用户名: 密码: 验证码:
马尾松和黄山松物种分化遗传机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物种分化遗传机制是当前生物学研究领域的一个热门话题。由于生殖隔离在物种分化过程中起着十分重要作用,阐明物种间生殖隔离的遗传机制是物种分化研究领域的一个重要目标。然而迄今物种生殖隔离产生的原因仅在少数几个物种中进行了较为深入的研究。种间杂交往往会在杂种的育性及适应性方面产生负面效应,即使一些物种通过种间杂交能产生杂种优势,但在后续世代的杂交中往往也会发生不育现象。遗传作图为我们揭示亲本基因组中控制配子向后代不均等传递的基因组区域提供了重要的技术手段。在遗传作图过程中,配子向后代不均等传递表现为标记偏分离。由于配子不均等传递的显著程度与物种分化程度存在正相关关系,因此在种间杂交组合中,检测标记偏分离的基因组区域可用于查找控制种间生殖隔离有关的基因组区域。目前这类研究主要是利用人工杂交组合展开,利用天然杂种进行的研究还鲜有报道。
     马尾松与黄山松的物种分化主要是由于它们所处的海拔生态位不同造成的,它们在垂直分布上相临,且存在自然的基因交流,因此马尾松与黄山松是研究临域性物种分化遗传机制的理想材料。
     在本文中,作者系统研究了马尾松、黄山松及其杂种个体的球果特征、种子的饱满度、发芽情况一些生理生化指标的变化规律。另外,由于松属基因组硕大,笔者针对松属树种进行了AFLP分析程序的优化。在此基础上,利用AFLP标记和一株马尾松与黄山松杂种个体上采集的种子的胚乳组织构建了杂种个体的遗传图谱。利用建成的遗传图谱,分析了可能与这两个树种生殖隔离相关的基因组区域,并进一步利用数量遗传学手段,定位了控制标记偏分离的遗传位点。最后利用表达序列标签将建成的连锁图连结到松属树种的共祖先图谱上。上述研究为加深我们在基因组水平上对物种分化遗传机制的认识提供了重要的实验证据。论文开展的上述几个主要方面的研究内容及结果如下:
     1.不同海拔松树球果形态及种子质量指标分析:以采自安徽黄山风景区不同海拔的松树球果、种子为研究材料,测定了球果长、球果宽、球果长宽比、种子饱满度、发芽率和千粒重6项指标,并分析了这些指标随海拔高度的变化情况。结果表明:随着海拔的升高,球果长、球果宽、长宽比减小;杂种域个体种子的饱满度、发芽率、千粒重3个指标的均值小于黄山松和马尾松。在所有采集球果的植株中,种子饱满度随海拔高度呈现两头高,中间低的变化趋势。其中海拔800米以下个体种子平均饱满度约为73%,海拔1100米以上个体种子平均饱满度为57.6%,而800-1100米之间的个体种子平均饱满度只有40%。过渡带种子的饱满度低(空粒率高)可能与马尾松和黄山松存在种间繁殖障碍有关。这一结果显示前人对马尾松、黄山松及其杂种域海拔分布的划分比较吻合。
     2.黄山松幼苗生理生化指标随海拔高度的变异情况:以不同海拔高度采集的黄山松种子所培养的幼苗为研究对象,将幼苗置于0-5℃冰箱中进行寒冷处理24h后,测定了幼苗的相对电导率、SOD、丙二醛、POD以及可溶性蛋白5个生理生化指标处理前后的变化情况。采用多重复测定,探讨了这些指标随海拔高度的变化关系。结果表明,幼苗浸出液相对电导率、SOD活性及丙二醛质量摩尔浓度在低温处理下,均表现出随海拔高度的增加而降低的变化趋势。这三个指标与黄山松的海拔适应性存在相关,这一工作为研究马尾松与黄山松分化遗传机制候选基因的选择提供了实验依据。
     3.松属树种AFLP实验程序优化及引物组合筛选:AFLP标记技术可利用较少的DNA获取大量的位点分离数据,是胚乳组织进行遗传作图的理想标记技术。但松属树种的基因组硕大,超出了一般AFLP分析程序适用上限的10倍左右,因此在松属树种中利用AFLP标记技术,需要进行针对性的实验程序优化。这部分工作针对松属树种进行了AFLP分析过程中DNA酶切、接头连接、预扩增及选择性扩增实验程序优化。实验结果发现, E+4/M+3的引物组合比较适合于松属树种的AFLP分析。在这部分工作中,笔者筛选出了适合松属树种遗传分析的AFLP引物组合,为利用松属树种胚乳组织构建遗传图谱提供了标记资源。
     4.马尾松、黄山松杂种遗传图谱构建及标记偏分离分析:遗传标记在杂交子代中的不均等传递是研究杂交不亲合遗传机制的重要手段。通过多年多地点采样,笔者发现这两个树种杂种域个体种子发芽率普遍偏低,反映两个树种存在一定程度上的生殖隔离。笔者利用一株马尾松与黄山松杂种个体上采集的种子得到的192份胚乳组织进行杂种个体的遗传图谱构建。标记偏分离分析发现,显著偏分离的标记比例极高,约占分离标记的25.5%。笔者进一步对标记偏分离的影响范围,标记偏分离的方向及标记偏分离的显著程度进行了分析,这些指标在不同连锁群上差异很大。这部分的研究结果揭示马尾松与黄山松的分化并不是全基因组水平上的分化造成的,而是局限于某些染色体上的局部区域。建成的图谱揭示了相关的基因组区域,并为相关遗传因子的基因组学解析提供了重要的信息整合平台。
