白质提取率+0.207081出仁率+47.67507该模型预测值和实际值的相关系数为0.820,可以预测未知品种蛋白质溶解性的好坏。
     为了进一步确定花生的加工适宜性,建立了适宜加工凝胶型蛋白质和溶解型蛋白质的花生品质评价标准。通过K-means聚类分析,将花生蛋白质凝胶性综合值划分为三个等级,即大于1.08的为Ⅰ级(适宜),0.85~1.08为Ⅱ级(基本适宜),小于0.85为Ⅲ级(不适宜)。依据聚类中心值及实际情况,将适宜加工凝胶型蛋白质花生品质评价指标分为三类,适宜、基本适宜和不适宜。适宜的评价标准(理论分析)为:果形为曲棍形、驼峰形、串珠形;粗蛋白大于27.70%、胱氨酸大于0.89%、精氨酸大于3.98%、伴花生球蛋白Ⅰ大于29.35%、粗纤维小于2.53%、甘氨酸小于1.34%、亮氨酸小于1.60%、花生球蛋白/伴花生球蛋白小于1.08%、23.5kDa蛋白质亚基小于20.83%。
     通过K-means聚类分析,将蛋白质的溶解性划分为三个等级,即大于86的为Ⅰ级(适宜),68~86为Ⅱ级(基本适宜),小于68为Ⅲ级(不适宜)。依据聚类中心值及实际情况,将适宜加工溶解型蛋白质花生品质评价指标分为三类,适宜、基本适宜和不适宜。适宜评价标准为(理论分析):精氨酸大于4.40%、23.5kDa蛋白质亚基大于24.00%、出仁率大于74.32%、蛋白质提取率大于85.38%、粗蛋白大于27.58%、15.5kDa蛋白质亚基小于5.78%、粗脂肪小于46.95%、伴花生球蛋白Ⅰ小于23.49%、总糖小于5.14%、37.5kDa小于12.65%、胱氨酸小于0.48%。以上两个评价模型中指标数较多,为了加工企业方便、快捷的利用模型选取适宜加工的花生品种,优化以上建立的花生品质评价模型,采用尽量少的指标反映多的问题。得到适宜加工凝胶型蛋白质花生品质评价模型为(实际应用):凝胶性=e1.5710.02474*果形0.007009*粗蛋白0.04351*精氨酸-0.005*伴花生球蛋白Ⅰ0.06057*23.5kDa该模型预测值和实际值的相关系数为0.718。适宜加工溶解型蛋白质花生品质模型为(实际应用):4溶解性=1.49017*粗蛋白3.3775*胱氨酸0.39096*伴花生球蛋白Ⅰ56.016274*15.5kDa266.7366该模型预测值和实际值的相关系数为0.699。
     依据凝胶性符合正态分布的模型(实际应用),采用回归方程的回归系数,确定各指标权重。依据聚类中心值及实际情况,将适合加工凝胶型蛋白质花生品质评价指标分为三类,适宜、基本适宜和不适宜。适宜的评价标准为:果形为曲棍形、驼峰形、串珠形,粗蛋白大于27.42%、精氨酸大于3.70%、伴花生球蛋白Ⅰ大于29.37%、23.5kDa蛋白质亚基小于20.80%。采用本标准确定适宜加工凝胶型蛋白质的花生品种为鲁花11、双纪2号、汴花3号、丰花1号等44个。
     依据溶解性符合正态分布的模型(实际应用),采用回归方程的回归系数,确定各指标权重。依据聚类中心值及实际情况,将适宜加工溶解型蛋白质花生品质评价指标分为三类,适宜、基本适宜和不适宜。适宜加工溶解型蛋白质的花生品质评价标准为:粗蛋白大于27.58%、胱氨酸小于0.48%,伴球蛋白Ⅰ小于23.49%、15.5kDa蛋白质亚基小于5.78%。采用本标准确定适宜加工溶解型蛋白质的花生品种为豫花9326、白沙1016、豫花15、五彩花生等75个。
     基于花生品质特性、指纹图谱、花生品质评价模型及评价标准,采用动态网页技术(ASP)构建基于B/S(Browser/Server,浏览器/服务器)建立蛋白用花生加工专用品种数据库。该数据库包括系统管理模块、数据库管理模块及数据操作模块;系统管理模块设置用户组及用户,数据库管理模块设定数据字段及数据字典,数据操作模块将花生及其制品的感官品质、理化营养品质、加工品质、特征成分指纹图谱及品种适宜性评价模型等相关信息输入数据库;用户通过Internet访问服务器端的数据可以实现一个功能完善的花生加工专用品种品质基础数据库。
This research analyzed the fingerprint characteristic of protein subunits, amino acids and NearInfrared Reflectance Spectroscopy (NIRS). The relationship of peanut quality with gel property andsolubility were analysis. Process suitability of gel property and solubility were established. Processdatabase were established. Therefore, it‘s necessary to establish a rapid nondestructive testingtechnology, and construct the evaluation methodology and criterion of peanuts quality, for estimatingthe processing suitability scientifically.
     There were111peanut varieties used in this research. The fingerprint of SDS-PAGE showed that26varieties lack the subunit of35.5kDa. The ranges of arachin/conarachin was0.87~1.68. Thecharacteristic amino acids of peanut were Asp (3.07±0.60g/100g peanut) and Arg (3.14±0.53g/100g peanut). The PCA and PLS was used to establish the models of amino acids (Asp, Thr, Ser,Glu, Gly, Leu, Arg, Cys), the R2of these models ranged from0.83to0.96.
