用户名: 密码: 验证码:
银杏黄酮和木质素代谢相关基因功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了更深入了解银杏叶黄酮合成的分子机理及与苯丙氨酸代谢路径的联系,为今后利用生物技术手段提高银杏叶黄酮含量奠定基础。本文以叶用银杏家佛手为研究材料,采用同源克隆方法从银杏中分离与黄酮、木质素等积累相关的几个酶基因,它们分别是类异黄酮还原酶相似蛋白基因(GbIRL1),二氢黄酮醇4-还原酶基因(GbDFRs),肉桂醇脱氢酶基因(GbCAD1)和肉桂酰辅酶A还原酶基因(GbCCRs)。在得到基因序列及部分调控序列的前提下,开展相应功能研究与表达分析,主要研究结果概括如下:
     (1)银杏查尔酮异构酶基因(GbIRL1)的克隆、鉴定、性质及表达模式的研究。利用简并PCR技术和RACE技术从银杏叶片中克隆得到了GbIRL1的cDNA全长序列。通过信息学分析发现GbIRL1的cDNA全长为1261bp,含有一个921bp的开放式阅读框(ORF),编码306个氨基酸序列。蛋白质同源序列分析表明,GbIRL1与IRLs家族中PCBER蛋白同源性更高;同源建模分析显示GbIRL1序列与苜蓿IRL蛋白的三维结构及活性位点高度相似。Southern blot分析表明,GbIRL1属于多基因家族;GbIRL1重组蛋白大肠杆菌表达显示,其蛋白大小与cDNA序列预测蛋白大小一致,亲和层析及Western blot分析显示,重组GbIRL1含有6×His标签,GbIRL1能在大肠杆菌中正常表达;重组GbIRL1酶活性分析表明,GbIRL1能够催化DDDC、DDC分别生成TDDC和IDDDC,具有典型的PCBER酶催化特点;RT-PCR分析显示,GbIRL1基因在银杏不同组织中都有表达,但存在较大差异,只有受伤或病虫害茎段、叶片中表达量最高,不同茎段中表达水平相对较低,胚乳和外种皮中几乎不表达。GbIRL1与银杏叶黄酮含量的年周期变化分析显示,GbIRL1基因的转录水平与黄酮含量变化间呈乘幂相关,相关系数为0.610。激素和胁迫诱导表达分析显示,虽然诱导表达模式不尽相同,但GbIRL1转录水平能被UV-B、WOU、ABA、SA、ALA和ETH诱导上调,表达模式存在差异。GbIRL1诱导表达模式与其上游的顺式调控元件较为一致,其表达特性与其他PCBER代谢、木脂素和抗毒素代谢基因表达模式类似。推测银杏GbIRL1可能主要参与银杏对病虫害防御、逆境胁迫适应方面代谢,而与黄酮代谢又有一定的联系。
     (2)银杏3个编码二氢黄酮醇4-还原酶基因(GbDFRs)的分离、鉴定、性质及表达模式研究。利用简并PCR技术和RACE技术从银杏叶片中分别克隆得到了GbDFR1、GbDFR2和GbDFR3的cDNA全长序列。通过信息学分析发现GbDFR1的cDNA全长为1303bp,含有一个1038bp的开放式阅读框(ORF),编码345个氨基酸序列;GbDFR2的cDNA全长为1325bp,含有一个993bp的开放式阅读框(ORF),编码330个氨基酸序列;GbDFR3的cDNA全长为1113bp,含有一个1002bp的开放式阅读框(ORF),编码333个氨基酸序列。蛋白质同源序列分析表明,GbDFRs与与其他物种DFRs同源性较高,分属于3类不同DFRs;同源建模分析显示GbDFRs序列与DFRs家族蛋白的三维结构及活性位点高度相似,其中NADPH结合区域及底物结合位点保守性较高。非保守区域探针的Southern blot分析表明,GbDFRs分别属于3个不同多基因家族;GbDFRs重组蛋白大肠杆菌表达显示,其蛋白大小与cDNA序列预测蛋白大小基本一致,亲和层析及Western blot分析显示,重组GbDFRs含有6×His标签,GbDFRs能在大肠杆菌中正常表达。表达蛋白经分离纯化后酶活测定显示,GbDFR1和GbDFR3分别能够催化DHQ转化为LEU,而DFR2能够催化DHK转化为LEUC;RT-PCR分析显示,GbDFRs基因在银杏不同组织中都有表达,其中GbDFR1和在叶片中表达量最高,GbDFR2在雄蕊表达水平最高。诱导表达分析结果推测,银杏叶片中参与应对环境胁迫和伤害响应的主要是GbDFR1和GbDFR2,同时GbDFR1可能还参与花色素合成,而GbDFR3很可能在黄酮及花色素合成中功能更专一。
     (3)银杏肉桂醇脱氢酶基因(GbCAD1)的克隆、鉴定、性质及表达模式研究。利用RACE技术从银杏叶中克隆到GbCAD1基因的cDNA序列。得到GbCAD1的cDNA长1494bp,包含最大阅读框(ORF)为1074bp,编码一个357氨基酸多肽序列;通过软件DNAssist2.2预测编码蛋白质38.70kDa,其等电点为5.74。进化树分析结果表明银杏GbCAD1蛋白质序列与其他物种的CADs合酶同源性较高。不同组织表达分析显示,GbCAD1基因在银杏的根和茎中表达量最高,特别是在病虫害侵染部位。GbCAD1重组蛋白大肠杆菌表达显示,其蛋白大小与cDNA序列预测蛋白大小基本一致,亲和层析及Western blot分析显示,重组GbCAD1含有6×His标签,GbCAD1能在大肠杆菌中正常表达。表达蛋白经分离纯化后酶活测定显示,GbCAD1能够催化松柏醛转化为松柏醇;诱导表达分析结果显示,GbCAD1能够受到UV-B、WOU、ABA、SA和ETH显著诱导表达,而ALA对GbCAD1诱导作用不明显,GbCAD1的诱导表达模式可能受到上游苯丙氨酸代谢的影响,主要参与了木质素合成及植物逆境适应。
     (4)银杏肉桂酰辅酶A还原酶基因(GbCCRs)的克隆、鉴定、性质及表达模式研究。在前期研究基础上,利用简并PCR技术和RACE技术从银杏叶片中分离得到了GbCCR1和GbCCR2的cDNA全长序列。通过信息学分析发现GbCCR1的cDNA全长为1178bp,含有一个972bp的开放式阅读框(ORF),编码323个氨基酸序列;GbCCR2的cDNA全长为1206bp,含有一个1005bp的开放式阅读框(ORF),编码334个氨基酸序列多肽。蛋白质同源序列分析表明,GbCCRs与其他物种CCR同源性相对较高,属于同一类别CCR家族,并且属于多基因家族;同源建模分析显示GbCCRs序列与其他家族蛋白的三维结构及活性位点高度相似,CCR单亚基可以分为2个结构域,一个是由底物结合中心形成的结构域,另一个是NADPH结合区域形成的结构域,两个保守区域是酶促反应顺利进行的保证。CCRs蛋白序列进化树分析结果显示GbCCR与其他植物分化较早;Southern blot分析证实,GbCCRs属于多基因家族;GbCCR重组蛋白大肠杆菌表达显示,其蛋白大小与cDNA序列预测融合蛋白大小基本一致,亲和层析及Western blot分析显示,重组GbCCR含有6×His标签,GbCCR能在大肠杆菌中正常表达,酶活性分析显示GbCCR1的最适底物为阿魏酰-CoA,而GbCCR2的最适底物为芥子酰-CoA。RT-PCR分析显示,GbCCRs基因在银杏不同组织中都有表达,但与其他黄酮类代谢基因表达差异较大,其中GbCCR1在病虫害及老茎中表达水平较高,而GbCCR2则主要在木质素积累部位呈高水平表达。诱导表达分析显示,GbCCR1受到逆境胁迫相关激素及伤害感染的调控,可能主要参与对逆境胁迫适应及病虫害防御调节;而GbCCR2则主要受到生长相关激素调控,该基因可能主要参与组织及细胞壁中木质素的合成,与抗病虫害无明显关系。
The flavonoids of Ginkgo biloba have many beneficial pharmaceutical properties for humanhealth. The studies on increasing the content of flavonoids in G.biloba had been more and morepopular and important. Until now, many methods had been carried out to increase the content ofG.biloba flavonoids, and it was available method via physiological and biochemical to increaseflavonoid content. In addition, it will be an effective method by genetic engineering to increaseflavonoid content in the near future. However, the overall biosynthetic pathway of flavonoids inG.biloba is unclear at molecular genetic level, especially the Cis-element of the key gene. Inorder to deepen the research in this area, and to lay a basic research for increasing the content ofG.biloba flavonoids by using biotechnology, cloning and function analysis of several key genesGbIRL1, GbDFRs GbCAD1and GbCCRs, which involved in the accumulative process forFlavonoids, Anthocyanin and Lignin are presented in this text for the first time. Moreover, toprovide a new theory basis and practical reference for promoting the accumulation of flavonoidsof Ginkgo leaves. The main results in this research are shown as follows:
     (1) Molecular Cloning and Function Analysis of a Isoflavone Reductase-Like ProteinsGene from Ginkgo biloba, and Its Expression of Time course. We isolated a GbRIL gene froma cDNA library derived from the leaves cell of Ginkgo biloba L. The coding region of the gene is921bp long, and its deduced protein consists of306amino acids with a predicted molecular massof33.28kDa and a pI of6.18. The expression analysis by real-time PCR showed that GbIRL1expressed in a tissue specific manner in G.biloba. GbIRL1was also found to be up-regulated byUV, ALA, Wounding and the three phytohormone, ETH, ABA, SA, consistent with the promoterregion analysis of GbIRL1. The recombinant protein was successfully expressed in E.coli strainwith pET-28a vector. The vitro enzyme activity assay by HPLC indicated that recombinantGbIRL1protein could catalyze the formation the TDDC, IDDDC from DDDC, DDC.Correlation analysis between GbIRL1activity and flavonoid accumulation during Ginkgo leafgrowth indicated that GbIRL1might be the rate-limiting enzyme in the biosynthesis pathway offlavonoids in ginkgo leaves. Results of semi-quantitative RT-PCR analysis showed that thetranscription level of change in GbIRL1power correlated with flavonoid contents, suggestingGbIRL1gene as the specific key gene regulating lignin change in Ginkgo and effecting theaccumulation of flavonoids.