     5.偏分离遗传位点定位及相关基因组区域确定:由于配子不均等传递的显著程度与物种分化程度存在显著的相关关系,因此在种间杂交组合中检测标记偏分离的基因组区域可用于查找与控制种间生殖隔离有关的基因组区域。但以往受偏分离座位影响的基因组区域都是通过偏分离标记的数量及偏分离程度进行大致的估测。要确定目标基因组区间,需要对偏分离座位进行遗传定位分析。在这一部分工作中,笔者利用建成的马尾松与黄山松杂种遗传图谱,进行了偏分离位点定位分析,并将建成的遗传图联结到松属的共祖先图谱上。分析中共发现了6个LOD支持度强的SDL位点。这些位点分布于4个不同的连锁群上。由于这些位点控制作图亲本产生的配子向后代的不均等传递,SDL对应的基因组区域比基因组其它区域在黄山松与马尾松物种分化过程中应起着更为重要的作用。SDL分析是在远缘杂交组合中解析控制配子不均等传递遗传因子重要环节,这部分工作为SDL分析提供了一个研究实例,也是广大演化生物学家普遍感兴趣的一个研究内容。
Speciation is one of the most interesting processes in evolution, and reproductive isolationis essential for the process of speciation to be complete. Thus, understanding the geneticmechanism triggering reproductive isolation is a key goal in the study of speciation. To date, theunderlying causes of reproductive isolation are only partially understood in a few species.Hybridization between different species often has negative consequences that result in reducedfertility or viability, which leads to transmission ratio distortion (TRD) of the parental gametes.Occasionally, hybridization can raise hybrid vigor in which a hybrid offspring performs well.Yet, recombination and allelic segregation may render hybrid breakdown in the next generation.Genetic mapping methods provide a unique opportunity to study the interactions ofdifferentiated genes and genomes in a hybrid genetic background. The degree of TRD isthought to be positively correlated with the level of genome divergence between taxa, mappingthe SDLs that control the TRD marker clusters can be used to infer the genome regions relatingto reproductive barriers in distant crosses. To date, the majority evidences of TRD occurring inhybrid genetic backgrounds are based on studies employing experimental hybrids. By contrast,map-based studies of natural hybrids are much rarer.