     The process characteristics of peanuts were analysis in this article. The results showed thathundred seed weight and hundred kernel weight (r=0.923), crude fat and crude protein (r=-0.399),arachin and conarachin (r=-0.996), crude fat and shape (r=0.661) had significant relationship in0.05level.
     The correlation of peanut protein showed that the relationship of solubility and hardness(r=-0.687), cohesiveness (r=-0.588) were inverse. The Minkowski was used to establish theevaluation equation:gel property0.02680.1618hardness0.3781springiness1.1573cohesiveness. The correlationcoefficients between the newly depicted index and the original ones were0.87,0.41and0.47corresponding to hardness, springiness and cohesiveness, respectively.The super principal component regression analysis was used to establish the gel property andsolubility evaluation models. The quality evaluation model of gel property as followed:TheCoefficient of correlation between predicted value and true value was0.937.The quality evaluation model of solubility as followed:So lub ility0.770362crude fat-0.60393crude protein-0.91626Total sugur-8.32449Cys3.214817Arg-0.21846Conarachin-1.1688537.5k Da1.8193423.5k Da1.01813915.5kDa-0.44476extraction rate0.207081kernelratio47.67507
     The Coefficient of correlation between predicted value and true value was0.820.
     The gel property of peanut was divided into three grades. The value of gel property higher than1.08was defined as Ⅰ grade (suitable),0.85~1.08was defined as Ⅱ grade (medium appropriate),lower than0.85was defined as Ⅲ grade (inappropriate). Clustering center value and practicalsituation was used to classify the indexes of peanut into three grades. The varieties which havequgunxing, tuofengxing, chuanzhuxing, crude protein higher than27.70%, crude fiber lower than2.53%, Glu lower than1.34%, Cys higher than0.89%, Leu lower than1.60%, Conarachin Ⅰ higherthan29.35%, arachin/conarachin lower than1.08%,23.5kDa lower than20.83%were suitable toprocess gel. The solubility of peanut was divided into three grades. The value of solubility higher than86was defined as Ⅰ grade (suitable),68~86was defined as Ⅱ grade (medium appropriate), lowerthan68was defined was Ⅲ grade (inappropriate). Clustering center value and practical situation wasused to classify the indexes of peanut into three grades. The varieties which have Arg higher than4.40%,23.5kDa higher than24.00%,15.5kDa lower than5.78%, crude fat lower than46.95%, kernelratio higher than74.32%, ConarachinⅠ lower than23.49%, protein extraction ratio higher than85.38%, crude protein higher than27.58%, total sugar lower than5.14%,37.5kDa lower than12.65%,Cys lower than0.48%were suitable to process solubility.
     Two of the above models included lots of indexes which could not use in the industry facility.The simplify models contained less indexes but can reflect more problem. The quality evaluationmodel of gel property as followed:gel property e1.5710.02474*s hape0.007009*c rude property0.04351*Arg-0.005*c onarachinⅠ0.06057*23.5kDa The Coefficient of correlation between predicted value and true value was0.718.The quality evaluation model of solubility as followed:
     The Coefficient of correlation between predicted value and true value was0.699.
     The varieties which have qugunxing, tuofengxing, chuanzhuxing, crude protein higher than27.42%, crude fibre lower than2.53%, Arg higher than3.70%, Conarachin Ⅰ higher than29.37%,23.5kDa lower than20.80%were suitable to process gel. There was44varieties suitability to processgel property, eg. Luhua11, Shuangji2, Bianhua3, Fenghua1. The varieties which have crude proteinhigher than27.58%, Cys lower than0.48%, ConarachinⅠ lower than23.49%,15.5kDa lower than5.78%were suitable to process solubility. There was75varieties suitability to process solubility, eg.Yuhua9326, Baisha1016, Yuhua15, Wucaihuasheng.
     ASP was used to establish the process special varieties basis database. The database was visitedby the internet. Sensory quality, chemical quality and processing quality of peanuts and their products,characteristics of fingerprint, and model of processing were input into the database.
引文
1. GB1532-2008花生[S].
    2. GB1534-2003花生油[S].
    3. GB/T5492-2008粮油检验粮食、油料的色泽、气味、口味鉴定[S].
    4. GB/T5512-2008粮油检验粮食中粗脂肪含量测定[S].
    5. GB/T5515-2008粮油检验粮食中粗纤维素含量测定介质过滤法[S].
    6. GB/T14489.2-2008粮油检验植物油料粗蛋白质的测定[S].
    7. GB/T5499-2008粮油检验带壳油料纯仁率检验法[S].
    8. GB/T5505-2008粮油检验灰分测定法[S].
    9. NY/T1067-2006食用花生[S]
    10. NY/T1068-2006油用花生[S]
    11. SN0798-1999进出口粮油、饲料检验名词术语
    12.陈红,丁幼春,熊利荣.无损检测技术在花生品质检测中的应用[J].粮油加工与食品机械,2005,2:53-58.
    13.楮小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法研究进展[J]。化学进展,2004,16(4):528-542.
    14.陈嘉,张宁.关于葫芦岛市花生生产持续发展的建议,2009/5.
