用户名: 密码: 验证码:
油茶ACCase基因的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶(Camellia oleifera Abel)是中国原产且最为重要的木本食用油料树种。提高油茶种子含油率是今后很长一段时间油茶育种的重大目标和技术难关,而且通过常规育种技术难以实现。为了实现这个宏大目标,加速油茶品种改良进程,一个可行的方法就是关注参与脂肪酸和油脂合成的关键酶,克隆控制油茶种子油含量的关键基因,并通过分子育种的方法对现有品种实施遗传改良,达到提高油茶种子油含量的目的。异质型乙酰辅酶A羧化酶是各种脂肪酸从头合成和油脂合成的限速酶和关键酶,它由生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)、α-羧基转移酶(α-CT)和β-羧基转移酶(β-CT)4个亚基组成。本研究以‘华硕’、‘华金’、‘华鑫’、‘衡东号31’、‘衡东65’和‘衡东17号’等6个品种以及‘华硕’的嫩叶、茎段、花芽、雄蕊、雌蕊、子房、4月份幼果、7月份幼果以及成熟种子为材料,从油茶中克隆了ACCase4个亚基的cDNA序列和基因组序列,通过多重RT-PCR与实时荧光定量PCR研究了它们在油茶种子不同发育阶段及不同组织器官中的表达规律,并在拟南芥中研究它们的过量表达和RNA干扰对油脂合成的影响。本研究的主要结果如下:
     1.油茶ACCase4个亚基基因的cDNA克隆。以‘华硕’成熟种子总RNA反转录的cDNA第一链为模板,采用简并RT-PCR、5’和3’RACE等技术克隆了油茶ACCase4个亚基的cDNA,分别命名为Co-accB(编码BCCP)、Co-accC(编码BC)、Co-accA(编码α-CT)和Co-accD(编码β-CT)。(1)油茶ACCase亚基基因accB的全长cDNA为1153bP,编码272个氨基酸。并具有前体肽以及与其它三个亚基结合形成ACCase复合体的成熟肽,其前体肽的剪切位点可能位于Ser-64与Ala-65之间;它含有生物素(酰)化模块CIIEAMNEE及生物素化位点Lys。(2)油茶BC亚基基因accC的全长cDNA大小为1638bP,含有1602bP的开放读码框,编码533个氨基酸。它具有前体肽以及与其它三个亚基结合形成ACCase的成熟肽。其前体肽剪切位点可能位于Arg46-Va147之间。并具有BC-1、ATP结合位点、BC-2以及生物素酰化位点四个亚结构域。(3)油茶ACCase亚基基因accA的部分cDNA序列大小为1293bP,编码430个氨基酸。它具有保守的氨基酸序列,并含有乙酰辅酶A结合域。(4)在克隆ACCaseβ-CT亚基基因accD时,获得了一个长度为2574bP的序列,该序列包括1,5-二磷酸核酮糖羧化酶/加氧酶大亚基基因rbcL (ribulose1,5-bisphosphate carboxylase/oxygenase large subunit)(部分序列)、rbcL-accD以及accD(全长cDNA序列)三部分。其中,accD的ORF为1530bP,编码510个氨基酸。它含有一个锌指结构和五个保守序列。在其ORF推导的氨基酸序列中含有乙酰辅酶A、羧基生物素结合位点以及位于它们之后的羧基转移酶催化位点等结构域。rbcL、rbcL-accD基因间隔及accD的核苷酸序列与二十多种山茶属植物对应叶绿体基因的核苷酸序列具有高度一致性,这反映了它们具有较近的亲缘关系。油茶ACCase这4个亚基基因推导的氨基酸序列与棉花(Gossypium hirsutum)、花生(Arachis hypogaea)和大豆(Glycine max)等油料植物以及大肠杆菌ACCase对应亚基基因的氨基酸序列具有较高的一致性,属于异质型ACCase基因;它们具有完成ACCase羧化乙酰CoA两个半反应以及亚基间相互结合的结构域;核编码基因accA、accB和accC前体肽剪切后的成熟肽与位于质体的p-CT亚基结合,最终形成具有ACCase活性的多亚基异质型复合体。
     2.油茶ACCase BC和p-CT亚基基因基因组DNA的克隆。以油茶‘华硕’叶片总DNA为模板,根据accC和accD的cDNA序列分别设计引物,采用降落PCR技术,获得了包括它们基因编码区(分别为1602bP和1533bp)在内的基因组序列。其中,accC的基因组序列长度为1638bp;rbcL、rbcL-accD以及accD的基因组序列大小为2222bp;与它们的对应cDNA序列比较后确认这两个基因均没有内含子。accD上游启动区为约529bP,没有PEP启动子位点,含有NEP型启动子元件,其5’端UTR部分含有-10启动子元件、CAAT BOX1、YACT、napA E-box、 GATA box和DOFCOREZM等位点,并可能与psal,ycf4、cemA和petA等形成操纵子,在NEP型启动子控制下以多顺反子形式转录。在油茶基因组中存在于叶绿体或质体的p-CT亚基基因和存在于核基因组中的BC亚基基因可能作为‘小基因组’,在基因组进化过程中内含子逐渐被淘汰。所获得的accD基因组序列与cDNA序列存在着核苷酸差异,这可能与accD基因家族有关,也可能与基因组序列转录过程的RNA编辑现象有关。获得油茶ACCase两个BC和β-CT亚基基因组序列为油脂合成及油脂含量影响等研究提供了基因材料和理论依据。
     3.油茶ACCase4个亚基基因转录水平上的表达模式研究。以‘华硕’等6个油茶优良品种的成熟种子以及‘华硕’嫩叶等不同组织器官和不同发育阶段的种子为材料,分别以它们的cDNA第一链为模板,从GAPDH、Actin1和UBC30等参照基因中选取GAPDH做为参照基因;在优化GAPDH与分别油茶ACCase4个亚基基因accA、accB、accC和accD同管扩增最佳反应体系和条件的基础上,研究了油茶ACCase4个亚基基因的表达模式,荧光定量PCR进一步证实和补充了实验结果。
     (1)油茶accB基因在‘华硕’等6个不同含油率种子中的表达差异不十分明显;荧光定量PCR揭示油茶accB基因在‘衡东17号’、‘衡东65号’和‘华硕’转录水平较高。油茶accB基因在油茶‘华硕’雌蕊和成熟种子中的转录水平较高。
     (2)油茶accC基因在‘华硕’等6个不同含油率种子中的转录水平差异较为明显,在‘衡东17号’和‘衡东65’中较多。它的转录水平与各品种含油率之间的相关性不十分明显。(3)油茶accA基因在油茶‘华金’表达量较多,在‘衡东31号’、‘衡东17号’和‘华鑫’种子中转录水平相似。其表达量与各品种含油率之间的相关性不明显。它在油茶‘华硕’成熟种子中的表达量最多,而在其它组织及种子发育过程中表达量较少。(4)油茶accD基因在‘华硕’等等不同含油率种子中转录存在着较大差异,在‘华鑫’中表达量最大。它的转录水平与部分油茶品种含油率之间有一定的相关性。它在油茶‘华硕’的叶片表达量和发育的种子中转录水平较高。
     在油茶种子发育过程中,这4个ACCase基因转录量增多的趋势符合种子由花期到成熟,油脂合成量由小到多而进入高峰期,对脂肪酸需求逐渐增多;种子成熟后,油脂合成逐渐完成,对脂肪酸需求下降的要求。表明这4个ACCase基因转录与脂肪酸形成关系密切。我们的研究结果支持‘异质型ACCase的表达量对其活性和种子含油量至关重要,是种子含油率高低标志这个结论’以及'ACCase在决定油料作物含油率具有重要作用’这个假说。油茶异质型ACCase各亚基基因协调表达,在开花前(后)和种子成熟前后出现了两个转录高峰,只是前者不明显,后者却十分明显。另外,这4个基因在油茶组织器官中呈现出相似的转录水平,这与Ke等的结论相一致。本研究为我们从转录水平检测油茶ACCase亚基基因表达提供一种直观的方法。
     4. ACCase亚基基因accC的过量表达和accA/accB/accC/accD的RNA干扰研究。构建了pC AMBIA1304-35S-accC植物表达载体,农杆菌介导转入哥伦比亚野生型拟南芥中,获得accC过量表达的转拟南芥T1和T2代抗性植株。利用Gateway技术,分别构建了异质型ACCase多亚基基因的干扰载体pJawohRNAi18-accA/accB/accC/accD,农杆菌介导转入哥伦比亚野生型拟南芥中分别了获得它们的T1代转拟南芥抗性植株。这为今后研究异质型ACCase基因在种子特异启动子作用下分别与4个亚基的两两组合融合、1个和3个组合融合或4个亚基融合构建ACCase过量表达载体,然后转到植物植株中检测它们的表达效果等研究提供理论准备和物质基础。
     综上所述,本研究获得油茶ACCase4个亚基基因的cDNA序列和2个亚基基因组序列,分析了油茶ACCase4个亚基基因的结构特点、表达模式以及它们在脂肪酸和油脂代谢途径中的作用,为油茶品种评价和丰产栽培措施的调控提供了一种直观的检测方法。这将对今后提高油茶种子含油率,增加油茶单位面积产量和总产量以及油茶一些丰产栽培措施的应用提供理论依据,因而具有重要的理论价值和重大的应用价值。
Tea-oil tree(Camellia oleifera Abel), one of most important ligneous edible trees, is originated in China. To improve the seed oil rate is increasingly becoming the significant objective of C. oleifera breeding. To boost the seed oil rate is a long-term objective and technical difficulty. Moreover, it is difficult to reach the aim though traditional breeding. In order to realize the great goal, and to accelerated the C. oleifera improvement as well, one possible method is to look up a key enzyme involved in lipid biosynthesis (fatty acid biosynthesis), and to carry out the molecular biology research of C. oleifera seed's fatty acid biosynthesis so as to discover the fundamentals of lipid biosynthesis. The heteromeric form acetyl coenzyme A (CoA) carboxylase (ACCase) in plant organs of seeds catalyzes the formation of malonyl CoA from acetyl CoA, and is a rate-limiting step and a key enzyme in de novo fatty acid biosynthesis. The four components that constitute heteromeric ACCase are biotin carboxyl carrier protein (BCCP), biotin carboxylase (BC), the α-and β-subunits of carboxyltransferase (α-and β-CT), encoded by accC, accB, accA and accD genes, respectively. In this research, the four cDNAs and genomic DNAs sequences of C oleifera ACCase were cloned. Then, their expression patterns were analyzed in'Huashuo' and other five C. oleifera species, as well as in different tissues and developing stages of 'Huashuo' seeds. Finnally, studies of overexpression and RNA interference of them were carried out in Arabidopsis thaliana, respectively. Major research results are as follows:
     1. Isolation and cloning of the four cDNAs of C. oleifera ACCase subunits. Using the single-stranded cDNA generated from total extracted RNA of'Huashuo'seeds as template, the cDNAs of four ACCase subunits were cloned by the degenerate PCR, rapid amplification of cDNA ends (RACE) and touch-down PCR, and designated as Co-accB, Co-accC, Co-accD and Co-accA, respectively.(1) The Co-accB (encoded BCCP) was1153bp with an816-bp open reading frame (ORF), encoded272amino acid residues; it had the precursor and mature protein, and its plastid-processing site for C. oleifera BCCP occurs between residues Ser64-Ala65. It contained the biotinylation motif CIIEAMKLMNEIE harboring the biotinyl-Lys residue.(2) The Co-accC (encoded BC) was1638bp with a1602-bp ORF, encoded533amino acid residues. The subcellular localization of the Co-accC protein was in plastid, and the plastid-processing site for C. oleifera BC was postulated to occur between residues Arg46and Val47. It comprised four conserved motifs BC-1, ATP-binding site, BC-2and Biotin carbxylation site.(3) The partial Co-accA (encoded a-CT) was1293bp, and its amino acid residues155-190are acetyl-CoA binding domains.(4) When cloning the accD encoded β-CTsubunit of C. oleifera ACCase, a2574- bp fragment including the partial rbcL, rbcL-accD intergenic spacer and the full-length accD gene was obtained. The ORF of accD was1530bp, encoding510amino acids. It contained a zinc-binding domain and five conserved regions. The putative binding sites for Acetyl-CoA and carboxybiotin were located at amino acid residues332-346and351-368, respectively, and followed by the putative catalytic site of carboxyl-transferase at amino acid residues379-392. The nucleotide sequences of rbcL, rbcL-accD and accD shared high identity with those of rbcL, rbcL-accD and accD from other20Theacae genera species, indicating that there existed the close genetic relationship among them. The amino acid sequence of four genes for C. oleifra ACCase subunits shared some identities with thoese of the corresponding genes for ACCase subunits from G. hirsutum, A. hypogaea and G. max of oil plants, as well as from E. coli, suggesting that they belonged to the heteromeric ACCase genes; moreover, they possess the binding sites of the two-half reactions and structure domains of interaction among ACCase subunits. Their precursors of three nuclear-encoded genes aceA, accB and accC are processed and binded (3-CT to form the heteromeric ACCase with activity after the plastid processing.
     2. Isolation and cloning of the genomic DNA sequences of BC and β-CT subunits of the C. oleifera ACCase. According to the corresponding cDNA sequence of accC, the primers were designed to clone the genomic DNA sequences using the total DNA of 'Huashuo' leaves by the touch-down PCR. The1638-bp genomic DNA for accC was obtained, including the1602-bp ORF encoden533aa. Furthermore, the2222-bp genomic DNA sequence including rbcL, rbcL-accD intergenic and accD was isolated, and it contained the1530-bp ORF of accD. Compared with their cDNAs, the genomic DNA sequences of accC and accD were verified to be intronless. The up-stream region of the2222-bp sequence was about529bp in the length. It contained no PEP prometer sites, while had NEP prometer sites,-10PEHVPSBD, CAAT BOX1, YACT and napA E-box, etc. Genomic DNAs of BC (encoded by nuclear) and β-CT (encoded by plasid) in C. oleifera are probably considered as'small genomics', and their introns might be gradually loss. There are some differences between accD genomic DNA and cDNA, the reason might be corelated with gene family, RNA editing as well. The acquired genomic DNA sequences of accC and accD could provide the materials and theoretical basis for lipid biosynthesis and seed-oil ratio research.