     Pinus hwangshanensis and P. massoniana are native conifers in south of China. In theareas to the south of Yangzi River, P hwangshanensis is mainly found in the elevation range of800-1800m, and P. massoniana distributes below elevation of800-900m. The major differencein the ecological niches of the two species is elevation. With an increase in elevation,environmental factors, such as oxygen partial pressure, air temperature and moisture regime,soil temperature and water regime, sunray and ultraviolet light intensity, will change. Theseenvironmental factors are closely related to plant growth and fitness. They are environmentalstresses to cause differentiation in plant phenology and fitness, subsequently, to maintain thespecies-specific characteristics of the alternate species. The distribution ranges of P.hwangshanensis and P. massoniana are frequently found to be adjacent to each other, andoverlapped with a narrow contact zone. This distribution pattern leads them to be the desirableresearch materials to uncover the genetic mechanism triggering the parapatric speciationprocess. In my thesis, studies were carried out in the following aspects: Variation in conemorphology and seed characteristics for P.massoniana, P. Hwangshanensis, and their hybridzone; Variation trends of physiological and biochemical indexes of P. hwangshanensis withincrease in elevation; AFLP protocol optimization and primer combination screening for Pinusspp.; Potential chromosomal introgression barriers revealed by linkage analysis in a hybrid of P. massoniana and P. hwangshanensis; Genome-wide detection of genetic loci triggering unevendescending of gametes from a natural hybrid pine. The main context include:
     1. Variation in cone morphology and seed characteristics for P. massoniana, P.hwangshanensis and their hybrid zone. The cones and seeds were collected from differentelevations of Mt. Huang in Anhui Province. Six characteristics of cones and seeds, includingcone length, cone width, ratio of cone length to width, seed plumpness, germinationratio and weight per thousand seeds were analyzed to reveal the variation trends with thechanging of elevations. The results indicated that: Cone length, cone width, ratio of conelength to width decreased with increase in elevation; Seed plumpness, germination ratioand weight per thousand seeds were lower for plants in hybrid zone than that of theother zones. We propose it may relate to the reproduction barrier between P. massonianaand P. hwangshanensis. It was noticeable that the majority of variation for cones andseeds arose among individual trees, and traits were commonly diverged amongindividuals at different elevations.
     2. Variation trends of physiological and biochemical indexes of P. hwangshanensiswith increase in elevation. P. hwangshanensis seeds collected from different elevations ofHuanggang Mountain in Wuyi Nature Reserve were cultivated in a container at25℃. Aftersprouting,the seedlings were stored in a refrigerator within a temperature range of2-5℃for24hours. Five physiological and biochemical indices of P. hwangshanensis seedlings weredetermined before and after the treatment,and the variation trends of these indexes withincreasing elevation were also studied. Three of the tested indices,including relative electricalconductivity of extract fluid,SOD activity,and MDA content of the seedlings after lowtemperature treatment decreased with increasing elevation. Therefore,the above three indicesare related to the adaptability of P. hwangshanensis to elevation. These indices could be appliedto explore the mechanism of parapatric speciation.
     3. AFLP protocol optimization and primer combinations screening for Pinus spp.Pines possess gigantic genomes (10-20Gb), which are about10fold that of the human genomeand about40fold that of the poplar genome, leading them out of the genome range suitable forthe common AFLP(Amplified Fragment Length Polymorphism) protocol. This paper speciallyoptimized an economic and reliable AFLP analysis protocol for pines. The number of selectivenucleotides added to the core primers and the primer combinations suitable for AFLP analysisin such species were tested. Some AFLP primer combinations that were screened their utilityacross different species were tested. The results could also be used as a reference for allowingbetter amplification in complex templates isolated from plants species with large genomes
     4. Potential chromosomal introgression barriers revealed by linkage analysis in ahybrid of P. massoniana and P. hwangshanensis. Distortion of marker transmission ratio isfrequently ascribed to selection against alleles that cause hybrid incompatibility. The naturalintrogression between P. massoniana and P. hwangshanensis and their distribution ranges lead to the emergence of the two species as desirable organisms to study the genetic mechanisms forspeciation. Using seeds sampled from trees at different elevations, we consistently detectedsharp decreases in seed germination rates of trees in the hybrid zone, which might be duelargely to the hybrid incompatibility. A genetic map was established using192megagametophytes from a single tree in the hybrid zone of the two species. Segregationdistortion analysis revealed that the percentage of significant-segregation-distortion (SSD)markers was extremely high, accounting for more than25%of the segregating markers. Theextension range, the distortion direction, and the distortion intensity of SSD markers also varieddramatically on different linkage groups. This study displays the potential chromosomalintrogression barriers between P. massoniana and P. hwangshanensis. The established mapprovides a valuable platform for conducting genome-wide association of hybrid incompatibleQTLs and/or candidate genes with marker transmission ratio distortion in the hybrid.