    15.陈强,张小平,Terefework Zewdu LINDSTR M Kristina.我国主要花生品种的AFLP分析[J].应用于环境生物学报,2003,9(2):117-121.
    16.陈四龙,李玉荣,程增书,徐桂真.花生品种(系)生物学性状的主成分分析和聚类分析[J].花生学报,2007,36(2):28~34.
    17.陈团伟,康彬彬,苏丽青,刘龙燕,陈绍军.福建省花生主栽品种的营养品质分析[J].食品科学,2007,23(11):141-145.
    18.程翠林,王振宇,石彦国.大豆蛋白亚基组成与7S/11S对豆腐品质及产率的影响[J].中国油脂,2006,31(4))16-19.
    19.董文召,汤丰收.我国花生优质育种的研究进展及育种策略探讨[J].中国农学通报,2002,18(2):77-81.
    20.杜巍,魏益民,张国权,欧阳韶晖,胡新中.小麦品质与面条品质关系的研究[J].西北农林科技大学学报,2001,29(3):24-28.
    21.段乃雄,姜慧芳,谈宇俊,刘桂梅,胡端红.花生品种资源的收集保存鉴定[J].中国油料,1994,16(3):28-32.
    22.段淑芬,胡文广,王绛辉.美国花生生产、利用和出口贸易[J].花生科技,1999,4:35-37.
    23.高焕春,李文英,吕晓玲.花生蛋白质稳定性及加工品工艺条件的研究[J].中外技术情报,1995,12:39-40.
    24.郭波莉,魏益民,张国权,欧阳韶晖.小麦品种籽粒品质与食品品质关系的研究[J].西北农林科技大学学报(自然科学版),2001,29(5):61-65.
    25.郭尧君.蛋白质电泳实验技术[M].北京:科学出版社1999.
    26.韩守萍,栾文琪.引进国外花生品种资源蛋白质脂肪及脂肪酸含量的初步分析[J].山东农业科学,1998,6:30-34.
    27.胡志超,王海鸥,彭宝良,田立佳,计福来.国内外花生收获机械化现状与发展[J].中国农机化,2006,5:40-42.
    28.姜惠芳,段乃雄,任小平.花生种质资源的综合评价[J].中国油料作物学报,1998,20(3):32-33.
    29.姜惠芳,段乃雄.花生种质资源的含油量和蛋白质含量的相关分析[J].花生科技,1992,3:13-14.
    30.姜慧芳,段乃雄.花生油脂肪品质及含油量、油酸和亚油酸含量间的相关分析[J].花生科技,1993,(2):4~5.
    31.姜慧芳,任小平,廖伯寿,傅廷栋.抗青枯病花生资源的种子大小及主要品质性状的遗传分化[J].中国油料作物学报,2006,28(2):144-150.
    32.姜慧芳.花生抗青枯病种质的遗传多样性及抗性分子标记[博士学位论文].武汉:华中农业大学,2006.
    33.黎茵,黄上志,傅家瑞.不同品种花生种子蛋白质的电泳分析[J].植物学报,1998,40(6):534-541.
    34.李红艳,邓泽元,李静.不同脂肪酸组成的植物油氧化稳定性研究[J].食品工业科技,2010,31(1):173-175.
    35.李静静.中国大豆加工专用品种的筛选及适用性研究[硕士学位论文].石家庄:河北农业大学,2009.
    36.李明姝,姚开,贾冬英,何强,赖本丽.碱溶酸沉法制取花生分离蛋白的优化条件[J].中国油脂,2004,29(11):21-23.
    37.李庆典,李颖,易晓华.新疆巴旦杏28个品种种仁油脂含量及脂肪酸组成[J].山地农业生物学报,2004,23(4):326-329.
    38.李卫青.―丰花‖系列花生品种特异SSR标记筛选及其生理性状的遗传分析[硕士学位论文].山东:山东农业大学,2009.
    39.李志西,魏益民,张建国.小麦蛋白质组分与面团特性和烘焙品质关系的研究[J].中国粮油学报,1998,13(3)1–5.
    40.梁振富.大豆脂肪和蛋白质含量与几种质量性状相关性的研究[J].中国农业科学,1982,5:48-56.
    41.廖伯寿,雷永,王圣玉,李栋,黄家权,姜慧芳,任小平.花生重组近交系群体的遗传变异与高油种质的创新[J].作物学报,2008,34(6):999-1004.
    42.林金虎.花生种子蛋白质含量与主要数量性状的相关及通径分析[J].江西农业学报,2006,18(4):38-39.
    43.刘春,王显生,麻浩.大豆种子贮藏蛋白亚基特异种质的蛋白功能性评价[J].中国油脂,2008,33(8):31-36.
    44.刘大川,孙伟,俞伯群,刘瑞利,万雪华,张安清.花生低温预榨、浸出、低温脱溶制油同时制备脱脂花生蛋白粉工艺研究[J].中国油脂,2008,33(12):13-15.
    45.刘桂梅,梁泽萍.我国花生种质资源主要品质性状鉴定[J].中国油料,1993,1:18-21.
    46.刘志诚,于守洋.营养与食品卫生学[M].北京:人民卫生出版社,1987.
    47.鲁言.花生及花生制品营养型应引起全民重视[J].中国食品药品监管,2005,9:59.