     (2) Molecular cloning and function analysis of three Dihydroflavonol4-Reductasegenes from G.biloba, and its expression in abiotic stress responses. Dihydroflavonol4-Reductase(GbDFRs), is a member of the SDR superfamily, which catalyzes monooxygenasereactions dependent upon NADPH. In the flavonoid pathway DFRs hydroxylates the3’-positionof the B ring of naringenin and dihydrokaempferol to generate eriodictyol and dihydroquercetin,respectively which are important intermediates for biosynthesis of anthocyanins andproanthocyanidins, major coloration substances of flowers and seed coat. The full-length cDNA sequences of DFR1gene (designated as GbDFR1) were isolated from G.biloba for the first time.The full-length cDNA of GbDFR1contained a1038bp open reading frame (ORF) encoding a345-amino-acid protein; The full-length cDNA of GbDFR2contained a993bp open readingframe (ORF) encoding a330-amino-acid protein; The full-length cDNA of GbDFR3contained a1002bp open reading frame (ORF) encoding a333-amino-acid protein. The deduced GbDFRsprotein showed high identities to other plant DFRs, which belong to three different DFRs family.The secondary structure of GbDFRs is mainly composed of a NADPH binding site domain and asubstrate binding domain. Southern blot analysis show that GbDFRs belong to three differentmulti-gene family respectively. Phylogenetic tree analysis revealed that GbDFRs shared the sameancestor with other DFRs. The expression recombinant protein of three GbDFRs in E.colishowed that the size of their protein and cDNA sequences predict protein size is basically thesame. Affinity chromatography and western blot analysis indicated that recombinant GbDFRscontaining6×His tag. The recombinant protein were purified and activity nanalysis, GbDFR1and GbDFR3respectively catalyzed DHQ converted to LEU, while the DFR2could catalyzeDHK convers to LEUC. The expression analysis by RT-PCR showed that GbDFRs expressed ina tissue manner in G.biloba, which were in good agreement with the pattern of ANSaccumulation in G.biloba. the expression profile suggesting that GbDFR1and GbDFR2mainlyinvolved in responding to environmental stress and damage response, at the same time GbDFR1also be involved in anthocyanin synthesis, while GbDFR3is likely more specific functions in thesynthesis of flavonoids and anthocyanin.
     (3) Cloning and expression analysis of Cinnamyl Alcohol Dehydrogenase Gene FromGinkgo biloba L. RNA was isolated respectively from Ginkgo biloba leaves by CTAB method;the RACE technology was used for cloning the full-length cDNA of GbCAD1gene from Ginkgofor the first time. Ginkgo Cinnamyl Alcohol Dehydrogenase gene is a total length of1494bp, itscDNA largest reading frame (ORF) is1074bp, encoding a357amino acid peptide sequence.DNAssist2.2software predicted that it coded a protein of38.70KD, and its isoelectric point was5.74. Phylogenetic tree analysis showed that the homology of GbCAD1protein sequences washigher with the CADs synthase of other species. RT-PCR analysis showed that GbCAD1have ahigher expression level in stems and roots, especially in the parts of the pest and disease infection.Southern blot analysis showed that GbCAD1belong to a multi-gene family. Phylogenetic treeanalysis revealed that GbCAD1shared the same ancestor with other DFRs. The expressionrecombinant protein of GbCAD1in E.coli showed that the size of their protein and cDNAsequences predict protein size is basically the same. Western blot analysis indicated thatrecombinant GbCAD1containing6×His tag. The purified protein of GbCAD1could to catalyzethe transformation of coniferyl aldehyde to coniferyl alcohol. Inducible expression analysis ofGbCAD1suggest that the treatment of UV-B, WOU, ABA, SA and ETH could improve theexpression level of mRNA sinificantly, ALA have a little effect on the level. The expressionprofile of GbCAD1may be effecte by upstream of phenylalanine metabolism, mainly involved in lignin synthesis and plant stress adaptation.
     (4) Molecular cloning and function analysis of Cinnamoyl-CoA Reductase gene fromG.biloba, and its expression in abiotic stress responses. Cinnamoyl-CoA Reductase (CCR, EC1.2.1.44) catalyses the first step of the lignin pathway. Two full-length cDNA sequences of CCRgene (designated as GbCCR2) were isolated from G.biloba according to preliminary work. Thefull-length cDNA of GbCCR1contained a972-bp open reading frame (ORF) encoding a323-amino-acid protein; GbCCR2contains a full-length cDNA of1206bp, which contains a1005bp open reading frame encoding a334amino acid sequences of peptides. The two deducedGbCCR protein showed high identities to other plant CCRs. They both contain a commonsignature which is thought to be involved in the catalytic site of CCRs. Phylogenetic tree analysisrevealed that GbCCRs shared the same ancestor with other CCRs. Southern blot analysisindicated that GbCCRs belonged to a multi-gene family. Homology modeling analysis showedthat GbCCRs sequence is highly similar to the other family of protein structure. GbCCRs singlesubunit can be divided into two domains, one is the center of the substrate binding site, and theother is NADPH domain binding region, two conserved regions of the enzymatic reaction toensure the reaction. Recombinant protein of GbCCRs were consistent with the cDNA sequencespredicted fusion protein size. Western blot analysis and affinity chromatography showed that therecombinant protein contain6×His tag. Enzyme activity analysis showed that ferulic acyl-CoA isthe optimum substrate for GbCCR1, mustard acyl-CoA for GbCCR2. The expression analysis byRT-PCR showed that GbCCRs expressed in a tissue-specific manner in G.biloba, GbCCR1havea higher levels of expression in the old or pest injected stem, while GbCCR2showed a higherlevels in the parts tissue of lignin accumulation. Induced expression analysis indicated thatGbCCR1maily regulated by stress-related hormones and injury infection, which maybe mainlyinvolved in stress adaptation and pest defense. GbCCR2mainly involved in the organization andcell wall lignin synthesis, and regulated by growth hormone, while have no obvious proportionalrelationship with anti-pest, diseases infection.
引文
毕珣,卢嘉文,蔡东联.银杏及叶中黄酮类化合物生理功效的研究进展[J].武警医学.2004,15(6):458-459.
    曹福亮.中国银杏[M].江苏南京:江苏科学技术出版社,2002:295-300.
    曹福亮.中国银杏志[M].北京:中国林业出版社,2007:3-4.
    曹福亮.中国银杏品种图鉴[M].北京:科学出版社,2011:196-199.
    陈新,万德光,严铸云,等.银杏苯丙氨酸解氨酶(PAL)的基因克隆[J].成都中医药大学学报.2004,27(1):32-34.
    陈学森,邓秀新.培养基及培养条件对银杏愈伤组织黄酮产量的影响[J].园艺学报.1997,24(4):373-377.
    陈学森,邓秀新,章文才.银杏组织培养与黄酮生产的研究[J].中国农业科学.1997a,30(6):55-60.
    陈学森,张艳敏.叶用银杏资源评价及选优的研究[J].园艺学报.1997,24(3):215-219.
    陈学森,章文才,邓秀新.树龄及季节对银杏叶黄酮与萜内酯含量的影响[J].果树科学.1997b,14(4):226-229.
    陈永忠,谭晓风.木质素生物合成及其基因调控研究综述[J].江西农业大学学报.2003,25(4):613-617.
    程水源.银杏叶化学成分与药用研究进展[J].中草药.1998,29:16-18.
    程水源.影响银杏叶黄酮形成的主要因子及调控技术的研究.2001,山东农业大学,泰安.
    程水源,陈昆松,杜何为,等.银杏RNA的提取[J].果树学报.2005a,22(4):428-429.
    程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望[J].果树学报.2003,20(5):351-357.
    程水源,顾曼如,束怀瑞.银杏叶黄酮研究进展[J].林业科学.2000,36(6):110-115.
    程水源,王燕,费永俊,等.提高银杏叶黄酮含量的措施及其调控机理的研究[J].果树学报.2004a,21(2):116-119.
    程水源,王燕,李俊凯,等.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学.2004b,40(6):45-49.
    程水源,王燕,李俊凯,等.银杏叶黄酮含量变化及分布规律的研究[J].园艺学报.2001a,28(4):353-355.
    程水源,王燕,李俊凯,等.银杏叶片色素含量与黄酮含量关系的研究[J].林业科学.2001b,37(5):31-34.
    程水源,王燕,刘卫红,等.生长调节剂对离体银杏叶苯丙氨酸解氨酶活性的影响[J].植物资源与环境学报.2005b,14(1):20-22.