     5. Genome-wide detection of genetic loci triggering uneven descending of gametesfrom a natural hybrid pine. Marker transmission ratio distortion (TRD) revealed in geneticmapping studies of distant crosses can be used to infer the genetic basis relating to reproductivebarriers between species. Unlike measure the degree of TRD by the overall number ofsegregation distorted markers in the affected genome regions, mapping the segregationdistorting loci (SDL) provides reliable statistic parameters that help to confine the targetgenomic region for further characterization at molecular level. Using the linkage mapconstructed for a natural hybrid of P. hwangshanensis and P. massoniana, we performed SDLanalyses and aligned the established map to the pine consensus map. Altogether,6SDLs withrelatively strong LOD supports were detected on4linkage groups of the established map. Sincegametes inheriting different alternate chromatid blocks from the SDL affecting genome regionshad uneven chance to descend to the offsprings, the corresponding genome regions weresupposed to play more significant role in rendering the speciation of P. hwangshanensis and P.massoniana. This paper presents a case study on a crucial step for uncovering the geneticfactors that triggered the uneven descending of gametes in a natural distant cross, and it maydraw broad interest for the evolutionary biologists.
引文
Albert T J, Molla M N, Muzny D M, et al.2007. Direct selection of human genomic loci by microarray hybridization.Nature Methods,4:903-905.
    Alheit K V, Reif J C, Maurer H P, et al.2011.Detection of segregation distortion loci in triticale(x Triticosecale Wittmack)based on a high-density DArT marker consensus genetic linkage map. BMC Genomics,12:380.
    Anderson E.1953. Introgressive hybridization. Biological Reviews,28:280-307.
    Anderson E,Stebbins G L J.1954. Hybridization as an evolutionary stimulus. Evolution,8(4):378-388.
    Antonovics J.2006.Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation ata mine boundary. Heredity,97:33-37.
    Arnold M L.1992. Natural hybridization as an evolutionary process. Annual Revies of Ecology, Evolution and Systematics,23:237-261.
    Arnold M L.1996. Natural hybridization and evolution.Oxford, UK, Oxford University Press.
    Baack E J, Rieseberg L H.2007.A genomic view of introgression and hybrid speciation. Curr Opin Genet&Devlop,17:513-518.
    Bleeker W, Hurka H.2001.Introgressive hybridization in Rorippa (Brassicaceae): gene flow and its consequences in naturaland anthropogenic habitats. Molecular Ecology,10(8):2013-2022.
    Bradshaw H D Jr, Wilbert S M, Otto K G, et al.1995.Genetic mapping of floral traits associated with reproductive isolation inmonkeyflowers (Mimulus).Nature,376:762-765.
    Carr D E, Dudash M R.2003.Recent approaches into the genetic basis of inbreeding depression in plants. PhilosophicalTransactions of the Royal Society B: Biological Sciences,358:1071–1084.
    Causse M A, Fulton T M, Cho Y G, et al.1994. Saturated molecular map of the rice genome based on an interspecificbackcross population. Genetics,138:1251–1274.
    Cloutier S, Cappadocia M, Landry B S.1995. Study of microsporeculture responsiveness in oilseed rape (Brassica napus L.)by comparative mapping of a F2population and two microspore-derived populations. Theoretical Applied Genetics,91:841-847.
    Fishman L, Kelly A, Morgan E, et al.2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratiodistortion due to heterospecific interactions. Genetics,159:1701–1716.
    Grant V.1981.Plant speciation.2nd. New York: Clumbia University Press.
    Gechev T, Willekens H, Montagu MV, et al.2003.Different responses of tobacco antioxidant enzymes to light and chillingstress. Journal of Plant Physiology,160:509–515.
    Greig D.2009. Reproductive isolation in Saccharomyces. Heredity,102:39–44.
    Hall M C, Willis J H.2005. Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications forgenetic divergence. Genetics,170:375-386.
    Harrison R G.1986. Pattern and process in a narrow hybrid zone. Heredity,56,337-349.
    Harushima Y, Nakagahra M, Yano M, et al.2001. A genome-wide survey of reproductive barriers in an intraspecific hybrid.Genetics,159:883–892.
    Harushima Y, Nakagahra M, Yano M, et al.2002. Diverse variation of reproductive barriers in three intraspecific rice crosses.Genetics,160:313—322.