    48.栾文琪,封海胜,王晶珊.花生品种主要性状的研究---性状表现及类型间的差异[J].中国种业,1984,23-7.
    49.栾文琪,韩守萍.花生油酸和亚油酸含量与几个质量性状相关研究[J].中国油料,1991,3:20-23.
    50.栾文琪,韩守萍.山东花生种质资源籽仁营养品质研究[J].作物品种资源,1990,2:22-25.
    51.栾文琪,韩守萍.山东省花生品种资源品质特性的研究—蛋白质含量及氨基酸组分的分析[J].山东农业科学,1988,4:12-15.
    52.马铁铮.花生浓缩蛋白的制备及其溶解性研究[硕士学位论文].北京:中国农业科学院,2009.
    53.马振海,赵志根,黄文辉.汝箕沟煤矿煤灰熔点的逐步回归分析[J].中国煤炭地质,2010,22(11):7-9.
    54.蒲彪,李建芳,周枫.冻干方便米饭原料适应性及加工特性的研究[J].中国粮油学报,2007,22(1):9-15.
    55.师俊玲,魏益民,张国权.蛋白质和淀粉含量对面条品质的影响[J].郑州工程学院学报,2001,22(1):32–35.
    56.师俊玲,魏益民,张国权.蛋白质与淀粉对挂面和方便面品质及微观结构的影响[J].西北农林科技大学学报(自然科学版),2001,29(1):42–50.
    57.石彦国,程翠林,朱秀清.品种差异对大豆蛋白凝胶性的影响[J].中国粮油学报,2005(3):58-60,69.
    58.宋丽华,刘立峰,刘焕英,穆国俊,卢萍萍.花生籽仁蛋白质含量近红外光谱模型的建立[J].中国农学通报,2011,27(15):85-89.
    59.宋鹏,周瑞宝,魏安池.大豆蛋白亚基组成对其功能特性影响的研究现状[J].粮油食品科技,2010,18(5):19-22.
    60.苏秋芹.不同株型花生品质性状与主要数量性状的相关分析[J].农艺科学,2006,22(6):192-194.
    61.孙君茂.花生产业的发展机遇与实现途径[J].中国食物与营养,2008,12:20-22.
    62.唐荣华,高国庆,韩柱强.花生种质资源数据库建立及应用研究[J].中国油料作物学报,2001,23(2):70-72.
    63.腾藏,柳琪,郭栋梁.花生主要营养物质含量的统计与分类分析[J].食品研究与开发,2003,24(4):84-85.
    64.佟云伟,陈凤伟,杨波.不同食用植物油氧化稳定性的研究[J].中国油脂,2009,34(2):31-36.
    65.万书波,封海胜,王秀贞.花生营养成分综合评价与产业化发展战略研究[J].花生学报,2004,33(2):1-6.
    66.万书波.花生品质学[M].北京:中国农业科学技术出版社,2008.
    67.王丽,张英华.大豆分离蛋白的凝胶性及其应用的研究进展[J].中国粮油学报,2010,25(4):96-99.
    68.王显生,杨晓泉,高文瑞.不同亚基变异类型的大豆分离蛋白凝胶质构特性的研究[J].中国粮油学报,2006(3):116-121.
    69.魏益民,张国权,Wolfgang Sietz.小麦籽粒品质与馒头品质关系的研究[J].中国粮油学报,2003,18(6):39-42.
    70.魏益民.小麦品质的评价及品质改良[J].陕西农业科学,1989,2:46-47.
    71.吴海文.花生浓缩蛋白的制备、凝胶形成机理及其应用研究[博士学位论文].北京:中国农业科学院,2009.
    72.薛敬桃,袁恩来,杨鹏,王硕霖.用K-means聚类分析进行储层分类[J].内蒙古石油化工,2010,20:34-36.
    73.阎楚良,叶舸,韩丽秋.计算机网络技术在农副产品加工品质基础数据库系统设计中的应用[J].农业机械学报,2002,33(5):81-85.
    74.杨庆利,张初署,曹玉良,刘阳,刑福国,禹山林.花生种子蛋白质含量与氨基酸组分相关和通径分析[J].华北农学报,2009,24(增刊):72-74.
    75.杨晓泉,陈中,赵谋明.花生蛋白的分离及部分性质研究[J].中国粮油学报,2001,16(5):25-28.
    76.杨晓泉.花生2S蛋白提取分离及部分性质研究[J].华南理工大学学报,1998,4:1-5.
    77.姚云游.花生油与橄榄油营养价值的比较[J].中国油脂,2005,30(4):66-68.
    78.袁道强,梁丽琴,王振锋.改性植物蛋白的研究及应用[J].食品研究与开发,2005,26(6):13-15.
    79.张国权,魏益民,欧阳韶晖,席美丽,胡新中,W.Sietz.小麦品种品质与面条品质关系的研究[J].中国粮油学报,2000,15(3):5-8.
    80.张国权,魏益民,欧阳韶晖.小麦品种品质与面条品质关系的研究[J].中国粮油学报,2000,15(3)5–8.
    81.张吉民,苗华荣,李正超,郝素美,闫强,祝恩吉。花生加工利用、贸易现状与展望[J].武汉工业学院学报,2002,2:104-106.
    82.张娇勤,陈军,李子雨,潘治利,艾志录.花生功能性活性成分研究进展[J].油脂工程,2009:73-76.