     3. The studies of the expression pattern of the four genes for C. oleifera ACCase subunits. Total RNAs were extracted from C. oleifera matured seeds of'Huashuo'and other five C. oleifera species, and different tissues and developing stages of seeds of 'Huashuo', and used to generate the corresponding single-stranded cDNAs. Then, the reference gene GAPDH were selected from references genes of GAPDH, Actinl and UBC30, et al. According to optimized multiplex RT-PCR conditions, the expression patterns of the four ACCase genes were analyzed, and the reliability of this data was confirmed by real-time PCR analysis.(1) The expression level of accB was the highest in the pistil of 'Huashuo', next is in the8-month-old young fruits. It had a similar expression patterns in tissues of flower bud, stamen, ovary and leaf. There were no distinct differences in six varieties of C. oleifera matured seeds. There were the high expression levels in 'Hengdong17'and in'Hengdong65'.(2) The expression level of accC was higher in the8-month-old young fruits and in flower buds of'Huashuo'; there were relatively lower levels in tissues of stamen, pistil, ovary and leaf. There were distinct expression differences in the six C. oleifera matured seeds. There were high expression levels in'Hengdong17'and 'Huaxin', followed by in 'Hengdong31','Huajin','Huashuo' and 'Hengdong65'.(3) The expression amount of accA was higher in'Hengdong17'and in 'Huaxin'. Moreover, its expression amount was more in young fruits and matured seeds, while less in leaves and stems.(4) There were distinct expression differences in six C. oleifera matured seeds. There was the highest expression amount in'Huaxin'. Its transcription levels are parti call y corelated with seed-oil ratio of some C. oleifera species. The expression levels of accD were higher in leaves and developing seeds. Taken together, the four genes of heteromeric ACCase are coordinately expressed, and there exsited trends that transcription levels of the four genes are gradually increased, which are in agreement with requirement of the lipid biosynthesis in the development from flowering stage to mature in the growth and development of seeds, and with that of Ke's research. Their expressions also present two transcription peaks. The former are not abvious, while the later are relative distinct. These suggest that there are close relationships between the transcription levels of the four ACCase genes lipid biosynthesis, and thus C. oleifera ACCase may be the rate-limiting step and a key enzyme. Our results support the conclusion that the expressions of the four ACCase genes are significant to the activity and seed oil ratio, and that ACCase can be used as a marker in the breeding program. Furthermore, our research also provides a visual detection method of the four ACCase genes of C. oleifera from transcription levels.
     4. Overexpression of accC from C. oleifera and RNA interference (RNAi) expression of accAlaccBlaccClaccD. The overexpression pCambia1304-accC vector was constructed, and introduced into Agrobacterium tumefaciens by chemical poration, and transformed the wild Arabidopsis thaliana. Regenerated T1and T2Arabidopsis transformation lines were obtained, respectively. The interference vectors of pJawohl8-RNAi-Co-accA/Co-accB/Co-accC/Co-accD were constructed via Gateway technology, and introduced into A. tumefaciens, and transformed the wild A. thaliana. Regenerated T1Arabidopsis transformation lines of Co-accB/Co-accC/Co-accD RNAi were obtained, respectively. The rearches will provide the material and theoretical basis basis for overexpression of C. oleifera ACCase genes.
     In summary, the sequences of four cDNAs genes and two genomic DNAs of C. oleifera ACCase subunits were obtained. Their structure features, expression patterns and their roles in fat acid biosynthesis and lipid biosynthesis were analyzed. It provided a visual detecting method for C. oleifera variety assessment as well as regulatory measures through high yield cultivating techniques. The research will lay the fundamental theoretical basis for improving seed-oil ratio and oil production of per unit area yield and total output, and for applying of some cultivation measures for C. oleifera high yield, and thus possess the significant potential values of exploitation and application.
引文
[1]全国油茶产业发展规划(2009~2020年).国家林业局,2009.07,
    [2]庄瑞林.中国油茶[M].北京:中国林业出版社(第二版),2008.3-4,339-346.
    [3]胡芳名,谭晓风,刘惠民.中国主要经济树种栽培与利用[M].北京:中国林业出版社,2005.8
    [4]吴曙光.“东方树”—油茶[J].中国林业,2006,6A:23.
    [5]Tony.茶籽油可媲美橄榄油[J].福建质量信息,2006,5:36.
    [6]周薇,吴雪辉.油茶综合利用开发前景[J].中国农村科技,2006,10:21-22.
    [7]吴小娟,李红冰,逄越,等.山茶和油茶种子中脂肪酸的分析[J].大连大学学报,2006,27(4):56-58.
    [8]禅食文化.《本草纲目》、《家息居饮食谱》记载茶油的保健作用http://www. wujifang.com/release/news_detail.asp?id=466,2011-04-02.
    [9]胡美兰.中国烹协授予金浩茶油“指定健康营养用油”中国食品安全报(中国食品质量报电子版)http://www.cfqn.com.cn/Article/2011/2018q/2018g/ 19550971386688.htm,2011-05-20(2018期,七版).
    [10]Schneiter R, Guerra C, Lampl M, et al. A novel cold-sensitive allele of the rate-Limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase, affects the morphology of the yeast vacuole through acylation of Vac8p[J]. Molecular and Cellular Biology,2000,20(9):2984-2995.
    [11]Thelen J J and Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants [J]. Metabolic Engineering,2002,4:12-21.
    [12]Marcelo Rogalski, Helaine Carrer. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants [J]. Plant Biotechnology Journal,2011,9:554-564.
    [13]Sasaki Y, Konishi T, Nagano Y. The compartmentation of acetyl coenzyme A carboxylase in plants [J]. Plant Physiol.,1995,108:445-449.
    [14]Sergei Mekhedov, Oskar Marti nez de Ila'rduya, John Ohlrogge. Toward a functional catalog of the plant genome, a survey of genes for lipid biosynthesis [J]. Plant Physiology,2000,122:389-401.
    [15]赵虎基,王国英.植物乙酰辅酶A羧化酶的分子生物学与基因工程[J].中国生物工程杂志,2003,23(2):12-16.
    [16]谢禄山,谭晓风.乙酰辅酶A羧化酶基因研究综述[J].中南林学院学报,2005,4:89-95.
    [17]周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程[J].植物学通报,1998,15(5):16-23.
    [18]Ohlrogge J, Browse J. Lipid Biosynthesis [J]. The plant cell,1995,7:957-970.
    [19]Konishi T, Shinohara K, Yamada K, et al. Acetyl-coA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme [J]. Plant Cell Physiol.,1996,37:117-122.
    [20]任波,李毅.大豆种子脂肪酸合成代谢研究进展[J].分子植物育种,2005,3(3):301-306.
    [21]韩春春,王继文,魏守海.乙酰辅酶A羧化酶(ACC)的结构和功能[J].安徽农业科学,2006,34:413-414,416.
    [22]卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-491.
    [23]Sasaki Y, Nagano Y. Plant acety-CoA carboxylase:structure, biosynthesis, regulation, and gene manipulation for plant breeding [J]. Biosci. Biotechnol. Biochem.,2004, 68(6):1175-1184.
    [24]Roesler K, Shintani D, Savage L, et al. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carhoxylase to plastids of rape seeds [J]. Plant Physiol.,1997, 113:75-81.
    [25]Reverdatto S, Beilinson V, Nielsen N C, et al. A multisubunit acetylcoenzyme A carboxylase from soybean [J]. Plant Physiology,1999,119:961-978.
    [26]Nakkaew A, Chotigeat W, Eksomtramage T, et al. Cloning and expression of a plastid-encoded subunit, beta-carboxyltransferase gene (accD) and a nuclear-encoded subunit, biotin carboxylase of acetyl-CoA carboxylase from oil palm (Elaeis guineensis Jacq.) [J]. Plant Science,2008,175(4):497-504.
    [27]Madoka Y,Tomizawa K, Mizoi J, et al. Chloroplast transformation with modified accD operon increases acetyl CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco [J]. Plant Cell Physiol.,2002,43:1518-1525.
    [28]Gengenbach B G, Somers D A, Wyse D L, et al. Methods and a maize acetyl CoA carboxylase gene for altering the oil content of plants [P]. USA Patent:6268550B1, 2001.7.31
    [29]Kumar R K, Devendra J, Tangirala J. Sudhakar. Acetyl CoA carboxylase (ACCase) gene from Jatropha curas[P]. USA Patent:20090205079A1,2009.8.13.