    Heinze B.1997.A PCR marker for a Populus deltoids allele and its use in studying introgression with native EuropeanPopulus nigra.Belgian Journal of Botany,129:123-130.
    Hendry A P, Day T.2005. Population structure attributable to reproductive time: isolation by time and adaptation by time.Molecular Ecology,14,901–916.
    Hoskin C J, Higgie M, McDonald K R, et al.2005.Reinforcement drives rapid allopatric speciation. Nature,437:1353-1356.
    Howard D J.1986. A zone of overlap and hybridization between two ground cricket species. Evolution,40:34-43.
    Howard D J, Berlocher S H.1998.Endless forms: species and speciation. New York: Oxford University Press, Oxford, UnitedKingdom,379-389.
    Hu Z Q, Xu S Z.2009. PROC QTL—A SAS Procedure for mapping quantitative trait loci. International Journal of PlantGenomics, doi:10.1155/2009/141234.
    James M.2007.Hybrid speciation. Nature,446:279-283.
    Jenczewski E, Gherardi M, Bonnin I, et al.1997. Insight on segregation distortions in two intraspecific crosses betweenannual species of Medicago (Leguminosae). Theorectical and Applied Genetics,94:682–691.
    Jiang C X, Chee P W, Draye X, et al.2000. Multilocus interactions restrict gene introgression in interspecific populations ofpolyploid Gossypium (Cotton). Evolution,54:798–814.
    Key K H L.1968.The concept of stasipatric speciation. Syst Zool,17:14-22.
    Kosambi D D.1944. The estimation of map distances from recombination values. Annals of Eugenics,12:172-175.
    Kulmunia J, Seifertb B, Pamiloc P.2010. Segregation distortion causes large-scale differences between male and femalegenomes in hybrid ants. Proceedings of the National Academy of Sciences, USA,107:7371–7376
    Lander E, Green P, Abrahamson J, et al.1987.MAPMAKER: an interactive computer package for constructing primarygenetic linkage maps of experimental and natural populations. Genomics,1:174–181.
    Lange K, Boehnke M.1982. How many polymorphic markers genes will it take to span the human genome? AmericanJournal of Humman Genetics,24:842-845.
    Li S X, Chen Y, Yin T M.2010. Potential chromosomal introgression barriers revealed by linkage analysis in a hybrid ofPinus massoniana and P. hwangshanensis. BMC Plant Biology,10:37.
    Loehle C.1998.Height growth trade offs determines northern and southern range limits for trees.Journal of Biogeography,25:735-742.
    Loreau M, Naeem P.2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges.Science,294:804-808.
    Luo L, Xu S.2003. Mapping viability loci using molecular markers.Heredity,90:459-467.
    Luo L, Zhang Y M, Xu S Z.2005. A quantitative genetics model for viability selection. Heredity,94:347-355.
    Maley M L,Pakrer W H.1993.PhenotyPic Variation in cone and needle characters of Pinus banksina(packpine)innorthwestern Ontario.Canadian Journal of Botany,(71):43-51.
    Mallet J.2005. Hybridization as an invasion of the genome.Trends in Ecology and Evolution,20:229-237.
    Mallet J.2007.Hybrid speciation. Nature,446:279-283.
    Mange E J.1968.Temperature sensitivity of segregation-distortion in Drosophila melanogaster.Genetics,58(3):399-413.
    Martinsen G D, Whitham T G, Turek R J, et al.2001. Hybrid populations selectively filter gene introgression between species.Evolution,55:1325-1335.
    Matsushita S, Iseki T, Fukuta Y, et al.2003.Characterization of segregation distortion on chromosome3induced in widehybridization between indica and japonica type rice varieties.Euphytica,134:232-238
    Mayr E.1954.Change of genetic environment and evolution. In: Huxley J, Hardy A C, and Ford E, eds. Allen and Unwin,London.
    Moyle L C, Graham E B.2006. Genome-wide associations between hybrid sterility QTL and marker transmission ratiodistortion. Molecular Biology and Evolution,23:973–980.
    Myburg A A, Vogl C, Griffen A R, et al.2004. Genetics of postzygotic isolation in Eucalyptus: whole-genome analysis ofbarriers to introgression in a wide Interspecific cross of Eucalyptus grandis and E. globulus. Genetics,166:1405–1418.