    83.张忠信,朱松.花生的营养成分与食疗方剂[J].中国食物与营养,2007(11):57-58.
    84.周恩远,刘丽君,祖伟,孙聪姝.春大豆农艺性状与品质相关关系的研究[J].东北农业大学学报,2008,39(2):145-149.
    85.周瑞宝.花生加工技术[M].北京:化学工业出版社,2003.
    86. Ahmed E.M., Ali T. Textural quality of peanut butter as influenced by peanut seed and oil contents[J]. Peanut Science,1986,13:18-20.
    87. Anderson P.C., Hill K, Gorbet D.W., et al. Fatty acid and amino acid profiles of selected peanutcultivars and breeding lines [J]. Journal of food composition and analysis,1998.11(2):100-111.
    88. Arrese E.L., Sorgentini D.A., Wagner J.R., et al. Electrophoretic, solubility, and functionalproperties of commercial soy protein isolate [J]. Journal of Agricultural and Food Chemistry1991,39(6):1033-1036.
    89. Bair E., Hastie T., Pau D., et al. Prediction by supervised principal components [J]. Journal of theAmerican Statistical Association,2006,101:119-137.
    90. Basha S.M. Effect of location and season on peanut seed protein and polypetide composition [J].Journal of Agricultural and Food Chemistry,1992,40:1784-1788.
    91. Basha S.M., Cherry J.P. Composition, solubility and electrophoretic properties of proteins isolatedfrom Florunner (Arachis hypogaea L.) peanut seeds [J]. Journal of agricultural and food chemistry,1976,24:359.
    92. Basha S.M.M. Identification of cultivar differences in seed polypeptide composition of peanuts(Arachis hypogaea L.) by two-dimensional polyacrylamide gel electrophoresis [J]. Plantphysiology,1979,63:301-306.
    93. Berardi L.C. Cherry J.P. Functional properties of co-precipitated protein isolates from cottonseed,soybean and peanut flours [J]. Food Science,1981,14:283.
    94. Bockisch M. Vegetable fats and oils. Fats and Oils Handbook. AOCS Press, Champaign:1998,174-326.
    95. Bovi M.L.A. Genotypic and environmental effects on fatty acid composition, iodine value, and oilcontent of peanut (Arachis hypogaea L.)[D].NT: Univ of Florida,1983,44:406.
    96. Braddock J.C., Simms C.A., O'Keefe S.F. Flavour and Oxidative Stability of Roasted High OleicAcid Peanuts [J]. Journal of Food Science,1995,60(3)489-493.
    97. Branch W.D., Nakayama T., Chinnan M.S. Fatty acid variation among US runner-type peanutcultivars [J]. Journal of theAmerican Oil Chemists‘Society,1990,67:591-593.
    98. Carvajal X., Panthee M. Unique continuation property for a higher order nonlinear Schr dingerequation [J]. Journal of mathematical analysis and applications,2005,303:188-207.
    99. Cobb W.Y., Johnson B.R. Physicochemical properties of peanuts. In: Peanut: Culture and uses. ASymposium. American Peanut Research and Education Society Inc., Stillwater, OK, USA,1973,209-256.
    100. Chakraborty P. Coconut protein isolate by ultrafiltration [A]. In:LeMeguer M, Jelen P, Editors,Food Engineering and Process Applications Vol.2. New York: Elsevier Applied Science Publishers,1986:308-315
    101. Dawson R.M.C., Freinkel N., Jungalwala F.B. and Clarke N. The Enzymic Formation ofmyoinositol1:2-Cyclic Phoshpate from Phosphatidylinositol [J]. Biochemical Journal,1971,22:605-607.
    102. Duboils M., Gilles K.A., Hamiltion J.K., et al. Colorimetric method for determination of sugursand related substances [J]. Analytical Chemistry,1956,28(3):350-356.
    103. Dubost N.J. Development and optimization of peanut soy spread [Master Thesis]. Georgia,University of Georgia,2001.
    104. Dwivedi S.L., Nigam S.N. Jambunathan R., et al. Effect of genotypes and environments on oilcontent and oil quality parameters and their correlation in peanut (Arachis hypogaea L.)[J]. PeanutScience,1993b,20:84-89.
    105. Dwivedi S.L., Nigam S.N., Subrahmanyam P. Effect of foliar diseases control by chlorothalonil onpod yield and quality characteristics of confectionery groundnuts (Arachis hypogaea L.)[J].Journal of the Science of Food and Agriculture,1993a,63,265-71.
    106. FAOSTAT. Preliminary2010data now available for selected countries and products [EB/OL].[2011.01.05]. http://faostat. Fao. Org/site/567/DesktopDefault.aspx? Page ID=567#ancor.
    107. Fox G., Cruickshank A. Near infrared reflectance as a rapid and inexpensive surrogate measure forfatty acid composition and oil content of peanut (Arachis hypogaea L.)[J]. Journal of NearInfrared Spectroscopy,2005,13:287-291.
    108. Freeman H.A., Nigam S.N., Kelley T.G.et al. The World Groundnut Economy: Facts, Trends andOutlook. International Crops Research Institute for Semi-arid Tropics, Patancheru, Andhra Pradesh,India,1999.52, ISBN92-9066-404-5.