    [30]Page R A, Okada S, Harwood J L. Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants [J]. Biochim. Biophys. Acta,1994,1210:369-372.
    [31]Gengenbach B G.Transgenic plants expressing maize acetyl-CoA carboxylase gene and methods of altering oil content [P]. United States Patent:2001,6,222,099,2001-4-24.
    [32]Kondo H, Shiratsuch K, and Yoshimoto T, et al. Acetyl-CoA carboxylase from Escherichia coil:gene organization and nucleotide sequence of the biotin carboxylase subunit [J]. Proc. Natl. Acad. Sci. USA,1991,88:9730-9733.
    [33]Chapman-Smith A and Cronan J E. Symposium:Nutrition, biochemisty and molecular biology of biotin molecular biology of biotin attachment to proteins [J]. J. Nutr.,1999,129:477S-484S.
    [34]Alban C, Jullien J, Job D, et al., Isolation and characterization of biotin carboxylase from Pea Chloroplasts [J]. Plant Physiol.,1995,109:927-935.
    [35]Li Shyr-Jiann, Cronan J E Jr. The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-coA carboxylase [J]. The Journal of Biological Chemistry, 1992,267(2):855-863.
    [36]Li S J, Cronan J E. The gene encoding the biotin carboxylase subunits of pea acetyl-CoA carboxylase [J]. J. Biol. Chem.,1992,267:16841-16847.
    [37]Acetyl-CoA carboxylase. Wikipedia, http://en.wikipedia.org/wiki/Acetyl-CoA_carboxylase.
    [38]Alves J, Westling L, Peters EC, et al. Cloning, expression, and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases [J]. Anal. Biochem.,2011,417(1):103-111.
    [39]Wan Minxi, Liu Peng, Xia Jinlan, et al. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana[J]. Applied Microbiology and Biotechnology,2011,91(3):835-844.
    [40]Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotin-containing carboxylase [J]. Arch. Biochem. Biophys.,2003,414:211-222.
    [41]Hasslacher M, Tvessa AS, Paltauf F, et al. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipids metabolism [J]. J. Biol. Chem.,1993,268:10946-10952.
    [42]Walid A F, Chirala S S, Wakil S J. Cloning of the yeast FAS3 gene and primary structure of yeast Acetyl-CoA carboxylase [J]. Proc. Natl. Acde. Sci. USA,1992, 89:4534-4538.
    [43]Roessler P, Ohlrogge J B. Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the Alga Cycloiella cryptica [J]. J. Biol. Chem., 1993,268:19254-19259.
    [44]Lopez-Casillas F, Bai D H, Luo X N, et al. Structure of the coding sequence of acetyl-coenayme A carboxylase [J]. Proc. Natl. Acad. Sci. USA,1988,85:5784-5788.
    [45]Takai T, Yokoyama C, Wade K, et al. Primary structure of chichen liver acetyl-CoA carboxylase deduced from cDNA sequence [J]. J. Biol. Chem.,1988,263:2651-2657.
    [46]Gornicki P, Podkowinski J, Scappino L A, et al. Wheat acetyl-Coenzyme A carboxylase:cDNA and protein structure [J]. Proc. Natl. Sci. USA,1993,91:6860-6864.
    [47]Schulte W, Schell J, Topfer R. A gene encoding acetyl-coenzyme A carboxylase from Brassica napus [J]. Plant Physiol.,1994,106:793-794.
    [48]Shorrosh B S, Dixon RA, Ohlrogge J B. Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa [J]. Proc. Natl. Acad. Sci. USA, 1994,91:4323-4327.
    [49]Yanai Y, Kawasaki T, Shimada H, et al. Genomic prganization of 251 kDa acetyl-CoA Carboxylase genes in Arabidopsis:tandem gene duplication has made two differentially expressed isozymes [J]. Plant Cell Physiol.,1995,36:779-787.
    [50]Sasaki Y, Hakamada K, Suama Y, et al. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant [J]. J. Biol. Chem.,1993,268(33):25118-25123.
    [51]Kozaki A, Mayumi K, Sasaki Y. Thiol-Disulfide exchange between nuclear encode and chloroplast-encode subunits of pea acetyl-CoA carboxylase [J]. The Journal of Biological Chemistry,2001,276(43):39919-3992.
    [52]Thelen J J, Mekhedov S, Ohlrogge J B. Brassicaceae express multiple isoforms of biotin carboxyl carrier protein in a tissue-specific manner [J]. Plant Physiol.,2001, 125:2016-2028.
    [53]Polakis S E, Guchhait R B, Zwergel E E, et al. Acetyl coenzyme A carboxylase system of Eshcherichia coli, studies on the mechanisms of the biotin carboxylase and carboxyltransferase catalyxed reactions [J].The Journal Biological Chemistry,1974, 249(20):6657-6667.
    [54]Podkowinski J, Jelenska J, Sirikhachornkit A, et al. Expression of cytosolic and plastid acetyl-coenzyme A carboxylase genes in young wheat plants [J]. Plant Physiology,2003,131:763-772.
    [55]Elborough K M, Winz R, Deka R K, et al. Biotin carboxyl carrier protein and carboxyltransferase subunits of the mutil-subunit from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis [J]. Biochem. J.,1996, 315:103-112.
    [56]Gornichi P, Faris J, King I, et al. Plastid-localized acetyl-CoA carboxylase of bread wheat isencoded by a single gene on each of the three ancestral chromosome sets [J]. Proc. Natl. Acad. Sci. USA,1997,94:14179-14184.
    [57]Podkowinski J, Sroga G E, Haselkorn R, et al. Structure of a gene encoding acytosolic acetyl-CoA carboxylase of hexaploid wheat[J]. Proc. Natl. Acad. Sci. USA,1996,93: 1870-1874.
    [58]Schulte W, Topfer R, Stracke R, et al. Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family:indication for plastidic localization of at least one isoform [J]. Proc. Natl. Acad. Sci. U SA,1997,94(7):3465-3470.
    [59]Kimura Y, Miyake R, Tokumasu Y, et al. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus[J]. Journal of Bateriology,2000, 182(19):5462-5469.
    [60]Abu-Elheiga L, Matzuk M M,Kordari P, et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal [J]. PNAS,2005,102(34).12011-12016.
    [61]Abu-Elheiga L, Almarza-Ortega D B, Baldini A, et al. Human acetyl-CoA carboxylase 2 molecular cloning, characterization, chromosomal map, and evidence for two isoforms [J]. The Journal of Biological Chemistry,1997,272 (16):10669-10677.
    [62]Mao Jianqiang, Chirala S S, Wakil S J. Human acetyl-CoA carboxylase 1 gene: Presence of three promoters and heterogeneity at the 5'-untranslated mRNA region [J]. PNAS,2003,100(13):7515-7520.
    [63]Widmer J, Fassihi K S, Schlichter S C, et, al. Identification of a second human acetyl-CoA carboxylase gene[J].Biochem. J.,1996,316:915-922.
    [64]Post-Beittenmiller D, Roughan P G, Ohlrogge J B. In vivo pools of free and acytel acyl carrier proteins in spinach:Evidence for sites of regulation of fatty acid biosynthesis [J]. Biol. Chem.,1991,266:1858-1865.
    [65]Roughan P G. Stromal concentrations of coenzyme A and its esters are insufficient to account for substrate channelling within the chloroplast fatty acid synthase [J]. Biochem.,1997,327:267-273.