    方从兵. GAP规范化种植及异黄酮化合物的次级代谢研究.2005,安徽农业大学,合肥
    房建军,阙国宁.银杏愈伤组织生长和黄酮类化合物积累的关系[J].林业科学研究.1998,11(2):124-129.
    古勇,李安明.类黄酮生物活性的研究进展[J].应用与环境生物学报.2006,12(2):283-286.
    郭晋雅,李云萍,傅玉凡,等.紫心甘薯二氢黄酮醇4-还原酶基因表达及酶活性与花色苷积累的相关性[J].中国农业科学.2011,44(8):1736-1744.
    郭铁英.野生金荞麦类异黄酮还原酶基因(FcIRL)的克隆与功能的初步研究.2008,园艺园林学院.西南大学,重庆
    郝岗平,杜希华,史仁玖. NO对银杏悬浮细胞生长及黄酮类物质合成的影响[J].西北植物学报.2007,27(2):272-277.
    何丙辉,钟章成.不同光强与干旱胁迫对银杏枝叶构件生长的影响[J].广西师范大学学报:自然科学版.2005,23(003):66-69.
    贾彩虹,王宏芝,杜克久,等.抑制4CL基因表达的转基因毛白杨中木质素含量与茎杆颜色的关系[J].农业生物技术学报.2004,12(6):621-624.
    姜玲,章文才.银杏悬浮细胞系的建立及其黄酮糖苷的产生[J].果树科学.1999,16(2):131-134.
    景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报:自然科学版.2005,29(3):5-8.
    冷平生,苏淑钗.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响[J].植物资源与环境学报.2002,11(1):1-4.
    李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展[J].西北植物学报.2003,23(4):675-681.
    李勇,刘新民.银杏及叶中黄酮类化合物生理功效的研究进展[J].食品科技.2001,5:72-73.
    梁立兴.中国当代银杏大全[M].1993:1-41.
    刘德军,佘远国,汪鹏,等.叶用银杏品种产量性状选择研究[J].经济林研究.2002,20(1):30-31.
    刘光德,雷兴华,祝钦泷, et al.金荞麦二氢黄酮醇4-还原酶基因(FdDFR1)的克隆及序列分析[J].中国农业科学.2009,42(1):55-63.
    刘娟,冯群芳,张杰.二氢黄酮醇4-还原酶基因(DFR)与花色的修饰[J].植物生理学通讯.2006,41(6):715-719.
    刘叔倩,郑俊华.展望分子生物学技术银杏研究中的应用[J].国外医药:植物药分册.1999,14(1):4-6.
    刘卫红.银杏叶苯丙氨酸解氨酶特性及其对叶黄酮含量调控的研究.2003,华中农业大学,武汉.
    刘卫红,程水源.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响[J].湖北农业科学.2003,23(3):73-75.
    庞永珍.银杏黄酮和萜类化合物生物合成途径中重要相关基因的克隆和研究.2005,复旦大学,上海.
    邵继平,王伯初.银杏叶提取物药用价值的研究进展[J].重庆大学学报:自然科学版.2003,26(1):130-134.
    孙视,刘晚苟.生态条件对银杏叶黄酮积累的影响[J].植物资源与环境.1998,7(3):1-7.
    孙天恩,李根保.银杏发根克隆及其培养技术研究进展[J].中草药.1998,29(增):25-28.
    唐于平,楼凤昌.银杏叶中黄酮类成分的研究[J].中国药学杂志.2001,36(4):231-233.
    唐于平,王颖.银杏叶中的黄酮醇苷类成分[J].药学学报.2000,35(5):363-366.
    汪贵斌,曹福亮,方升佐,等.银杏叶用园建园材料选择的研究[J].林业科学.2000,36(4):26-31.
    汪良驹,王中华,李志强,等.5-氨基乙酰丙酸促进苹果果实着色的效应[J].果树学报.2004,21(6):512-515.
    王凌晖,曹福亮,汪贵斌,等.银杏优质丰产园建园技术的研究进展[J].西北林学院学报.2005,20(1):102-106.
    王庆菊,李晓磊,王磊,等.紫叶稠李叶片花色苷及其合成相关酶动态[J].林业科学.2008,44(3):45-49.
    王燕,程水源.提高银杏叶黄酮含量的调控措施[J].湖北农业科学.2002a,25(5):103-105.
    王燕,李琳玲,许锋,等.金属离子对盆栽银杏叶PAL酶活及黄酮含量的影响[J].南京林业大学学报:自然科学版.2007,31(2):68-72.
    王燕,刘卫红,杜何为,等.底物,末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响[J].果树学报.2004,21(5):443-446.
    王义强.银杏枝叶生长规律及两次采叶试验研究[J].经济林研究.1995,13(4):20-22.
    王英强,梁红.广东产银杏叶总黄酮含量变化[J].中药材.2001,24(4):247-248.
    魏春红,李毅.现代分子生物学实验[M].北京:高等教育出版社,2006:135-137.
    魏刚,赵洪亮.银杏不同营养器官中营养元素含量季节动态的研究[J].北京林业大学学报.1999,21(1):96-99.
    吴金霞,陈彦龙,何近刚,等.生物技术在牧草品质改良中的应用[J].草业学报.2007,16(1):1-9.
    夏晓晖,张宇,郗砚彬,等.银杏叶化学成分研究进展[J].中国实验方剂学杂志.2009,15(9):
    谢宝东,王华田.土壤水分含量对银杏叶黄酮和内酯含量的影响[J].山东林业科技.2002,4:1-3.
    邢世岩,吴德军.叶用银杏种源,性别及无性系的因子和聚类分析[J].中南林学院学报.2000,20(2):26-31.
    徐世晓,赵新全,孙平,等.青藏高原5种牧草木质素含量及其体外消化率研究[J].西北植物学报.2004,23(9):1605-1608.
    许锋.银杏GbPAL和GbANS基因的克隆与表达及ALA对类黄酮含量的影响.2008,山东农业大学,泰安
    严明理,刘显军,刘忠松,等.芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析[J].作物学报.2008,34(1):1-7.
    杨军,王迪珍.木质素增强橡胶的技术进展[J].合成橡胶工业.2001,24(1):51-55.
    于淼,刘海峰,王军.ABA对葡萄花色苷合成相关基因表达的影响[J].果树学报.2012,29(1):29-35.
    张广辉,陈春秋.银杏离体培养生产次生代谢物研究进展[J].北京林业大学学报.2002,24(4):130-134.
    章霄云,郭安平,贺立卡,等.木质素生物合成及其基因调控的研究进展[J].分子植物育种.2006,4(3):431-437.
    赵华燕,沈庆喜,吕世友,等.水稻咖啡酰辅酶A-O-甲基转移酶基因(CCoAOMT)表达特性分析[J].科学通报.2004a,49(14):1390.
    赵华燕,魏建华,宋艳茹.木质素生物合成及其基因工程研究进展[J].植物生理与分子生物学学报.2004b,30(4):361-370.
    赵华燕,魏建华,张景昱,等.抑制COMT与CCoAOMT调控植物木质素的生物合成[J].科学通报.2002,47(8):604-607.
    朱灿灿.银杏叶次生代谢产物的环境诱导机制及其调控.2010,森林资源与环境学院.南京林业大学,南京
    朱海英,李人圭.丝瓜果实发育中木质素代谢及有关导管分化的生理生化研究[J].华东师范大学学报:自然科学版.1997,16(1):87-94.
    Abbott J C, Barakate A, Pin on G, et al. Simultaneous suppression of multiple genes by single transgenes.Down-regulation of three unrelated lignin biosynthetic genes in tobacco[J]. Plant Physiology.2002,128(3):844-853.
    Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptionalactivators in abscisic acid signaling[J]. The Plant Cell Online.2003,15(1):63-78.
    Aharoni A, De Vos C, Wein M, et al. The strawberry FaMYB1transcription factor suppresses anthocyanin andflavonol accumulation in transgenic tobacco[J]. The Plant Journal.2001,28(3):319-332.
    Ardi R, Kobiler I, Jacoby B, et al. Involvement of epicatechin biosynthesis in the activation of the mechanismof resistance of avocado fruits toColletotrichum gloeosporioides[J]. Physiological and molecular plantpathology.1998,53(5-6):269-285.
    Atanassova R, Favet N, Martz F, et al. Altered lignin composition in transgenic tobacco expressingO-methyltransferase sequences in sense and antisense orientation[J]. The Plant Journal.1995,8(4):465-477.
    Awad M and de Jager A. Formation of flavonoids, especially anthocyanin and chlorogenic acid in []Jonagold'apple skin: influences of growth regulators and fruit maturity[J]. Scientia Horticulturae.2002,93(3-4):257-266.
    Awad M A, Wagenmakers P S and de Jager A. Effects of light on flavonoid and chlorogenic acid levels in theskin of ‘Jonagold'apples[J]. Scientia Horticulturae.2001,88(4):289-298.
    Babiychuk E, Kushnir S, Belles-Boix E, et al. Arabidopsis thaliana NADPH oxidoreductase homologs confertolerance of yeasts toward the thiol-oxidizing drug diamide[J]. Journal of Biological Chemistry.1995,270(44):26224-26231.
    Bai Y, Gong W, Liu T, et al. Cloning and expressional analyses of a cinnamoyl CoA reductase cDNA from riceseedlings[J]. Chinese science bulletin.2003,48(20):2221-2225.
    Barakat A, Bagniewska-Zadworna A, Choi A, et al. The cinnamyl alcohol dehydrogenase gene family inPopulus: phylogeny, organization, and expression[J]. BMC plant biology.2009,9(1):26.