    O’Brien S J, Mayr E.1991.Bureaucratic mischief: recognizing endangered species and subspecies.Science,251:1187-1188.
    Payseur B A, Nachman M W.2005. The genomics of speciation: investigating the molecular correlates of X chromosomeintrogression across the hybrid zone between Mus domesticus and Mus musculus. Biological Journal of the LinneanSociety,84:523–534.
    Perfegtti F, Pascual L.1996.Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill.), Theoretical andApplied Genetics,93(3):440-446.
    Pigliucci M, Murren C J, Schlichting C D.2006. Phenotypic plasticity and evolution by genetic assimilation.J Exp Biol,209:2362-2367.
    Rake A V, Miksche J P, Hall R B, et al.1980. DNA reassociation kinetics of four conifers. Cannada Journal of Genetics andCytology,22:69–79.
    Ramsey J, Schemske D W.1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. AnnualReview of Ecology and Systematics,29:467-501.
    Reinisch A J, Dong J M, Brubaker C L. et al.1994. A detailed RFLP map of cotton, Gossypium hirsutum×Gossypiumbarbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics,138:829-847.
    Remington D L, Wheten R W, Liu B H. et al.1999.Construction of an AFLP genetic map with nearly complete genomecoverage in Pinus taeda. Theoretical and Applied Genetics,98:1279–1292.
    Rieseberg L H, Baird S J E, Gardner K A.2000. Hybridization, introgression, and linkage evolution. Plant Molecular Biology,42:205-224.
    Rieseberg L H, Brunsfeld S J.1992.Molecular evidence and plant introgression. Molecular systematics of plants,151-176.
    Rieseberg L H, Ellstrand N C.1993.What can molecular and morphologyical markers tell us about plant hybridization?Critical Reviews in Plant Sciences,12:213-241.
    Rieseberg L H, Linder C R, Seiler G J.1995.Chromosomal and genic barriers to introgression inHelianthus.Genetics,141,1163-1171.
    Rieseberg L H, Wood T E, Baack E J.2006.Nature of plant species. Nature,440:524-527.
    Ruby J L.1967.The corresphondence between genetic, morphological and climate variation patter in scotchpine.Silvae genetica,16(2):50-56.
    Sano Y.1990.The genetic nature of gamete eliminator in rice.Genetics,125:183-191
    Sibov S T, de Souza Jr C L, Garcia A A F. et al.2003. Molecular mapping in tropical maize (Zea mays L.) usingmicrosatellite markers.1. Map construction and localization of loci showing distorted segregation.Hereditas,139:96-106.
    Smith J S C, Chin E C L, Shu H. et al.1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zeamays L.): Comparisons with data from RFLPs and pedigree. Theoretical Applied Genetics,95:163-173.
    Stace C A.1987.Hybridization and the plant species.In:Urbanska K M,eds. Differentiation patterns in higher plants.New York:Academic Press.
    Taylor D R, Ingvarsson P K.2003. Common features of segregation distortion in plants and animals. Genetica,117:27–35.
    Temesgen B, Brown G R, Harry D E, et al.2001. Genetic mapping of expressed sequence tag polymorphism (ESTP) markersin loblolly pine (Pinus taeda L.).Theoretical and Applied Genetics,102:664–675.
    Tovar-Sanchez E, Oyama K.2004.Natural hybridization and hybrid zones between Quercus crassifolia and Quercuscrassipes (Fagaceae) in Mexico: morphological and molecular evidence. American Journal of Botany,91:1352-1363.
    Turelli M, Barton N H, Coyne J A.2001.Theory and speciation. Trends in Ecology&Evolution,16(7):330-343.
    Van D B, Kyndt T, Romeijn-Peeters E, et al. Evidence of natural hybridization and introgression between Vasconcelleaspecies (Caricaceae) from southern Ecuador revealed by chloroplast, mitochondrial and nuclear DNA markers. Annalsof Botany,2006,97(5),793-805.
    Via S.2001. Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology&Evolution,16(7):381-390.
    Vladimir S D C, Gad M, Ron M.2008. Metabolomics for plant stresss response. Physiologia Plantarum,132:199-208.
    Vogl C, Xu S.2000. Multipoint mapping of Viability and segregation distorting loci using molecular markers.Genetics,155:1439-1447.