    109. Gorbet D.W., Knauft D.A. Registration of SunOleic95R‘peanut [J]. Crop Science.1997,37(4):1392.
    110. Gornik H.L., Creager M.A. Arginine and endothelial and vascular health [J]. Journal of Nutrition.
    2004.134(10):2880S-2887S.
    111. Govindaraju K., Srinivas H. Studies on the effects of enzymatic hydrolysis on functional andphysic-chemical properties of arachin [J]. Swiss Society of Food Science and Technology,2006,39:54-62
    112. Haganmaeir R.D. Water binding of some purified oilseed proteins [J]. Journal of Food Science,1972,37:965-966.
    113. Hariprasanna K., Lal C., Radhakrishnan T. Analysis of diallel cross for some physical-quality traitsin peanut (Arachis hypogaea L.)[J]. Euphytica,2008,160:49-57.
    114. Hourant P., Baeten V., Morales M.T., et al. Oil and Fat Classification by selected bands of nearinfrared spectroscopy [J]. Applied Spectroscopy,2000,54(8):1168-1174.
    115. Hu F.B., Stampfer M.J., Manson J.E., et al. Frequent Nut Consumption and Risk of Coronary HeartDisease in Women: Prospective Cohort Study [J]. British Medical Journal,1998,317(7169):1341-1345.
    116. Ihekoronye A.I. Functional properties of meal products of the Nigerian Red Skin‘groundnut(Arachis hypogaea L.)[J]. Journal of the science of food and agriculture,1986,37(10):1035-1041.
    117. Jamdar S.N., Rajalakshmi V., Pednekar M.D., et al. Infuence of degree of hydrolysis on functionalproperties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate [J]. Foodchemistry,2010,121(1):178-184.
    118. Jones L.J., Tung M.A. Functional properties of modified oilseedprotein concentrates and isolates.Can. Inst. Food Science and Technology,1983,16:57.
    119. Jonnala R.S., Dunford N.T., Dashiell K.E. New high-oleic peanut cultivars grown in thesouthweatern United States [J]. Journal of the American Oil Chemists‘Society,2005,82(2):125-128.
    120. Kaffka K.J., Norris K.H., Perédi J., et al. Attempts to determine oil, protein, water and fiber contentin sunflower seeds by the NIR technique [J]. Acta Alimentaria,1982,11,258-269.
    121. Kassa M.T., Yeboah S.O., Bezabih M. Profiling peanut (Arachis hypogeal L.) accessions andcultivars for oleic acid and yield in Botswana [J]. Euphytica,2009,167:293-301.
    122. Kella N.K.D., Poola I. Sugars decrease the thermal denaturation and aggregation of arachin [J].Journal of Peptide and Protein Research,1985b,26(4):390-399
    123. Kella N.K.D., Rao M.S.N. Effect of cetyl trimethyl ammoniu bromide on the heat-induceddenaturation and protein-protein inteactions of arachin at pH3.6[J]. International Journal ofPeptide and Protein Research,1985a,26(2):179-186.
    124. Kelly J. D., Bliss F.A. Quality factors affecting the nutritive value of bean seed proteins [J]. CropScience,1975,15:757-760.
    125. Kim N., Kim Y.J., Nam Y.J. Characteristics and Functional Properties of protein Isolates fromVarious Peanut (Arachis hypogaea L.) Cultivars [J]. Journal of food science,1992,57(2):406-410
    126. Kim N.S., Kwon D.Y., Nam Y.J. Effects of phosphorylation and acetylation on functionalproperties and structure of soy protein [J]. Korean Journal of Food Science and Technology,1988,20:625-630.
    127. Koester S, Paul C in Breeding Rapeseed for Improved Quality, in Science for Plant Breeding(Book of Poster Abstracts, XII Eucarpia Congress), ed. by the European Association for Researchon Plant Breeding (EUCARPIA), Paul Parey Publishers, Berlin and Hamburg,1989,2:31-34.
    128. Kris-Etherton P. M., Pearson T.A., Wan Y., et al. High–monounsaturated fatty acid diets lower bothplasma cholesterol and triacylglycerol concentrations [J]. American Journal of Clinical Nutrition,70(6):1009-1015.
    129. Krishna T.G., Pawar S.E., Mitra R. Variation and inheritance of the arachin polypeptides ofgroundnut (Arachis hypogaea L.)[J]. Theoretical and Applied Genetics,1986,73:82-87.
    130. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227:680-686.
    131. Lancaster M.C., Jenkins F.P., Philip, J.M. Toxicity associated with certain samples of groundnuts[J]. Nature,1961,192:1095–1096.
    132. Liao B.S., Holbrook C.C. Groundnut. Pages51–57in Genetic resources, chromosome engineering,and crop improvement. Vol.4. Oilseed crops (Singh RJ, Ed). BocaRaton, FL, USA: CRC Press.
    2005.
    133. Licher M.K. Strategic Options for the Virginia Peanut Industry After the2002Farm Bill: a LinearProgramming Model, Master of Science,2005.
    134. Liener I.E. Toxic constitutents of plant foodstuffs [M]. USA: Academtc Press,1980.
    135. Lopez Y., Smith O.D., Senseman S.A., et al. Genetic factors influencing high oleic acid content inSpanish market-type peanut cultivars [J]. Crop Science,2001,41:51–56.