    Barakat A, Bagniewska-Zadworna A, Frost C, et al. Phylogeny and expression profiling of CAD and CAD-likegenes in hybrid Populus (P. deltoides×P. nigra): evidence from herbivore damage for subfunctionalizationand functional divergence[J]. BMC plant biology.2010,10(1):100.
    Bart R S, Chern M, Vega-Sánchez M E, et al. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member,is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae[J]. PLoS genetics.2010,6(9):e1001123.
    Bashandy T, Taconnat L, Renou J P, et al. Accumulation of flavonoids in an ntra ntrb mutant leads to toleranceto UV-C[J]. Molecular plant.2009,2(2):249-258.
    Bate N, Orr J, Ni W, et al. Quantitative relationship between phenylalanine ammonia-lyase levels andphenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural productsynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America.1994,91(16):7608-7612.
    Baucher M, Bernard-Vailhé M A, Chabbert B, et al. Down-regulation of cinnamyl alcohol dehydrogenase intransgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility[J]. PlantMolecular Biology.1999,39(3):437-447.
    Baucher M, Halpin C, Petit-Conil M, et al. Lignin: genetic engineering and impact on pulping[J]. CriticalReviews in Biochemistry and Molecular Biology.2003,38(4):305-350.
    Baucher M, Monties B, Van Montagu M, et al. Biosynthesis and genetic engineering of lignin[J]. CriticalReviews in Plant Sciences.1998,17(2):125-197.
    Bedon F, Levasseur C, Grima-Pettenati J, et al. Sequence analysis and functional characterization of thepromoter of the PiceaglaucaCinnamylAlcoholDehydrogenase gene in transgenic white spruce plants[J].Plant cell reports.2009,28(5):787-800.
    Beld M, Martin C, Huits H, et al. Flavonoid synthesis in Petunia hybrida: partial characterization ofdihydroflavonol-4-reductase genes[J]. Plant Molecular Biology.1989,13(5):491-502.
    Bell-Lelong D A, Cusumano J C, Meyer K, et al. Cinnamate-4-hydroxylase expression in Arabidopsis(regulation in response to development and the environment)[J]. Plant physiology.1997,113(3):729-738.
    Bernhardt J, Stich K, Schwarz-Sommer Z, et al. Molecular analysis of a second functional A1gene(dihydroflavonol4-reductase) in Zea mays[J]. The Plant Journal.1998,14(4):483-488.
    Besseau S, Hoffmann L, Geoffroy P, et al. Flavonoid accumulation in Arabidopsis repressed in lignin synthesisaffects auxin transport and plant growth[J]. The Plant Cell Online.2007,19(1):148-162.
    Betz C, McCollum T G and Mayer R T. Differential expression of two cinnamate4-hydroxylase genesinValencia'orange (Citrus sinensis Osbeck)[J]. Plant Molecular Biology.2001,46(6):741-748.
    Biemelt S, Tschiersch H and Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation,lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J]. Plant physiology.2004,135(1):254-265.
    Bihua C. Cloning and Sequence Analysis of Cinnamoyl-CoA Reductase Gene (CCR) of Pinus massoniana[J].Scientia Silvae Sinicae.2009,45(12):46-53.
    Blankenship S and Unrath R. PAL and ethylene content during maturation of red and golden delicious apples[J].Phytochemistry.1988,27(4):1001-1002.
    Blount J W, Korth K L, Masoud S A, et al. Altering expression of cinnamic acid4-hydroxylase in transgenicplants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway[J]. Plantphysiology.2000,122(1):107-116.
    Boerjan W, Ralph J and Baucher M. Lignin biosynthesis[J]. Annual review of plant biology.2003,54(1):519-546.
    Bongue-Bartelsman M, O'Neill S D, Yusen T, et al. Characterization of the gene encoding dihydroflavonol4-reductase in tomato[J]. Gene.1994,138(1-2):153-157.
    Boudet A M and Grima-Pettenati J. Lignin genetic engineering[J]. Molecular breeding.1996,2(1):25-39.
    Bovy A, De Vos R, Kemper M, et al. High-flavonol tomatoes resulting from the heterologous expression of themaize transcription factor genes LC and C1[J]. The Plant Cell Online.2002,14(10):2509.
    Brandalise M, Severino F E, Maluf M P, et al. The promoter of a gene encoding an isoflavone reductase-likeprotein in coffee (Coffea arabica) drives a stress-responsive expression in leaves[J]. Plant cell reports.2009,28(11):1699-1708.
    Brill E M, Abrahams S, Hayes C M, et al. Molecular characterisation and expression of a wound-induciblecDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.)[J].Plant molecular biology.1999,41(2):279-291.
    Brinkman J and Boerner R. Nitrogen fertilization effects on foliar nutrient dynamics and autumnal resorption inmaidenhair tree (Gingko biloba L.)[J]. Journal of Plant Nutrition.1994,17(2):433-443.
    Bugos R C, Chiang V L C and Campbell W H. cDNA cloning, sequence analysis and seasonal expression oflignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen[J]. Plant MolecularBiology.1991,17(6):1203-1215.
    Bugos R C, Chiang V L C and Campbell W H. Characterization of bispecific caffeic acid/5-hydroxyferulic acidO-methyltransferase from aspen[J]. Phytochemistry.1992,31(5):1495-1498.
    Campbell M M and Sederoff R R. Variation in Lignin Content and Composition (Mechanisms of Control andImplications for the Genetic Improvement of Plants)[J]. Plant physiology.1996,110(1):3.
    Casler M and Vogel K. Accomplishments and impact from breeding for increased forage nutritional value[J].Crop Science.1999,39(1):12-20.
    Chabannes M, Barakate A, Lapierre C, et al. Strong decrease in lignin content without significant alteration ofplant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) andcinnamyl alcohol dehydrogenase (CAD) in tobacco plants[J]. The Plant Journal.2001,28(3):257-270.
    Cheng H, Li L, Cheng S, et al. Molecular cloning and function assay of a chalcone isomerase gene (GbCHI)from Ginkgo biloba[J]. Plant cell reports.2011,30(1):49-62.
    Cheng S, Wang Y, Li J, et al. Study on the relationship between the endogenous hormones and flavonoids[J].Scientia Silvae Sinicae.2004,40(6):45-49.
    Cheng S Y, Xu F and Wang Y. Advances in the study of flavonoids in Ginkgo biloba leaves[J]. J. Med. PlantsRes.2009,3(13):1248-1252.
    Chiang V and Funaoka M. The difference between guaiacyl and guaiacyl-syringyl lignins in their responses tokraft delignification[J]. Holzforschung.1990,44(4):309-313.
    Christendat D, Saridakis V C and Turnbull J L. Use of site-directed mutagenesis to identify residues specific foreach reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli[J].Biochemistry.1998,37(45):15703-15712.
    Colliver S, Bovy A, Collins G, et al. Improving the nutritional content of tomatoes through reprogrammingtheir flavonoid biosynthetic pathway[J]. Phytochemistry Reviews.2002,1(1):113-123.
    Cook N and Samman S. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources[J].The Journal of nutritional biochemistry.1996,7(2):66-76.
    Cosio E and McClure J. Kaempferol glycosides and enzymes of flavonol biosynthesis in leaves of a soybeanstrain with low photosynthetic rates[J]. Plant Physiology.1984,74(4):877.
    Cramer C L, Edwards K, Dron M, et al. Phenylalanine ammonia-lyase gene organization and structure[J]. PlantMolecular Biology.1989,12(4):367-383.
    Damiani I, Morreel K, Danoun S, et al. Metabolite profiling reveals a role for atypical cinnamyl alcoholdehydrogenase CAD1in the synthesis of coniferyl alcohol in tobacco xylem[J]. Plant molecular biology.2005,59(5):753-769.
    Dean J F D. Synthesis of lignin in transgenic and mutant plants[J]. Biopolymers Online.2005,1-24.
    Dinkova-Kostova A T, Gang D R, Davin L B, et al.(+)-Pinoresinol/(+)-Lariciresinol Reductase from Forsythiaintermedia[J]. Journal of Biological Chemistry.1996,271(46):29473-29482.
    Dixon R. Isoflavonoids: biochemistry, molecular biology, and biological functions[J]. Comprehensive naturalproducts chemistry.1999,1(773-823.
    Dixon R. Natural products and disease resistance[J]. Nature.2001,411(843-847.
    Dixon R and Paiva N. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell.1995,7(7):1085.
    Dixon R A and Steele C L. Flavonoids and isoflavonoids-a gold mine for metabolic engineering[J]. Trends inplant science.1999,4(10):394-400.
    DONALDSON L, HAGUE J and SNELL R. Lignin distribution in coppice poplar, linseed and wheat straw[J].Holzforschung.2001,55(4):379-385.
    Dooner H, Robbins T and Jorgensen R. Genetic and developmental control of anthocyanin biosynthesis[J].Annual Review of Genetics.1991,25(1):173-199.
    Doorsselaere J, Baucher M, Chognot E, et al. A novel lignin in poplar trees with a reduced caffeicacid/5-hydroxyferulic acid O-methyltransferase activity[J]. The Plant Journal.1995,8(6):855-864.
    Durner J, Shah J and Klessig D. Salicylic acid and disease resistance in plants[J]. Trends in Plant Science.1997,2(7):266-274.
    El-Kereamy A, Chervin C, Roustan J, et al. Exogenous ethylene stimulates the long-term expression of genesrelated to anthocyanin biosynthesis in grape berries[J]. Physiologia Plantarum.2003,119(2):175-182.