    [66]李亮,程彦伟.乙酰辅酶A羧化酶在治疗肥胖中的潜在作用[J].生命的化学,2007,27(2):180-182.
    [67]Tong L. Acetyl-coenzyme a carboxylase:crucial metabolic enzyme and attractive target for drug discovery [J]. Cell Mol. Life Sci.,2005,10:1007-1018.
    [68]Shintani D K, Ohlergge J B. Feedback inhibition of fatty acid synthesis in tobacco suspension cells [J]. The Plant Journal,1995,7(4):577-587.
    [69]Ke J, Wen T N, Nikolau B J, et al. Coordinate regulation of the nuclear and plastidic genes coding for the cubunits of the heteromeric acetyl-coenzyme A carboxylase[J]. Plant Physiology,2000,122:1057-1071.
    [70]Li Shyr-Jiann, Cronan J E. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis[J]. Journal of Bacteriology,1993,175(2):332-340.
    [71]James E S. Cronan J E. Expression of two Escherichia coli acetyl-CoA carboxylase subunits is auto-regulated [J]. The Journal of Biological Chemistry,2004,279(4): 2520-2527.
    [72]Hedtke B, Borner T, Weihe A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science,1997:277:809-811.
    [73]Maliga P.Two plastid RNA polymerases of higher plants:an evolving story [J]. Trends Plant Sci.,1998,3:4-6.
    [74]Swiatecka-Hagenbruch M, Liere K, Borner T. High diversity of plastidial promoters in Arabidopsis thaliana. Mol. Genet. Genomics,2007,277:725-734.
    [75]Shinozaki K, Ohme M, Tanaka M, et al. The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression [J]. EMBO J.,1986, 5:2043-2049.
    [76]Nagano Y, Matsuno R, Sasaki Y. Sequence and transcription analysis of the gene cluster trnQ-zfpA-psaI-ORF231-petA in pea chloroplasts [J]. Curr. Genet.,1991, 20:431-436.
    [77]Hajdukiewicz P T J, Allison L A, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids [J]. EMBO J.,199716:4041-4048.
    [78]Hirata N, Yonekura D, Yanagisawa S, et al. Possible involvement of the 5'-flanking region and the 5'UTR of plastid accD gene in NEP-dependent transcription[J]. Plant Cell Physiol.,2004,45(2):176-186.
    [79]Sasaki Y, Kozaki A, Ohmori A, et al. Chloroplast RNA editing required for functional acetyl-CoA carboryase in plants [J]. The Journal of Biological Chemistry,2001, 276(6):3937-3940.
    [80]Sugiura M, Hirose T, Sugita M. Evolution and mechanism of translation in chloroplasts [J]. Annu. Rev. Genet.,1998,32:437-459.
    [81]Hou B K, Zhou Y H, Wang L H, et al. Chloroplast transformation in oilseed rape [J]. Tansgenic Res.,2003,12:111-114.
    [82]Shintani D, Roesler K, Shorrosh B, et al. Antisense expression and overexpression of biotin carboxylase in tobacco leaves [J]. Plant Physiol.,1997,114(3):881-886.
    [83]Roesler K R, Schorrosh B S, Ohlrogge J B. Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene [J]. Plant Physiol.,1994,105:611-617.
    [84]Egli M A, Lutz S M, Somers D A, et al. A maize acetyl-coenzyme A carboxylase cDNA sequence[J]. Plant Physiol,1995,108:1299-1300.
    [85]Gengenbach B G, Somers D A, Wyse D L, et al. Methods for expressing a maize acetyl CoA carboxylase gene in host cells and encoded protein produced therby. Patent US6146867,2000-11-14.
    [86]楚敏,赵虎基,郑明刚,等.谷子乙酰辅酶A羧化酶BC功能域的克隆及原核表达载体的构建[J].植物生理学报,2004,22(5):408-410.
    [87]Li YQ, Sueda S, Kondo H, et al. A unique biotin carboxyl carrier protein in archaeon Sulfolobus tokodaii Edited by Judit Ovadi [J]. FEBS Lett.,2006,3,580(6):1536-1540.
    [88]Gornicki P, Scappino L, Haselkorn R. Genes for two subunits of acetyl coenzyme A carboxylase of anabaena sp. strain PCC7120:Biotin carboxylase and biotin carboxyl carrier protein [J]. Journal of Bacteriology,1993,175(16):5268-5272.
    [89]Elaine A. Best, Vic C. Knauf. Organization and nucleotide sequences of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of pseudomonas aeruginosa acetyl coenzyme A carboxylase [J]. Journal of Bacteriology,1993,175(21):6881-6889.
    [90]Nicole Focks and Christoph Benning. wrinkled1:A novel, low-seed-oil mutant of arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism [J]. Plant Physiol.,1998,118:91-101.
    [91]Choi J K, Yu F, Wurtele E S, et al. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of the chloroplastic acetyl-coenzyme A carboxylase [J]. Plant Physiol,1995,109:619-625.
    [92]Shockey J M, Fulda M S, Browse J A. Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid and glycerolipid metabolism[J]. Plant Physiology,2002,129:1710-1722.
    [93]Bates P D, Ohlrogge J B, Pollard M. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing [J]. The Journal of Biological Chemistry,2007,282(43):31206-31216.
    [94]Lee S S, Jeong W J, Bae J M, et al. Characterization of the plastid-encodeed carboxyltransferase subunit (accD) gene of potato [J]. Mol. Cell,2004,17(3):422-429.
    [95]Nielsen N C, Adee A, Stumpf P K. Fat metabolism in higher plants. Further characterization of wheat germ acetyl-coenzyme A carboxylase [J]. Arch. Biochem. Biophys.,1979,192:446-456.
    [96]王瑞俭.小麦质体中ACCase CT功能域基因在大肠杆菌中的克隆与表达[D].吉林大学学位论文(博士),2007,10.
    [97]Herbert D, Price L J, Alban C, et al. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves [J]. Biochem. J.,1996,318:997-1006.
    [98]Christophe De'lye, Xiao-Qi Zhang, Se'verine Michel, et al. Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass [J]. Plant Physiology,2005,137:794-806.
    [99]Aicha Belkebir, Rosine De Paepe, Antoine Tre'molie'res, et al. Sethoxydim affects lipid synthesis and acetyl-CoA carboxylase activity in soybean [J]. Journal of Experimental Botany,2006,57(14):3553-3562.
    [100]Mollers C and Schierholt A. Genetic variation of palmitate and oil content in a winter oilseed rape doubled haploid population segregating for oleate content [J]. Crop Science; 2002,42:379-384.
    [101]戴晓峰,卢长明,吴刚,等.甘蓝型油菜生物素羧基载体蛋白基因的克隆与结构分析[J].中国农业科学,2007,40(9):1883-1889.
    [102]Li Z G, Yin W B, Guo H, et al. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species:cloning, expression patterns, and evolution [J]. Genome,2010,53(5)360-370.
    [103]Li Meng-Jun, Xia Han, Zhao Chuan-Zhi, et al. Isolation and characterization of putative acetyl-coA carboxylases in Arachis hypogaea L [J]. Plant Mol. Biol. Rep., 2010,28:58-68.
    [104]Qiao Zhixin and Liu Jinyuan. Cloning and characterization of cotton heteromeric acetyl-CoA carboxylase genes [J]. Progress in Natural Science,自然科学进展(英文版),2007,17(12):1412-1418.
    [105]Gu Keyu, Chiam Huihui, Tian Dongsheng, et al. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas[J]. Plant Sci.,2011,180 (4):642-649.
    [106]Waldrop G L, Rayment L, Holden H M. Three dimensional structure of the biotin carboxylase subunit of acety-CoA carboxylase [J]. Biochemistry,1994,33:10249-10256.