    Vos P, Hogers R.1995. AFLP: A new technique for DNA fingerprinting.Nucleic Acids Research,23(21):4407-4414.
    Voorrips R E.2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity,93:77–78.
    Wheel N C,Guries R P.1982.Population structure,genic diversity and mophological variation in Pinus contorta Dougl.Canadian Journal of Forestry Research,(12):595-606.
    Wiens J J.2004.What is speciation and how should we study it? The American Naturalist,163:913-924.
    Xu S Z.2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics,180:2201–2208.
    Yin T M, Huang M R, Wang M X, et al.2001. Preliminary interspecific genetic maps of the Populus genome constructedfrom RAPD markers. Genome,44:602-609.
    Yin T M, Zhang X Y, Huang M R, et al.2002. Molecular linkage maps of the Populus genome. Genome,45:541-555.
    Yin T M,Wang X R,Andersson B,et al.2003. Nearly complete genetic maps of Pinus sylvestris L.(Scots pine) constructedby AFLP marker analysis in a full-sib family. Theoretical Applied Genetics,106:1075-1083.
    Yin T M, DiFazio S P, Gunter L E, et al.2004. Large-scale heterospecific segregation distortion in Populus revealed by adense genetic map. Theoretical Applied Genetics,109:451-463.
    Zhu C S, Zhang Y M.2007. An EM algorithm for mapping segregation distortion loci. BMC Genetics,8:82.
    Zamir D, Tadmore Y.1986. Unequal segregation of nuclear genes in plants. Botanical Gazette,147:355–358.
    蔡永立,王希华,宋永昌.1999.中国东部亚热带青冈果实形态变异的研究.生态学报,19(4):581-586.
    陈佳慧,兰进好,王晖,等.2011.小麦RIL群体SSR分子标记偏分离的遗传分析.麦类作物学报,31(3):407-410.
    陈庆全,张玉山.2009.籼型水稻S SR标记遗传连锁图谱的构建及偏分离分析.分子植物育种,7(4):685-689.
    陈文岳,俞祥群,章柏泉,等.2003.DNA分子标记概述.杭州农业科技,1:14-1
    陈益泰,李桂英,王惠雄.1999.桤木自然分布区内表型变异的研究.林业科学研究,(4):379-383.
    陈忠毅.1986.安徽黄山松与马尾松的天然杂交.中国科学院华南植物研究所集刊,第二集:38-40.
    邓宏平,何平,钟章成.1999.不同地理种源及演替群落的四川大头茶居群种子形态变异的研究.西南师范大学学报(自然科学版),24(2):207-213.
    顾明.1997.海拔对水稻生长发育的影响.耕作与栽培,(1/2):61-63.
    郝再彬,苍晶,徐仲.2004.植物生理实验.哈尔滨:哈尔滨大学出版社.
    何利平.2001.利用X射线技术检测林木种子质量.林业科技,2(2):40-43.
    柯病凡,李书春,卫广扬.1983.再论黄山松的定名问题.安徽农学院学报,(2),1-7.
    李合生.2000.植物生理生化实脸原理和技术.北京:高等教育出版社.
    李俊清,牛树奎.2006.森林生态学.北京:高等教育出版社.
    李珊,蔡宇良,徐莉,等.2003.云南金钱槭果实、种子形态分化研究.云南植物研究,25(5):585-595.
    李书春.1981.黄山松一新变种———杉松.安徽农学院学报,(1):39-40.
    李文钿,奇文清,成小飞,等.1999.杉木与柳杉人工杂交种子发育的软X射线判断及种子萌发和幼苗生长的观察.植物学报,1999,41(7):690-694.
    李裕荣,董颖苹,曹文才,等.2007.贵州高海拔地区引种紫花苜蓿的生长结实性初探.种子,26(9):77-79.
    李志刚,张玉霞,孙志刚.2005.芦笋抗寒机理的研究.内蒙古民族大学学报自然科学版,20(6):634-637.
    刘义飞,黄宏文.2009.植物居群的基因流动态及其相关适应进化的研究进展.植物学报,44(3):351-362.
    刘贤德,刘晓,张国范.2007.皱纹盘鲍杂交F1AFLP标记偏分离现象初析.海洋科学,31(10):70-76.
    罗睿,郭建军.2010.植物开花时间:自然变异与遗传分化.植物学报,45(1):109-118.