    Eriksson M E, Israelsson M, Olsson O, et al. Increased gibberellin biosynthesis in transgenic trees promotesgrowth, biomass production and xylem fiber length[J]. Nature biotechnology.2000,18(7):784-788.
    Escamilla-Trevi o L, Shen H, Uppalapati S, et al. Switchgrass (Panicum virgatum) possesses a divergent familyof cinnamoyl CoA reductases with distinct biochemical properties[J]. New Phytologist.2010,185(1):143-155.
    Eulgem T, Rushton P J, Schmelzer E, et al. Early nuclear events in plant defence signalling: rapid geneactivation by WRKY transcription factors[J]. The EMBO Journal.1999,18(17):4689-4699.
    Fan L, Shi W J, Hu W R, et al. Molecular and Biochemical Evidence for Phenylpropanoid Synthesis andPresence of Wall-linked Phenolics in Cotton Fibers[J]. Journal of integrative plant biology.2009,51(7):626-637.
    Ferrer J L, Austin M, Stewart Jr C, et al. Structure and function of enzymes involved in the biosynthesis ofphenylpropanoids[J]. Plant Physiology and Biochemistry.2008,46(3):356-370.
    Filichkin S A, Leonard J M, Monteros A, et al. A novel endo-β-mannanase gene in tomato LeMAN5isassociated with anther and pollen development[J]. Plant physiology.2004,134(3):1080.
    Fischer T C, Halbwirth H, Meisel B, et al. Molecular cloning, substrate specificity of the functionally expresseddihydroflavonol4-reductases from Malus domestica and Pyrus communis cultivars and the consequencesfor flavonoid metabolism[J]. Archives of biochemistry and biophysics.2003,412(2):223-230.
    Fofana B, McNally D J, Labbé C, et al. Milsana-induced resistance in powdery mildew-infected cucumberplants correlates with the induction of chalcone synthase and chalcone isomerase[J]. Physiological andmolecular plant pathology.2002,61(2):121-132.
    Folter S and Angenent G C. trans meets cis in MADS science[J]. Trends in plant science.2006,11(5):224-231.
    Franke R, Humphreys J M, Hemm M R, et al. The Arabidopsis REF8gene encodes the3-hydroxylase ofphenylpropanoid metabolism[J]. The Plant Journal.2002,30(1):33-45.
    Franke R, McMichael C M, Meyer K, et al. Modified lignin in tobacco and poplar plants over-expressing theArabidopsis gene encoding ferulate5-hydroxylase[J]. The Plant Journal.2000,22(3):223-234.
    Freudenberg K. Biosynthesis and constitution of lignin[J]. Nature.1959,183(4669):1152-1155.
    Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulation in response to osmotic stress inplants[J]. Journal of plant research.2011,1-17.
    Fukasawa-Akada T, Kung S and Watson J C. Phenylalanine ammonia-lyase gene structure, expression, andevolution in Nicotiana[J]. Plant Molecular Biology.1996,30(4):711-722.
    Fusada N, Masuda T, Kuroda H, et al. Identification of a novel cis-element exhibiting cytokinin-dependentprotein binding in vitro in the5’-region of NADPH-protochlorophyllide oxidoreductase gene incucumber[J]. Plant molecular biology.2005,59(4):631-645.
    Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquiredresistance[J]. Science.1993,261(5122):754-756.
    Gallego-Giraldo L, Escamilla-Trevino L, Jackson L A, et al. Salicylic acid mediates the reduced growth oflignin down-regulated plants[J]. Proceedings of the National Academy of Sciences.2011,108(51):20814-20819.
    Gang D R, Dinkova-Kostova A T, Davin L B, et al.(1997) Phylogenetic links in plant defense systems: lignans,isoflavonoids, and their reductases. ACS Publications, pp58-89
    Gang D R, Kasahara H, Xia Z Q, et al. Evolution of plant defense mechanisms: relationships ofphenylcoumaran benzylic ether reductases to pinoresinollariciresinol and isoflavone reductases[J]. Journalof Biological Chemistry.1999,274(11):7516-7527.
    Goda H, Sawa S, Asami T, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulatedgenes in Arabidopsis[J]. Plant physiology.2004,134(4):1555-1573.
    Goffner D, Campbell M, Campargue C, et al. Purification and characterization of cinnamoyl-coenzyme A:NADP oxidoreductase in Eucalyptus gunnii[J]. Plant physiology.1994,106(2):625-637.
    Goffner D, Joffroy I, Grima-Pettenati J, et al. Purification and characterization of isoforms of cinnamyl alcoholdehydrogenase from Eucalyptus xylem[J]. Planta.1992,188(1):48-53.
    Goffner D, Van Doorsselaere J, Yahiaoui N, et al. A novel aromatic alcohol dehydrogenase in higher plants:molecular cloning and expression[J]. Plant Molecular Biology.1998,36(5):755-765.
    Grima-Pettenati J, Feuillet C, Goffner D, et al. Molecular cloning and expression of a Eucalyptus gunnii cDNAclone encoding cinnamyl alcohol dehydrogenase[J]. Plant Molecular Biology.1993,21(6):1085-1095.
    Grima-Pettenati J and Goffner D. Lignin genetic engineering revisited[J]. Plant Science.1999,145(2):51-65.
    Guo J and Wang M-H. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression intomato (Solanum lycopersicum L.)[J]. Plant Growth Regulation.2010,62(1):1-8.
    Halpin C, Knight M E, Foxon G A, et al. Manipulation of lignin quality by downregulation of cinnamyl alcoholdehydrogenase[J]. The Plant Journal.1994,6(3):339-350.
    Hano C, Martin I, Fliniaux O, et al. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinoldiglucoside accumulation in developing flax (Linum usitatissimum) seeds[J]. Planta.2006,224(6):1291-1301.
    Harborne J and Williams C. Anthocyanins and other flavonoids[J]. Natural product reports.2001,18(3):310-333.
    Hartmann U, Sagasser M, Mehrtens F, et al. Differential combinatorial interactions of cis-acting elementsrecognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specificactivation of phenylpropanoid biosynthesis genes[J]. Plant Molecular Biology.2005,57(2):155-171.
    Hasler A, Gross G A, Meier B, et al. Complex flavonol glycosides from the leaves of Ginkgo biloba[J].Phytochemistry.1992,31(4):1391.
    Hawkins S, Samaj J, Lauvergeat V, et al. Cinnamyl alcohol dehydrogenase: identification of new sites ofpromoter activity in transgenic poplar[J]. Plant physiology.1997,113(2):321-325.
    Hayat S, Ali B and Ahmad A. Salicylic acid: biosynthesis, metabolism and physiological role in plants[M].2007:1-14.
    Hiratsuka S, Onodera H, Kawai Y, et al. ABA and sugar effects on anthocyanin formation in grape berrycultured in vitro [J]. Scientia Horticulturae.2001,90(1-2):121-130.
    Holton T A and Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis[J]. The Plant Cell.1995a,7(7):1071-1083.
    Hotta Y, Tanaka T, Takaoka H, et al. Promotive effects of5-aminolevulinic acid on the yield of several crops[J].Plant Growth Regulation.1997,22(2):109-114.
    Hu W, Harding S, Lung J, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growthin transgenic trees[J]. Nature Biotechnology.1999,17(8):808.
    Hu Y, Di P, Chen J, et al. Isolation and characterization of a gene encoding cinnamoyl-CoA reductase fromIsatis indigotica Fort[J]. Molecular Biology Reports.2010,11(3):1-9.
    Huang Y, Gou J, Jia Z, et al. Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa[J]. PloS one.2012,7(2): e30364.
    Huits H S M, Gerats A G M, Kreike M M, et al. Genetic control of dihydroflavonol4-reductase geneexpression in Petunia hybrida[J]. The Plant Journal.1994,6(3):295-310.
    Iiyama K and Wallis A F A. Determination of lignin in herbaceous plants by an improved acetyl bromideprocedure[J]. Journal of the Science of Food and Agriculture.1990,51(2):145-161.
    Inagaki Y, Hisatomi Y and Iida S. Somatic mutations caused by excision of the transposable element, Tpn1,from the DFR gene for pigmentation in sub-epidermal layer of periclinally chimeric flowers of Japanesemorning glory and their germinal transmission to their progeny[J]. TAG Theoretical and Applied Genetics.1996,92(5):499-504.
    Inagaki Y, Johzuka-Hisatomi Y, Mori T, et al. Genomic organization of the genes encoding dihydroflavonol4-reductase for flower pigmentation in the Japanese and common morning glories[J]. Gene.1999,226(2):181-188.
    Inoue K, Parvathi K and Dixon R A. Substrate preferences of caffeic acid/5-hydroxyferulic acid3/5-O-methyltransferases in developing stems of alfalfa (Medicago sativa L.)[J]. Archives ofBiochemistry and Biophysics.2000,375(1):175-182.
    Ithal N, Recknor J, Nettleton D, et al. Developmental transcript profiling of cyst nematode feeding cells insoybean roots[J]. Molecular plant-microbe interactions.2007,20(5):510-525.
    Itzhaki H, Maxson J M and Woodson W R. An ethylene-responsive enhancer element is involved in thesenescence-related expression of the carnation glutathione-S-transferase (GST1) gene[J]. PNAS.1994,91(19):8925-8929.
    Jaakola L and Hohtola A. Effect of latitude on flavonoid biosynthesis in plants[J]. Plant, cell&environment.2010,33(8):1239-1247.