    [107]Atsushi Inamura. Yayoi Ohashi, Etsuko Sato, et al. Intraspecific sequence variation of chloroplast DNA reflecting variety and geographical distribution of Polygonurn cuspidatum (Polygonaceae) in Japan[J]. J. Plant Res.,2000,113:419-426.
    [108]Matsuda Yuji, Yoshimura Hitoshi, KanamotoHirosuke, et al. Sequence variation in the rbcL-accD region in the chloroplast genome of Moraceae [J]. Plant Biotechnology,2005,22(3):231-233.
    [109]Alrefai R, Berke T G, Rocheford T R. Quantitative trait locus analysis of fatty acid concentrations in maize[J]. Genome,1995,38:894-901.
    [110]Kianian S F, Egli M A, Phillips R L, et al. Association of major groat oil content QTL and an acetyl-CoA carboxylase gene in oat[J]. Theor. Appl. Genet.,1999,98: 884-894.
    [111]Yang Xiaohong, Guo Yuqiu, Yan Jianbing, et al. Major and minor QTL and epistasis contribute to fat compositions and oil concentration in high-oil maize[J]. Theor. Appl. Genet.,2010,120:665-678.
    [112]武玉永,马立新,蒋思婧.甘蓝型油菜羧基转移酶A亚基全长cDNA的克隆及在大肠杆菌中表达[J].生物化学与生物物理进展,2004,31(9):847-854.
    [113]卢捷,姚玉峰,姜卫红,等.地中海拟无枝菌酸菌U32中生物素羧基载体蛋白结构基因的克隆、表达及转录[J].微生物学报,2003,43(1):56-64.
    [114]武玉永,谭秀华,马立新.甘蓝型油菜乙酰辅酶A羧化酶3个亚基的克隆及其表达[J].安徽农业科学,2008,36(10):4002-4006.
    [115]李孟军,夏晗,王兴军,等.花生野生近缘种生物素羧基载体蛋白基因的克隆与结构分析[J].华北农学报,2009,24(6):6-10.
    [116]Kozaki A, Kamado K, Nagano Y, et al. Recombinant carboxyltransferase responsive to redox of pea plastidic acetyl-CoA carboxylase [J]. Biol. Chem.,2000,275(14): 10702-10708.
    [117]Singh K, Raizada J, Bhardwaj P, et al.26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species[J]. Analytical Biochemistry,2004 335: 330-333.
    [118]Bo Jian, Bin Liu, Yurong Bi, et al. Validation of internal control for gene expression study in soybean by quantitative real-time PCR[J]. BMC Molecular Biology,2008, 9:59.
    [119]王荣,李红菊.半定量RT-PCR法在检测基因表达水平中的应用[J].阜阳师范学院学报(自然科学版),2007,24(1):49-52.
    [120]卢建雄,臧荣鑫,潘和平,等.半定量RT-PCR法检测原代培养脂肪细胞生脂基因mRNA转录表达[J].中兽医医药杂志,2005,6:16-18.
    [121]Spencer W E, Christensen M J. Multiplex relative RT-PCR method for verification of differential gene expression [J]. Biotechniques,1999,27:1044-1052.
    [122]MeadusW. J. A semi-quantitative RT-PCR method tomeasure thein vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression [J]. Bio., Proced. Online,2003,5:20-28.
    [123]Kahlau, S. and Bock, R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation:chromoplast gene expression largely serves the production of a single protein [J]. Plant Cell,2008:20, 856-874.
    [124]Davias M S, Solbianti J, Cronan J E. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherich coli [J]. Biol. Chem., 2000,275(37):28593-28598.
    [125]Zha Wenjuan, Rubin-Pitel Sheryl B, Shao Zengyi, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J]. Metabolic Engineering, 2009,11(3):192-198.
    [126]Ohlrogge J B, Roesler K R and Shorrosh, B S. Methods of increasing oil content of seeds [P]. United States Patent:5925805,1999-7-20.
    [127]Klaus, D, Ohlrogge, J B, Neuhaus H E, et al.Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase [J]. Planta,2004,219:389-396.
    [128]Sellwood C, Slabas A R, Raw sthorne S. Effects of manipulating expression of acetyl-CoA carboxylase in Brassica napus L. embryos[J]. Biochemical Society,2000, 28:598-600.
    [129]Thelen J J and Ohlrogge J B. Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis[J]. Plant. J.,2002,32:419-431.
    [130]Skarjinskaia M, Svab Z, and Maliga P. Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea [J]. Transgenic Res.,2003,12:115-122.
    [131]Kode V, Mudd E A, Iamtham S, et al. The tobacco plastid accD gene is essential and is required for leaf development [J]. Plant J.,2005,44 (2):237-244.
    [132]崔燕.棉花乙酰辅酶A羧化酶亚基accD基因的克隆及在拟南芥中超量表达的研究[D].石河子大学学位论文(硕士),2008,6.
    [133]刘正杰,张园,王彦霞,等.陆地棉异质型ACCase基因的种子特异表达载体构建与遗传转化[J].分子植物育种,2011,9(3):270-277.
    [134]胡芳名,谭晓风,石明旺,等.油茶种子cDNA文库构建[J].中南林学院学报,2004,24(5):1-4.
    [135]谭晓风,胡芳名,谢禄山,等油茶种子EST文库构建及主要表达基因分析[J].林业科学,2006,42(1):43-48.
    [136]谭晓风,陈鸿鹏,张党权,等.油茶FAD2基因全长cDNA的克隆和序列分析[J].林业科学,2008,44(3):70-75.
    [137]张党权,谭晓风,陈鸿鹏,等.油茶SAD基因的全长cDNA克隆及生物信息学分析[J].林业科学,2008,44(2):155-159.
    [138]蒋瑶.油茶ACCase基因BC和β-CT亚基的全长cDNA克隆[D].中南林业科技大学学位论文(硕士),2009,6.
    [139]谭晓风,袁德义,袁军,等.大果油茶良种‘华硕’[J].林业科学,2011,47(12):184.
    [140]Sambrook J, Russell. D W分子克隆实验指南[M](第二版).1999.396-449.
    [141]Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J]. Protein Science, 1999:8,978-984.
    [142]PLACE. http://www.dna.affrc.go.jp/PLACE/signalscan.html.
    [143]Kenichi Higo, Yoshihiro Ugawa, Masao Iwamoto, et al. PLACE:a database of plant cis-acting regulatory DNA elements [J]. Nucleic Acids Research,1998,26(1):358-359.
    [144]Samols D, Thornton C G, Murtif V L, et al. Evolutionary conservation among biotin enzymes [J]. J. Biol. Chem.,1988,263(14):6461-6464.
    [145]Sun J, Ke J, Johnson J L,et al. Biochemical and molecular biological characterization of CAC2, the Arabidopsis thaliana gene coding for the biotin carboxylase subunit of the plastidic acetyl-coenzyme A carboxylase[J]. Plant Physiol.,1997,115:1371-1383.
    [146]Thum K E, Kim M, Morishige D T, et al. Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco [J]. Plant Mol. Biol.,2001, 47:353-366.
    [147]Shirsat A, Wilford N, Croy R, Boulter D. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco[J]. Mol. Gen. Genet., 1989,215:326-331.
    [148]Gowik U, Burscheidt J, Akyildiz M, et al. cis-Regulatory elements for mesophyll-specific gene expression in RT the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene[J]. Plant Cell,2004,16:1077-1090.
    [149]Stalberg K, Ellerstom M, Ezcurra I, et al. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds [J]. Planta,1996,199:515-519.