    136. Luo H., Zhou G.Y., Fang H.B., et al. Studies on biochemical characters relative to direct ediblepeanut [J]. Journal of Peanut Science,2004,4:1-4.
    137. Madhavi D.L., Subramanyam L., Chand N., et al. Effect of solvent extraction on removal of nuttyflavor and functional properties of goundnut flour [J]. Journal of Food Quality,1989.11:375-385.
    138. Mason M.E., Newell J.A., Johnson B.R., et al. Non volatile favour components of groundnut [J].Journal of Agricultural Food and Chemistry,1969,17:732–782.
    139. Mercer, L.C., Wynne, J.C., Young C.T. Inheritance of fatty acid content in peanut oil [J]. PeanutScience,1990,17:17-21.
    140. Misra J.B. A mathematical approach to comprehensive evaluation of quality in grountnut [J]Journal of Food Composition and Analysis,2004,17:69-79.
    141. Misra J.B., Ghosh P.K., Dayal D., et al. Agronomic, nutritional and physical characteristics of someIndian groundnut cultivars [J]. Indian Journal of Agricultural Sciences,2000,70:741-746.
    142. Monteiro P.V., Pralash V. Effect of proteases on Arachin, conarachin Ⅰand conarachin Ⅱ frompeanut (Arachis hypogaea L.)[J]. Journal of Agricultural and Food Chemistry,1994,42:268-273.
    143. Moon W., Florkowski W.J., Beuchat L.R., et al. Effects of product attributes and consumercharacteristics on attitude and behavior: The Case of Peanuts in a Transition Economy [J].Agribusiness,1999,15(3):411-425.
    144. Moore K.M, Knauft D.A. The inheritance of high oleic acid in peanut [J]. Journal of Heredity,1989,80:252-253.
    145. Moriguti J.C., Ferriolli E., Donadi E.A., et al. Effects of arginine supplementation on the humoraland innate immune response of older people [J]. European Journal of Clinical Nutrition,2005,59:1362-1366.
    146. Mozingo R.W., Coffelt T.A., Wynne J.C. Market grade effects on fatty acid composition of fvepeanut cultivars [J]. Agronomy Journal,1988,80:73-75.
    147. Mujoo R., Trinh D.T., Ng P.K.W. Characterization of storage proteins in different soybean varietiesand their relationship to tofu yield and texture [J]. Food Chemistry,2003,82:265-273.
    148. Murphy P.A., Chen H.P., Hauck C.C., et al. Soybean protein composition and tofu quality [J]. FoodTechnology,1997,51(1):86-66.
    149. Murray I. NIR spectra of homologous series of organic compounds. In: NIR/NIT Spectroscopy, J.Hollo, et al.(Eds). Akademiai Kiado, Budapest, Hungary1987,13-28.
    150. Newell J.A., Mason M.E., Matlock R.S. Precursors of typical and atypical roasted peanut favor [J].Journal of Agricultural and Food Chemistry,1967,15:767-772.
    151. Norden A.J., Gorbet D.W., Knauft D.A., et al. Variability for oil quality among peanut genotypes inthe Florida breeding programme [J]. Peanut Science,1987,14:7–11.
    152. Norris K.H. Simple spectroradiometer for0.4to1.2-micron region [J]. Trans. ASAE,1964,7:240-242.
    153. Norris K.H., Hart J.R. Diredct spectrophotometric determination of moisture content of grin andseeds, in A. Wexler, Ed., Principles and Methods of Measuring Moisture in Liquids and Solids.Reinhold, New York, New York, USA,1965,19-25.
    154. O‘Byrne D.J., Knauft D.A. Shireman R.B. How fat monosaturated rich diets containing high oleicpeanuts improve serum lipoprotein profiles [J]. Lipids,1997,32:687-689.
    155. ókeefe S.F., Wiley V.A., Knauft D.A. Comparison of oxidative stability of high and normal oleicpeanut oils [J]. Journal of theAmerican Oil Chemists‘Society,1993,70:489-492.
    156. Pinterits A., Arntfield S.D. Improvement of canola protein gelation properties through enzymaticmodification with transglutaminase [J]. L W T-food Science and Technology,2008,41(1):128-138
    157. Prakash V., Rao M.S. Physicochemical properties of oilseed proteins. CRC critical reviews inbiochemistry,1986,20(3):286-301.
    158. Rao Y.L., Xiang B.R., Zhou X.H. Quantitative and qualitative determination of acid value ofpeanut oil using near-infrared spectrometry [J]. Journal of Food Engineering,2009,93:249-252.
    159. Relkin P. Reversibility of heat-induced conformational changes and surface exposed hydrophobicclusters of β-lacctoglobulin: their role in heat-induced sol-gel state transition [J]. InternationalJournal of Biological Macromolecules,1998,22:59-66.
    160. Rimal A.P., Fletcher S. M. Influence of product attributes and household characteristics onconsumers' attitude and purchase of In-Shell peanuts [J]. Journal of Food Distribution Research,2000,31(3):28-36.
    161. Robert P., Devaux M.F., Safar M in Proceedings of the6th International NIRS Conference, ed. byG.D. Batten, P.C. Flinn, L.A.Welsh, A.B. Blakeney, Lorne, Australia,1995,62–65.
    162. Robertson J.A., Windham W.R. Comparative study of methods of determining oil content ofsunflower seed [J]. Journal of theAmerican oil chemists‘society,1981,58:993–996.