    Jansson S, Meyer-Gauen G, Cerff R, et al. Nucleotide distribution in gymnosperm nuclear sequences suggests amodel for GC-content change in land-plant nuclear genomes[J]. Journal of molecular evolution.1994,39(1):34-46.
    Jiang Y and Deyholos M K. Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola(Brassica napus L.)[J]. Plant cell reports.2010,29(4):327-342.
    Johnson E T, Ryu S, Yi H, et al. Alteration of a single amino acid changes the substrate specificity ofdihydroflavonol4-reductase[J]. The Plant Journal.2001,25(3):325-333.
    Johnson E T, Yi H, Shin B, et al. Cymbidium hybrida dihydroflavonol4-reductase does not efficiently reducedihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. The Plant Journal.1999,19(1):81-85.
    Jones L, Ennos A and Turner S. Cloning and characterization of irregular xylem4(irx4): a severelylignin-deficient mutant of Arabidopsis[J]. The Plant Journal.2001,26(2):205-216.
    Ju Z, Liu C and Yuan Y. Activities of chalcone synthase and UDPGal: flavonoid-3-o-glycosyltransferase inrelation to anthocyanin synthesis in apple[J]. Scientia Horticulturae.1995,63(3-4):175-185.
    Kajita S, Hishiyama S, Tomimura Y, et al. Structural characterization of modified lignin in transgenic tobaccoplants in which the activity of4-coumarate: coenzyme A ligase is depressed[J]. Plant physiology.1997,114(3):871-879.
    Karamloo F, Schmitz N, Scheurer S, et al. Molecular cloning and characterization of a birch pollen minorallergen, Bet v5, belonging to a family of isoflavone reductase–related proteins[J]. Journal of allergy andclinical immunology.1999,104(5):991-999.
    Kawasaki T, Koita H, Nakatsubo T, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is aneffector of small GTPase Rac in defense signaling in rice[J]. Proceedings of the National Academy ofSciences of the United States of America.2006,103(1):230-235.
    Kim K H and Petersen M. Cloning and functional expression of hydroxyphenylpyruvate dioxygenase fromColeus blumei[J]. Phytochemistry.1997,45(1165-1172.
    Kim S, Yoo K S and Pike L M. Development of a PCR-based marker utilizing a deletion mutation in thedihydroflavonol4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellowonions (Allium cepa)[J]. TAG Theoretical and Applied Genetics.2005,110(3):588-595.
    Kim S J, Kim K W, Cho M H, et al. Expression of cinnamyl alcohol dehydrogenases and their putativehomologues during Arabidopsis thaliana growth and development: Lessons for database annotations?[J].Phytochemistry.2007,68(14):1957-1974.
    Kim S J, Kim M R, Bedgar D L, et al. Functional reclassification of the putative cinnamyl alcoholdehydrogenase multigene family in Arabidopsis[J]. Proceedings of the National Academy of Sciences ofthe United States of America.2004,101(6):1455.
    Kim S T, Cho K S, Kim S G, et al. A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungalelicitor[J]. Molecules and cells.2003a,16(2):224-231.
    Kim S T, Cho K S, Yu S, et al. Proteomic analysis of differentially expressed proteins induced by rice blastfungus and elicitor in suspension-cultured rice cells[J]. Proteomics.2003b,3(12):2368-2378.
    Kim Y H, Bae J M and Huh G H. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene fromsweetpotato in response to plant developmental stage and environmental stress[J]. Plant cell reports.2010,29(7):779-791.
    Kirk T K and Obst J R. Lignin determination[J]. Methods in enzymology.1988,161(5):87-101.
    Klink V, Hosseini P, Matsye P, et al. A gene expression analysis of syncytia laser microdissected from the rootsof the Glycine max (soybean) genotype PI548402(Peking) undergoing a resistant reaction after infectionby Heterodera glycines (soybean cyst nematode)[J]. Plant molecular biology.2009,71(6):525-567.
    Knight M, Halpin C and Schuch W. Identification and characterisation of cDNA clones encoding cinnamylalcohol dehydrogenase from tobacco[J]. Plant molecular biology.1992,19(5):793-801.
    Koch G L E, Shaw D C and Gibson F. Tyrosine biosynthesis in Aerobacter aerogenes: purification andproperties of chorismate mutase-prephenate dehydrogenase[J]. Biochimica et Biophysica Acta(BBA)-Enzymology.1970,212(3):375-386.
    Koes R, Quattrocchio F and Mol J. The flavonoid biosynthetic pathway in plants: function and evolution[J].BioEssays.1994,16(2):123-132.
    Kush A, Goyvaerts E, Chye M L, et al. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree)[J].Proceedings of the National Academy of Sciences.1990,87(5):1787.
    Lüderitz T and Grisebach H. Enzymic synthesis of lignin precursors comparison of cinnamoyl-CoA reductaseand cinnamyl alcohol: NADP+dehydrogenase from spruce (Picea abies L.) and soybean (Glycine maxL.)[J]. European Journal of Biochemistry.1981,119(1):115-124.
    Lütcke H, Chow K, Mickel F, et al. Selection of AUG initiation codons differs in plants and animals[J]. TheEMBO Journal.1987,6(1):43-49.
    Lacombe E, Hawkins S, Doorsselaere J, et al. Cinnamoyl CoA reductase, the first committed enzyme of thelignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships[J]. The PlantJournal.1997,11(3):429-441.
    Lacombe E, Van Doorsselaere J, Boerjan W, et al. Characterization of cis-elements required for vascularexpression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation[J]. The PlantJournal.2000,23(5):663-676.
    Lam E and Chua N. ASF-2: a factor that binds to the cauliflower mosaic virus35S promoter and a conservedGATA motif in Cab promoters[J]. The Plant Cell Online.1989,1(12):1147-1156.
    Lao M, Arencibia A D, Carmona E R, et al. Differential expression analysis by cDNA-AFLP of Saccharum spp.after inoculation with the host pathogen Sporisorium scitamineum[J]. Plant cell reports.2008,27(6):1103-1111.
    Lapierre C, Pollet B, Petit-Conil M, et al. Structural alterations of lignins in transgenic poplars with depressedcinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact onthe efficiency of industrial kraft pulping[J]. Plant physiology.1999,119(1):153-164.
    Larsen K. Cloning and characterization of a ryegrass (Lolium perenne) gene encoding cinnamoyl-CoAreductase (CCR)[J]. Plant Science.2004a,166(3):569-581.
    Larsen K. Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) frombarley (Hordeum vulgare) and potato (Solanum tuberosum)[J]. Journal of Plant Physiology.2004b,161(1):105-112.
    Laskar D D, Jourdes M, Patten A M, et al. The Arabidopsis cinnamoyl CoA reductase irx4mutant has a delayedbut coherent (normal) program of lignification[J]. The Plant Journal.2006,48(5):674-686.
    Laurain D, Chénieux J and Trémouillaux-Guiller J. Direct embryogenesis from female haploid protoplasts ofGinkgo biloba L., a medicinal woody species[J]. Plant cell reports.1993,12(11):656-660.
    Lauvergeat V, Lacomme C, Lacombe E, et al. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsisthaliana are differentially expressed during development and in response to infection with pathogenicbacteria[J]. Phytochemistry.2001,57(7):1187-1195.
    Lee D, Meyer K, Chapple C, et al. Antisense suppression of4-coumarate: coenzyme A ligase activity inArabidopsis leads to altered lignin subunit composition[J]. The Plant Cell Online.1997,9(11):1985-1998.
    Lers A, Burd S, Lomaniec E, et al. The expression of a grapefruit gene encoding an isoflavone reductase-likeprotein is induced in response to UV irradiation[J]. Plant molecular biology.1998,36(6):847-856.
    Lewis N and Davin L. Evolution of lignan and neolignan biochemical pathways.1994, ACS Publications, pp202-202
    Lewis N G and Yamamoto E. Lignin: occurrence, biogenesis and biodegradation[J]. Annual review of plantbiology.1990,41(1):455-496.
    Li H, Qiu J, Chen F, et al. Molecular characterization and expression analysis of dihydroflavonol4-reductase(DFR) gene in Saussurea medusa[J]. Molecular biology reports.2012,1-9.
    Li L, Cheng X, Lu S, et al. Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignolbiosynthesis of aspen[J]. Plant and Cell Physiology.2005,46(7):1073-1082.
    Li L, Cheng X F, Leshkevich J, et al. The last step of syringyl monolignol biosynthesis in angiosperms isregulated by a novel gene encoding sinapyl alcohol dehydrogenase[J]. The Plant Cell Online.2001,13(7):1567-1586.
    Li L, Zhou Y, Cheng X, et al. Combinatorial modification of multiple lignin traits in trees through multigenecotransformation[J]. Proceedings of the National Academy of Sciences.2003,100(8):4939.
    Li X, Bonawitz N, Weng J, et al. The growth reduction associated with repressed lignin biosynthesis inArabidopsis thaliana is independent of flavonoids[J]. The Plant Cell Online.2010,22(5):1620-1632.
    Li X, Yang Y, Yao J, et al. FLEXIBLE CULM1encoding a cinnamyl-alcohol dehydrogenase controls culmmechanical strength in rice[J]. Plant molecular biology.2009,69(6):685-697.
    Liew C F, Loh C S, Goh C J, et al. The isolation, molecular characterization and expression of dihydroflavonol4-reductase cDNA in the orchid (Bromheadia finlaysoniana)[J]. Plant Science.1998,135(2):161-169.