    [150]Hartmann U, Sagasser M, Mehrtens F, et al. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes [J]. Plant Mol. Biol,2005,57:155-171.
    [151]Gilmartin P M, Sarokin L, Memelink J, et al. Molecular light switches for plant genes[J].Plant Cell,19902:369-378.
    [152]Benfey P N, Chua N H. The cauliflower mosaic virus 35S promoter:combinatorial regulation of transcription in plants [J]. Science,1990,250:959-966.
    [153]Gidoni D, Brosio P, Bond-Nutter D, et al. Novel cis-acting elements in Petunia Cab gene promoters [J]. Mol. Gen. Genet.,1989,215:337-344.
    [154]Teakle G R, Manfield IW, Graham J F, et al. Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics[J]. Plant Mol. Biol.,2002, 50:43-57.
    [155]Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice [J]. Plant Physiol.,2004,134:1718-1732.
    [156]Rubio-Somoza I, Martinez M, Abraham Z, et al. Ternary complex formation between HvMYBS3 and other factors RT involved in transcriptional control in barley seeds [J]. Plant J.,2006,47:269-281.
    [157]Yanagisawa S, Schmidt R J. Diversity and similarity among recognition sequences of Dof transcription factors [J]. Plant J.,1999,17:209-214.
    [158]Yanagisawa S. Dofl and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize [J]. Plant J.,2000,21:281-288.
    [159]Ogihara Y, Terachi T, Sasakuma T. Molecular analysis of the hot spot region related to length mutations in wheat chloroplast DNAs. I. Nucleotide divergence of genes and intergenic spacer regions located in the hot spot region [J]. Genetics,1991, 129:873-884.
    [160]仇键.油茶种子油体蛋白基因的分离克隆及其原核表达[D].中南林业科技大学学位论文(硕士),2006,6:53
    [161]张尚宏,屈良鹊.基因组的进化与内含子中的基因的进化[J].中山大学学报(自然科学版),1999,38(1):49-53.
    [162]李福.重大突破性发现将改写“遗传中心法则”?http://blog.sciencenet.cn/ home.php?mod=space&uid=475066&do=blog&id=448051/06/01/2011.
    [163]Li Mingyao, Wang Isabel X, Li Yun, et al. Widespread RNA and DNA sequence differences in the human transcriptome [J]. Science,2011,333(6038):53-58.
    [164]袁德义,谭晓风,邹峰,等.油茶良种‘华金’[J].林业科学,2012,48(2):187,190.
    [165]谭晓风,袁德义,邹峰,等.油茶良种‘华鑫’[J].林业科学,2012,48(3):170-171.
    [166]谢鹏.38个油茶优良无性系综合评价研究[D].中南林业科技大学学位论文(硕士),2010,6:19-20.
    [167]王保明.油茶亲环素、钙调素基因的cDNA克隆及亲环素基因的原核表达[D].中南林业科技大学学位论文(硕士),2008.6.
    [168]Xiaofeng Tan, Baoming Wang, Lin Zhang, et al. Cloning and prokaryotic expression of a complementary DNA gene for cyclophilin from Camellia oleifera [J]. Pak. J. Bot., 2010,42(6):3847-3855.
    [169]Baoming Wang, Xiaofeng Tan, Yongzhong Chen, et al. Molecular cloning and expreesion analysis of two calmodulin genges encoding an identical protein from Camellia oleifera[J].Pak. J. Bot.2012,44(6):961-968.
    [170]李钱峰,蒋美艳,于恒秀,等.水稻胚乳RNA定量RT-PCR分析中参照基因选择[J].扬州大学学报(农业与生命科学版),2008,29(2):61-66.
    [171]Parker W B, Somers D A, Wyse D L, et al. Selection and characterization of sethxoydim-tolerant maize tissue cultures[J]. Plant Physiol.,1990,92:1220-1225.
    [172]Somers D A, Keith R A, Egli M A, et al. Expression of the Acel gene encoded acetyl-coenzyme A carboxylase in developing maize (Zea mays L.) kernels[J]. Plant Physiol.,1993,101:1097-1101.
    [173]Roesler KR, Savage LJ, Shintani D K, et al. Co-purification, co-immunopreci-pitation, and coordinate expression of acetyl-coenzyme A carboxylase activity, bioyin carboxylase, and biotin carboxyl carrier protein of higher plants[J]. Planta, 1996,198:517-525.
    [174]Bouvier-Nave'P, Benveniste P, Oelkers P, et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase[J]. Eur. J. Biochem., 2000,267:85-96.
    [175]Jako A, Kumar Y, Wei J, et al. Seed-specific over-expression of an arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiol.,2001,126:861-874.
    [176]包梅荣.油茶成熟调控蛋白基因的分离克隆及功能研究[D].中南林业科技大学学位论文(博士),2010,6:19-20.
    [177]周波DHHC型锌指蛋白基因OsDHHC1在水稻株型构建中的功能分析[D]湖南大学学位论文(博士),2011,6.
    [178]GatewayTM Cloning Technology. www.lifetech.com/gateway.
    [179]Mukesh Jain. Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice [J]. Plant Science,2009,176:702-706.
    [180]Demirev A V, Lee J S, Sedai B R, et al. Identification and characterization of acetyl-CoA carboxylase gene cluster in streptomyces toxytricini [J]. The Journal of Microbiology,2009,47(4):473-478.
    [181]Pfannschmidt T, Link G. Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings[J]. Plant Mol. Biol.,1994,25:69-81.
    [182]Allison L A, Simon L D, Maliga P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants[J]. EMBO J.,1996,15(11):2802-2809.
    [183]Kannangara C G and Stumpf P K. Fat metabolism in hiher plants. LIV. A prokaryo-tic type acetyl CoA carboxylase in spinach chloroplasts [J]. Arch. Biochem. Biophys.,1972,152:83-91.
    [184]Thierry BrunS, Enrique Roche, Ki-Han Kim, et al. Glucose regulates acetyl-coA carboxylase gene Expression in a Pancreatic β-Cell Line (INS-1) [J]. The Journal of Biological Chemistry,1998,268(25):18905-18911.
    [185]Vahlensieck HF, Pridzun L, Reichenbach H, et al. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A[J]. Curr. Genet.,1994,25(2):95-100.
    [186]Baud S, Bellec Y, Miquel M, et al. gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase [J]. EMBO reports,2004,5(5): 515-520.
    [187]Abdel-Hamid A M, Cronan J E. Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli [J]. J. Bacteriol.,2007,189(2):369-376.
    [188]Nikolau BJ, Hawke J C. Purification and characterization of maize leaf acetyi-coenzyme A carboxylase [J]. Arch. Biochem. Biophys.,1984,228(l):86-96.
    [189]Sasaki Y, Kozaki A, Hatano M, et al. Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastid acetyl-CoA carboxylase [J]. Proc. Natl. Acad. Sci. USA,1997,94:11094-11101.
    [190]Hunter S C, Ohlrogge J B. Regulation of spinach chloroplast acetyl-CoA carboxylase[J]. Archives of Biochemistry and Biophysic.,1998,359(2):170-178.
    [191]Blanchard C Z, Chapman-Smith A, Wallace J C, et al. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin [J]. The Journal of Biological Chemistry, 1999,274(45):31767-31769.
    [192]Kozaki A and Sasaki Y. Light-dependent changes in redox status of the plastidic acetyl-CoA carboxylase and its regulatory component [J]. Biochem J.,1999,339(Pt 3):541-546.