    罗世家,邹惠渝,梁师文.2001.黄山松与马尾松基因渐渗的研究.林业科学,37(6):118-122.
    马绍宾,蒋汉桥.1999.小檗科鬼臼亚科种子的大小变异式样及其生物学意义.西北植物学报,19(4):715-724.
    孟金陵.植物生殖遗传学.北京:科学出版社,1995.
    潘红丽,李迈和,蔡小虎,等.2009.海拔梯度上的植物生长与生理生态特性.生态环境学报,18(2):722-730.
    祁承经,林亲众.1988.马尾松一新变种.植物研究,(3):143-145.
    邱贵福,赵海玉,康福庆,等.2007.张家口坝上地区不同海拔高度樟子松适应性研究.内蒙古林业科技,33(3):23-25.
    宋松泉,程红炎,龙永春,等.2005.种子生物学研究指南.北京:科学出版社.
    宋宪亮,孙学振,张天真.2006.偏分离及其对植物遗传作图的影响.农业生物技术学报,14(2):286-292.
    孙玉玲,李庆梅,杨敬元,等.2005.秦岭冷杉与种子形态变异.生态学报,25(1):176-181.
    孙玉玲,李庆梅,谢宗强.2005.濒危植物秦岭冷杉结实特性的研究.植物生态学报,(29)251-257.
    谈建康,安树青,王铮峰,等.1998.NaCl、Na2SO4、Na2CO3胁迫对小麦叶片自由基浓度及质膜透性的比较研究.植物生理学通报,15(增刊):82-86.
    王爱国,罗广华,邵从本.1983.大豆种子超氧歧化酶的研究.植物生理学报,(1):72-77.
    王开昌,陈新举,李全敏,等.2001.不同播期、海拔和种薯处理对对秋播马铃薯产量的影响.现代农业科技,(20):130-131.
    王石华.2009.雄配子体选择在遗传偏分离中的效应分析.分子植物育种,7(5):990-995.
    王维,王志远.1996.低海拔地区春小麦种子在高海拔地区种植对产量的影响及原因分析.青海农林科技试验研究,4:10-12.
    王宗海,汪德娥,吕聚煜.2006.马尾松与黄山松天然杂种种群特性研究.江西林业科技,1:29-32.
    魏美才,聂海燕,牛耕耘.2010.同域物种形成:物种演化和形成的基本模式.中南林业科技大学学报,30(3):1-11.
    魏岩.2006.园林植物栽培与养护.北京:中国科学技术出版社.
    吴征镒.1980.中国植被.北京:科学出版社.
    肖雯,贾恢先,蒲陆梅.2000.几种盐生植物抗盐生理指标的研究.西北植物学报,20(5):818-825.
    邢有华,方永鑫,吴根荣.1992.安徽大别山黄山松与马尾松天然杂交的初步研究.安徽林业科技,(4):5-9.
    徐亮,包维凯,何永华.2004.4个岷江柏种群的球果和种子形态特征及空间地理空间差异.应用与环境生物学报,10(6):707-711.
    严建兵,汤华,黄益勤,等.2003.玉米F2群体分子标记偏分离的遗传分析.遗传学报,30(10):913-918.
    杨贤为,邹旭恺,马天健,等.1999.黄山旅游气候指南.气象,25(11):16-17.
    郁继华,张国斌,冯致,等.2005.低温弱光对辣椒幼苗抗氧化酶活性与质膜透性的影响.西北植物学报,25(12):2478-2483.
    于顺利,陈宏伟,李晖.2007.种子重量的生态学研究进展.植物生态学报,31(6):989-997.
    张田,李作洲,刘亚令,等.2007.猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑.生物多样性,15(1):1-22.
    赵志刚,郭俊杰,沙二,等.2009.我国格木的地理分布与种实表型变异.植物学报,44(3):338-344.
    中华人民共和国国家质量技术监督局,全国林木种子标准化技术委员会.GB2772—1999.林木种子检验规程.北京:中国标准出版社,2000.
    邹良栋.2004.植物生长与环境.北京:高等教育出版社.
    邹奇.1995.植物生理实验指导.北京:中国农业出版社.
    左利萍,李毅,焦健.2008.渗透胁迫下河北杨叶片的生理响应及相关分析.林业科学,44(8):56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700