    Liu X, Deng Z, Gao S, et al. A new gene coding for p-coumarate3-hydroxylase from Ginkgo biloba[J].Russian journal of plant physiology.2008,55(1):82-92.
    Lo S and Nicholson R. Reduction of light-induced anthocyanin accumulation in inoculated sorghummesocotyls. Implications for a compensatory role in the defense response[J]. Plant Physiology.1998,116(3):979.
    Lorenz W W and Dean J F D. SAGE profiling and demonstration of differential gene expression along the axialdevelopmental gradient of lignifying xylem in loblolly pine (Pinus taeda)[J]. Tree Physiology.2002,22(5):301-310.
    Lu X P, Liu Y Z, An J C, et al. Isolation of a cinnamoyl CoA reductase gene involved in formation of stonecells in pear (Pyrus pyrifolia)[J]. Acta Physiologiae Plantarum.2011,33(2):585-591.
    Lynch D, Lidgett A, McInnes R, et al. Isolation and characterisation of three cinnamyl alcohol dehydrogenasehomologue cDNAs from perennial ryegrass (Lolium perenne L.)[J]. Journal of plant physiology.2002,159(6):653-660.
    Ma Q H. Characterization of a cinnamoyl-coA reductase that is associated with stem development in wheat[J].Journal of Experimental Botany.2007,58(8):2011-2021.
    Ma Q H. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat[J].Journal of experimental botany.2010,61(10):2735-2744.
    MacKay J J, O’Malley D M, Presnell T, et al. Inheritance, gene expression, and lignin characterization in amutant pine deficient in cinnamyl alcohol dehydrogenase[J]. Proceedings of the National Academy ofSciences.1997,94(15):8255.
    Mandrou E, Hein P R G, Villar E, et al. A candidate gene for lignin composition in Eucalyptus: Cinnamoyl-CoAReductase (CCR)[J]. Tree Genetics&Genomes.2011,8(2):1-12.
    Mansell R, Gross G, Stockigt J, et al. Purification and properties of cinnamyl alcohol dehydrogenase fromhigher plants involved in lignin biosynthesis[J]. Phytochemistry.1974,13(11):2427-2435.
    Martens S, Teeri T and Forkmann G. Heterologous expression of dihydroflavonol4-reductases from variousplants[J]. FEBS letters.2002,531(3):453-458.
    McInnes R, Lidgett A, Lynch D, et al. Isolation and characterization of a cinnamoyl-CoA reductase gene fromperennial ryegrass (Lolium perenne)[J]. Journal of Plant Physiology.2002,159(4):415-422.
    McKinnon G, Potts B, Steane D, et al. Population and phylogenetic analysis of the cinnamoyl coA reductasegene in Eucalyptus globulus (Myrtaceae)[J]. Australian Journal of Botany.2005,53(8):827-838.
    Meer I, Stuitje A, Mol J, et al. Regulation of general phenylpropanoid and flavonoid gene expression[M].1993:125-155.
    Mehrtens F, Kranz H, Bednarek P, et al. The Arabidopsis transcription factor MYB12is a flavonol-specificregulator of phenylpropanoid biosynthesis[J]. Plant physiology.2005,138(2):1083-1096.
    Meyer P, Heidmann I, Forkmann G, et al. A new petunia flower colour generated by transformation of a mutantwith a maize gene[J]. Nature.1987,330(6149):677-678.
    Min T, Kasahara H, Bedgar D L, et al. Crystal structures of pinoresinol-lariciresinol and phenylcoumaranbenzylic ether reductases and their relationship to isoflavone reductases[J]. Journal of BiologicalChemistry.2003,278(50):50714-50723.
    Mita S, Nagai Y and Asai T. Isolation of cDNA clones corresponding to genes differentially expressed inpericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals[J]. PhysiologiaPlantarum.2006,128(3):531-545.
    Mohr P G and Cahill D M. Suppression by ABA of salicylic acid and lignin accumulation and the expression ofmultiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato[J]. Functional&integrative genomics.2007,7(3):181-191.
    Montgomery J, Goldman S, Deikman J, et al. Identification of an ethylene-responsive region in the promoter ofa fruit ripening gene[J]. PNAS.1993,90(13):5939-5943.
    Morreel K, Goeminne G, Storme V, et al. Genetical metabolomics of flavonoid biosynthesis in Populus: a casestudy[J]. The Plant Journal.2006,47(2):224-237.
    Muir S, Collins G, Robinson S, et al. Overexpression of petunia chalcone isomerase in tomato results in fruitcontaining increased levels of flavonols[J]. Nature biotechnology.2001,19(5):470-474.
    Murray J R and Hackett W P. Dihydroflavonol reductase activity in relation to differential anthocyaninaccumulation in juvenile and mature phase Hedera helix L[J]. Plant physiology.1991,97(1):343.
    Nakatsuka A, Izumi Y and Yamagishi M. Spatial and temporal expression of chalcone synthase anddihydroflavonol4-reductase genes in the Asiatic hybrid lily[J]. Plant Science.2003,165(4):759-767.
    Nishihara E, Kondo K, Parvez M M, et al. Role of5-aminolevulinic acid (ALA) on active oxygen-scavengingsystem in NaCl-treated spinach (Spinacia oleracea)[J]. Journal of plant physiology.2003,160(9):1085-1091.
    Nishihara E, Takahashi K, Nakata N, et al. Effect of5-aminolevulinic acid (ALA) on photosynthetic rate,hydrogen peroxide content, antioxidant level and active oxygen-scavenging enzymes in spinach (Spinaciaoleracea L.)[J]. Journal of the Japanese Society for Horticultural Science.2001,70(3):346-352.
    Nishiuchi T, Shinshi H and Suzuki K. Rapid and Transient Activation of Transcription of the ERF3Gene byWounding in Tobacco Leaves possible involvement of ntWRKYs and autorepression[J]. Journal ofBiological Chemistry.2004,279(53):55355-55361.
    O'Malley D M, Porter S and Sederoff R R. Purification, characterization, and cloning of cinnamyl alcoholdehydrogenase in loblolly pine (Pinus taeda L.)[J]. Plant physiology.1992,98(4):1364.
    Oppermann U, Filling C, Hult M, et al. Short-chain dehydrogenases/reductases (SDR): the2002update[J].Chemico-biological interactions.2003,143(44):247-253.
    Ostergaard L, Lauvergeat V, Naested H, et al. Two differentially regulated Arabidopsis genes define a newbranch of the DFR superfamily[J]. Plant Science.2001,160(3):463-472.
    Pallas J A, Paiva N L, Lamb C, et al. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyaseexpression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus[J].The Plant Journal.1996,10(2):281-293.
    Pang Y, Shen G, Wu W, et al. Characterization and expression of chalcone synthase gene from Ginkgo biloba[J].Plant Science.2005,168(6):1525-1531.
    Pang Y, Shen G A, Liu C, et al. Molecular Cloning and Sequence Analysis of a Novel Chalcone SynthasecDNA from Ginkgo biloba[J]. Mitochondrial DNA.2004,15(4):283-290.
    Park H C, Kim M L, Kang Y H, et al. Pathogen-and NaCl-induced expression of the SCaM-4promoter ismediated in part by a GT-1box that interacts with a GT-1-like transcription factor[J]. Plant physiology.2004,135(4):2150-2161.
    Peters D J and Constabel C P. Molecular analysis of herbivore-induced condensed tannin synthesis: cloning andexpression of dihydroflavonol reductase from trembling aspen (Populus tremuloides)[J]. The Plant Journal.2002,32(5):701-712.
    petersen M and Simmonds M S J. Molecules of interest: rosmarinic acid[J]. Phytochemistry.2003,62(2):121-125.
    Petrucco S, Bolchi A, Foroni C, et al. A maize gene encoding an NADPH binding enzyme highly homologousto isoflavone reductases is activated in response to sulfur starvation[J]. The Plant Cell Online.1996,8(1):69-80.
    Pichon M, Courbou I, Beckert M, et al. Cloning and characterization of two maize cDNAs encodingCinnamoyl-CoA Reductase (CCR) and differential expression of the corresponding genes[J]. Plantmolecular biology.1998,38(4):671-676.
    Piechulla B, Merforth N and Rudolph B. Identification of tomato Lhc promoter regions necessary for circadianexpression[J]. Plant Molecular Biology.1998,38(4):655-662.
    Piquemal J, Lapierre C, Myton K, et al. Down-regulation of Cinnamoyl-CoA Reductase induces significantchanges of lignin profiles in transgenic tobacco plants[J]. The Plant Journal.1998,13(1):71-83.
    Pla J, Ville A and Pacheco H. Biogenesis of plant pigments.1. Comparative study of the incorporation of1,2-14C shikimic and3-14C trans-cinnamic acids in two anthocyanic pigment derivatives of delphinidine andcyanidine[J]. Bull Soc Chim Biol.1967,49(4):395-413.
    Polashock J J, Griesbach R J, Sullivan R F, et al. Cloning of a cDNA encoding the cranberrydihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco[J]. Plant Science.2002,163(2):241-251.
    Prasad N K, Vindal V, Kumar V, et al. Structural and docking studies of Leucaena leucocephala CinnamoylCoA reductase[J]. Journal of Molecular Modeling.2011,17(3):533-541.
    Rahantamalala A, Rech P, Martinez Y, et al. Coordinated transcriptional regulation of two key genes in thelignin branch pathway-CAD and CCR-is mediated through MYB-binding sites[J]. BMC plant biology.2010,10(1):130.