    [193]Garcia-Ponce B, Rocha-Sosa M. The octadecanoic pathway is required for pathogen-induced multi-functional acetyl-CoA carboxylase accumulation in common bean (Phaseolus vulgaris L.) [J]. Plant sci.,2000,157:181-190.
    [194]Kim K H, Lopez-casillasf F, Bai D H, et al. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis [J]. FASEB J.,1989, 3:2250-2256.
    [195]Savage L J and Ohlrogge J B. Phosphorylation of pea chloroplast acetyl-CoA carboxylase [J]. The Plant Journal,1999,18(5):521-527.
    [196]Fan N X, Zhang L, Zhou Y H, et al. Sequence Analysis of Acc-1 Gene Encoding Plastid Acetyl-CoA Carboxylase in Elymus wawawaiensis[J].四川农业大学学报, 2005,23(4):383-387.
    [197]Dunahay T G, Jarvis E E, Roessler P G. Genetic transformation of the diatoms Cyclotellacryptica and Navicula saprophila [J]. J. Phycol.,1995,31:1004-1012.
    [198]Zhao H J, Wang J H Gao P, et al. Cloning of plastid acetyl-CoA carboxylase cDNA from setaria italica and sequence analysis of Graminicide target site [J]. 植物学报. (Acta Botanica Sinica),2004,46 (6):751-756.
    [199]Mao J, Seyfert H M. Promoter II of the bovine acetyl-coenzymeA carboxylase-alpha encoding gene is widely expressed and strongly active in different cells [J]. Biochim. Biophys. Acta,2002,1576(3):324-329.
    [200]Mao J, Marcos S, Davis S K, et al. Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat [J]. Biochem. J.,2001,358:127-135.
    [201]Mao J, Molenaar A J, Wheeler T T, et al. STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland [J]. Mol. Endocrinol.,2002,29:73-88.
    [202]Barber M C,Vallance A J,Kennedy H T, et al. Induction of transcripts derived from promoter Ⅲ of the acetyl-CoA carboxylase-alpha gene in mammary gland is associated with recruitment of SREBP-1 to a region of the proximal promoter defined by a DNase I hypersensitive site [J]. Biochem. J,2003,375:489-501.
    [203]Munday M R, Hemingway C J. The regulation of zcetyl-CoA carboxylase:a potential target for the action of hypolipidemic against [J]. Adv. Enzyme. Regul., 2001,39:205-234.
    [204]Zagnitko O, Jelenska J, Tevzadze G, et al. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphen-oxypropionate and cyclohexanedione inhibitors [J]. Proc. Natl. Acad. Sci. USA,2001,98:6617-6622.
    [205]Sinilnikova O M, Ginolhac S M, Magnard C,et al. Acetyl-CoA carboxylase a gene and breast cancer susceptibility [J]. Proc. Natl. Acad. Sci. USA,2004,125(12):2417-2424.
    [206]Bianchi A, Evans J L, Iverson A J, et al. Identification of an isozymic form of acetyl-CoA carboxylase [J]. The Journal of Biological Chemistry,1990,265(3):1502-1509.
    [207]Witters L A, Friedman A S, Tipper J P, et al. Regulation of acetyl-CoA carboxylase by guanine nucleotides [J]. The Journal of Biological Chemistry,1981,256 (16): 8573-8578.
    [208]Eastwell KC, Strmpe PK. Regulation of plant acetyl-CoA carboxylase by adenylate nucleotides [J]. Plant Physiol.,1983,72:50-55.
    [209]Ha J, Daniel S, Broyles S S, et al. Critical phosphorylation sites for acetyl-CoA carboxylase activity[J]. The Journal of Biological Chemistry,1994,269(35):22162-22168.
    [210]Joohun H A, Samira D, In-Soo K, et al. Cloning of human acetyl-CoA carboxylase cDNA [J]. Eur. J. Biochem.,1994,219:297-306.
    [211]Zhang H L, Tweel B, and Tong L. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop [J]. PNAS,2004,101(16):5910-5915.
    [212]Rachael Scarth and Jihong Tang. Modification of Brassica oil using conventional and transgenic approaches [J]. Crop Science,2006,46:1225-1236.
    [213]Liu X Y, Fortin P D, and Walsh C T. Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic [J]. PNAS,2008, 105(36):13321-13326.
    [214]Svab Z and Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene [J]. Proc. Natl. Acad. Sci. USA,1993,90(3):913-917.
    [215]张志刚.油菜种子含油量相关基因PEPC和DGAT的克隆及遗传转化研究[D].湖南农业大学学位论文(博士),2006,10.
    [216]Swierczynski J, Goyke E, Korczynska J, et al. Acetyl-CoA carboxylase and fatty acid synthase activities in human hypothalamus[J]. Neuro science Letters,2008, 444(3):209-211.
    [217]Auguet J C, Borrego C M, Baneras L, et al. Fingerprinting the genetic diversity of the biotin carboxylase gene (accC) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark [J]. Environmental Microbiology, 2008,10(10):2527-2536.
    [218]Wattanachaisaereekul S, Lantz A E, Nielsen M L, et al. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply [J]. Metabolic Engineering,2008,10(5):246-254.
    [219]Essop M F, Camp H S, Choi C S, et al. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice (acetyl-CoA carboxylase) [J]. The American Journal of Physiology,2008,295,1:256-265.
    [220]Chalupska D, Lee HY, Faris J D, et al. Acc homoeoloci and the evolution of wheat genomes [J]. Proc. Natl. Acad. Sci. USA,105(28):9691-9696.
    [221]Gupta V, Gupta R K., Khare G, et al. Crystallization and preliminary X-ray diffract-tion analysis of biotin acetyl-CoA carboxylase ligase (BirA) from Mycobacterium tuberculosis[J]. Acta Crystallographica Section F,2008,64(6):524-527.
    [222]Ng B, Polyak S W, Bird D, et al. Escherichia coli biotin protein ligase:characteriza-tion and development of a high-throughput assay[J]. Analytical Biochemistry,2008, 376(1):131-136.
    [223]Wang Hui-Wen, Zhang Bo, Hao Yu-Jun, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDofl 1, enhance lipid content in the seeds of transgenic Arabidopsis plants [J]. Plant Journal,2007,52(4):716-729.
    [224]Kim Ki Won, Yamane Harvey, Zondlo James, et al. Expression, purification, and characterization of human acetyl-CoA carboxylase 2[J]. Protein Expression and Purification,2007,53(1):16-23.
    [225]Ray H, Suau F, Vincent A, et al. Cell cycle regulation of the BRCA1/acetyl-CoA-carboxylase complex [J]. Biochemical and Biophysical Research Communications, 2009,378(3):615-619.
    [226]Pendini N R, Polyak S W, Booker G W, et al. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus[J]. Acta Crystallographica Section F,2008,64(6):520-523.
    [227]Maria del Mar Romero, Maria del Mar Grasa, Montserrat Esteve, et al. Semi quantitative RT-PCR measurement of gene expression in rat tissues including a correction for varying cell size and number [J]. Nutrition & Metabolism,2007,4(26): 26-36.
    [228]胡亚平,夏玉平,吴刚,等.重叠延伸PCR克隆拟南芥ACCase基因和植物表达载体构建[J].中国油料作物学报(Chinese journal of oil crop sciences),31(4):407-412.
    [229]夏晗,王兴军,李孟军,等.利用基因工程改良植物脂肪酸和提高植物含油量的研究进展[J].生物工程学报(Chin. J. Biotech.),2010,26(6):735-743.
    [230]Gago G, Diacovich L, Arabolaza A, et al. Fatty acid biosynthesis in actinomycetes[J]. FEMS Microbiology Reviews,2011,35(3):475-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700