    163. Rovoredo C.L., Fletcher S.M. World Peanut Market: An Overview of the Past30Years. ResearchBulletin437. The University of Georgia Agricultural Experiment Station, Athens, Georgia.2002,May.
    164. Saio K. Food processing characteristics of soybean11S and7S protein Part Ⅰ. Effect of differenceof protein component among soybean varieties on formation of tofu-curd [J]. Agricultural Biologyand Chemistry,1969,33:1301-1308.
    165. Salleh N.M., Koji T., et al. Gelling properties of soybean β-conglycinin having different subunitcompositions [J]. Bioscience, Biotechnology, and Biochemistry,2004,68(5):1091-1096.
    166. Sanders T.H. Effects of variety and maturity on lipid class composition of peanut oil [J]. Journal oftheAmerican Oil Chemists‘Society,57:12–15.
    167. Sargeant K., Sheridan A., O‘Kelly J. Toxicity associated with certain samples of groundnuts [J].Nature,1961,192:1096–1097.
    168. Savage G.P., Keenan J.I., The composition and nutritive value of groundnut kernels. In: Smartt, J.(Ed.). The Groundnut Crop: A Scientifc Basis for Improvement. Chapman&Hall, London,1994,173–213.
    169. Schwenke K.D., Prashl L.R.E., Gwiazda S., et al. Functional properties of plant proteins. Part2.Selected physicochemical properties of native and denatured protein isolates from faba beans,soybean, sunflower seed [J]. Die Nahrung1981,25:59.
    170. Seigel R., Howell J.R. Thermal Radiation Heat Transfer,2nd edn. Hemisphere PublishingCorporation, Washington,1981,5.
    171. Serudo R.L., Oliveira L.C., Rocha J.C., et al. Reduction capability of soil humic substances fromthe Rio Negro basin, Brazil, towards Hg(II) studied by a multimethod approach andprincipalcomponent analysis (PCA)[J]. Geoderma,2007,138(3–4):229236.
    172. Shi J., Malik J., Member. Normalized cuts and image segmentation [J]. IEEE Transactions onPattern Analysis and Machine Intelligence2000,22(8),888-905.
    173. Sundaram J., Kandala C.V., Butts, C.L. Application of near infrared spectroscopy to peanut gradingand quality analysis: overview [J]. Sensing and Instrumentation for Food Quality and Safety.2009,3:156-164.
    174. Szczesniak A.S. Classification of textural characteristics [J]. Journal of food science,1963a,28(4):385-389.
    175. Tay S.L. Physicochemical properties of7S and11S protein mixtures coagulated by Glucono--lactone [J]. Journal of Food Science,2004,69(4):139-143.
    176. Tillman B.L., Gorbet D.W., Person G. Predicting oleic and linoleic acid content of single peanutseeds using Near-Infrared Reflectance Spectroscopy [J]. Crop Science,2006,46:2121-2126.
    177. Tillman B.L., Stalker H.T., Peanut. J. Vollmann, I. Rajcan (eds.), Oil Crops, Handbook of PlantBreeding4,2009,287-315.
    178. Utsumi S., Kinsella J.E. Forces involved in soy protein gelation: effects of various reagents on theformation, hardness and solubility of heat-induced gels made from7S,11S and soy isolate.[J].Journal of Food Science,1985,(50):1278-1282.
    179. Utsumi S., Kinsella J.E. Structure function relationships in food proteins: subunit interactions inheat-induced gelation of7S,11S, and soy isolate proteins [J]. Journal of Agricultural and FoodChemsitry,1985,33(2):297-303.
    180. Velasco L., Fernández-Martínez J.M., Del Rio M, De Haro A in Proceedings of the9thInternational Rapeseed Congress, Cambridge, UK,4–7July1995, edited by GCIRC, Henry LingLimited, Dorchester,1995:867-869.
    181. Velasco L.J.M, Fernández-Martínez., De Haro A., Screening Ethiopian Mustard for Erucic Acid byNear Infrared Reflectance Spectroscopy [J]. Crop Science,1996,36:1068–1071
    182. Williams P., Norris K., Eds. Near-Infrared Technology in the Agricultural and Food Industries,2nded., AACC: St. Paul, MN,2001.
    183. Yamada T. Dissociation-Association behavior of Arachin between Dimeric and Monomeric Forms[J]. Agricultural Biology and Chemistry,1979,43(12):2549-2556.
    184. Yamada T., Aibara S., Morita Y. Isolation and some properties of arachin subunits [J]. Agriculturaland Biological Chemistry,1979,43:2563-2568.
    185. Young N.D., Sanders T.H., Drake M.A. Descriptive analysis and US consumer acceptability ofpeanuts from different origins [J]. Food Quality and Preference,2005,16:37-43.
    186. Young, C.T., Mason M.E. Free arginine content of peanuts (Arachis hypogaea L.) as a measure ofseed maturity [J]. Journal of food science,1972,37:722-725.
    187. Yu J., Mohamed A., Ipek G. Peanut protein concentrate: production and functional properties asaffected by processing [J]. Food Chemistry,2007,103(1):121-129.
    188. Zhang J.M. Peanut processing and utilization.Pages475–483in Shandong peanut (Wang ZX andGai SR, Eds.). Shanghai, China: Shanghai Science&Technology Press.1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700