    Ralph J, Akiyama T, Kim H, et al. Effects of coumarate3-hydroxylase down-regulation on lignin structure[J].Journal of Biological Chemistry.2006,281(13):8843-8853.
    Ralph J, Lundquist K, Brunow G, et al. Lignins: natural polymers from oxidative coupling of4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews.2004,3(1):29-60.
    Raven J. The evolution of vascular land plants in relation to supracellular transport processes[J]. Advances inbotanical research.1977,125(5)153-219.
    Rawat R, Xu Z-F, Yao K-M, et al. Identification of cis-elements for ethylene and circadian regulation of theSolanum melongena gene encoding cysteine proteinase[J]. Plant Mol Biol.2005,57(5):629-643.
    Reyes J C, Muro-Pastor M I and Florencio F J. The GATA family of transcription factors in Arabidopsis andrice[J]. Plant physiology.2004,134(4):1718-1732.
    Rosler J, Krekel F, Amrhein N, et al. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyaseactivity[J]. Plant physiology.1997,113(1):175-179.
    Saballos A, Ejeta G, Sanchez E, et al. A genomewide analysis of the cinnamyl alcohol dehydrogenase family insorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2as the Brown midrib6gene[J]. Genetics.2009,181(2):783-795.
    Sambrook J and Russell D W. Molecular cloning: a laboratory manual[M]. CSHL press,2001.
    Sarni F, Grand C and Boudet A. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcoholdehydrogenase from poplar stems (Populus X euramericana)[J]. European Journal of Biochemistry.1984,139(2):259-265.
    Saure M C. External control of anthocyanin formation in apple[J]. Scientia Horticulturae.1990,42(3):181-218.
    Schijlen E, Ric de Vos C, van Tunen A, et al. Modification of flavonoid biosynthesis in crop plants[J].Phytochemistry.2004,65(19):2631-2648.
    Schoch G, Goepfert S, Morant M, et al. CYP98A3from Arabidopsis thaliana is a3′-hydroxylase of phenolicesters, a missing link in the phenylpropanoid pathway[J]. Journal of Biological Chemistry.2001,276(39):36566-36574.
    Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J].Nucleic Acids Research.2003,31(13):3381-3385.
    Sederoff R R, MacKay J J, Ralph J, et al. Unexpected variation in lignin[J]. Current opinion in plant biology.1999,2(2):145-152.
    Selman-Housein G, López M, Hernández D, et al. Molecular cloning of cDNAs coding for three sugarcaneenzymes involved in lignification[J]. Plant Science.1999,143(2):163-172.
    Sewalt V J H, Ni W, Blount J W, et al. Reduced lignin content and altered lignin composition in transgenictobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate4-hydroxylase[J].Plant physiology.1997,115(1):41-50.
    Shan L L, Li X, Wang P, et al. Characterization of cDNAs associated with lignification and their expressionprofiles in loquat fruit with different lignin accumulation[J]. Planta.2008,227(6):1243-1254.
    Shen G, Pang Y, Wu W, et al. Cloning and characterization of a flavanone3-hydroxylase gene from Ginkgobiloba[J]. Bioscience reports.2006a,26(1):19-29.
    Shen G, Pang Y, Wu W, et al. Isolation and characterization of a putative anthocyanidin reductase gene fromGinkgo biloba[J]. Journal of plant physiology.2006b,163(2):224-227.
    Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor[J]. Nature.2006c,443(7113):823-826.
    Shimada N, Sasaki R, Sato S, et al. A comprehensive analysis of six dihydroflavonol4-reductases encoded by agene cluster of the Lotus japonicus genome[J]. Journal of experimental botany.2005,56(419):2573-2585.
    Shoji T, Winz R, Iwase T, et al. Expression patterns of two tobacco isoflavone reductase-like genes and theirpossible roles in secondary metabolism in tobacco[J]. Plant molecular biology.2002,50(3):427-440.
    Sibout R, Eudes A, Pollet B, et al. Expression pattern of two paralogs encoding cinnamyl alcoholdehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants[J]. Plantphysiology.2003,132(2):848-860.
    Singh K, Kumar S, Yadav S K, et al. Characterization of dihydroflavonol4-reductase cDNA in tea [Camelliasinensis (L.) O. Kuntze][J]. Plant Biotechnology Reports.2009,3(1):95-101.
    Skriver K and Mundy J. Gene expression in response to abscisic acid and osmotic stress[J]. The Plant Cell.1990,2(6):503.
    So H, Chung E, Cho C, et al. Molecular cloning and characterization of soybean cinnamoyl CoA reductaseinduced by abiotic stresses[J]. Plant Pathol. J.2010,26(4):380-385.
    Srivastava S, Gupta R K, Arha M, et al. Expression analysis of cinnamoyl-CoA reductase (CCR) gene indeveloping seedlings of Leucaena leucocephala: A pulp yielding tree species[J]. Plant Physiology andBiochemistry.2011,49(2):138-145.
    St ckigt J and Zenk M. Chemical syntheses and properties of hydroxycinnamoyl-coenzyme A derivatives[J].Zeitschrift fur Naturforschung. Section C: Biosciences.1975,30(3):352.
    Stafford H. Possible multi-enzyme complexes regulating the formation of C6-C3phenolic compounds andlignins in higher plants[J]. Rec. Adv. Phytochem.1974,38(8):53-79.
    Stafford H. Flavonoid evolution: an enzymic approach[J]. Plant Physiology.1991,96(3):680-694.
    Stafford H A and Lester H H. Enzymic and nonenzymic reduction of (+)-dihydroquercetin to its3,4,-diol[J].Plant physiology.1982,70(3):695-713.
    Stafford H A and Lester H H. Flavan-3-ol biosynthesis: The conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of Douglasfir[J]. Plant physiology.1984,76(1):184-198.
    Stenmark S L, Pierson D L, Jensen R A, et al. Blue-green bacteria synthesise L-tyrosine by the pretyrosinepathway[J]. Nature (Lond).1974,247(7):290-292.
    Stewart J J, Akiyama T, Chapple C, et al. The effects on lignin structure of overexpression of ferulate5-hydroxylase in hybrid poplar1[J]. Plant physiology.2009,150(2):621-635.
    Subramaniam R, Reinold S, Molitor E K, et al. Structure, inheritance, and expression of hybrid poplar (Populustrichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes[J]. Plant physiology.1993,102(1):71-83.
    Tahara S and Ibrahim R K. Prenylated isoflavonoids-an update[J]. Phytochemistry.1995,38(5):1073-1094.
    Tamasloukht B, Lam M S J W Q, Martinez Y, et al. Characterization of a cinnamoyl-CoA reductase1(CCR1)mutant in maize: effects on lignification, fibre development, and global gene expression[J]. Journal ofexperimental botany.2011,62(11):3837-3848.
    Tang L K, Chu H, Yip W K, et al. An anther-specific dihydroflavonol4-reductase-like gene (DRL1) is essentialfor male fertility in Arabidopsis[J]. New Phytologist.2009,181(3):576-587.
    Tapia G, Verdugo I, Ya ez M, et al. Involvement of ethylene in stress-induced expression of the TLC1.1retrotransposon from Lycopersicon chilense Dun[J]. Plant physiology.2005,138(4):2075-2086.
    Terzaghi W B and Cashmore A R. Light-regulated transcription[J]. Annual review of plant biology.1995,46(1):445-474.
    Teutsch H G, Hasenfratz M P, Lesot A, et al. Isolation and sequence of a cDNA encoding the Jerusalemartichoke cinnamate4-hydroxylase, a major plant cytochrome P450involved in the generalphenylpropanoid pathway[J]. Proceedings of the National Academy of Sciences.1993,90(9):4102-4107.
    TRONCHET M, BALAGUé C, KROJ T, et al. Cinnamyl alcohol dehydrogenases-C and D, key enzymes inlignin biosynthesis, play an essential role in disease resistance in Arabidopsis[J]. Molecular plantpathology.2010,11(1):83-92.
    Tsai C J, El Kayal W and Harding S A. Populus, the new model system for investigating phenylpropanoidcomplexity[J]. Int J Appl Sci Eng.2006,64(33):221-233.
    Tsai C J, Popko J L, Mielke M R, et al. Suppression of O-methyltransferase gene by homologous sensetransgene in quaking aspen causes red-brown wood phenotypes[J]. Plant physiology.1998,117(1):101-112.
    Tu Y, Rochfort S, Liu Z, et al. Functional Analyses of Caffeic Acid O-Methyltransferase andCinnamoyl-CoA-Reductase Genes from Perennial Ryegrass (Lolium perenne)[J]. The Plant Cell Online.2010,22(10):3357-3369.
    Tulecke W. A Haploid Tissue Culture from the Female Gametophyte of Ginkgo biloba L[J]. Nature.1964,203(13):94-95.
    Turley R. Expression of a phenylcoumaran benzylic ether reductase-like protein in the ovules of Gossypiumhirsutum[J]. Biologia Plantarum.2008,52(4):759-762.
    van Beek T A and Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, andphytopharmaceuticals[J]. Journal of Chromatography A.2009,1216(11):2002-2032.
    Van Der Rest B, Danoun S, Boudet A, et al. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanumlycopersicum L.) induces dramatic changes in soluble phenolic pools[J]. Journal of experimental botany.2006,57(6):1399-1411.
    Van Eldik G, Ruiter R, Colla P, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tubegrowth in pistils of Solanum tuberosum[J]. Plant molecular biology.1997,33(5):923-929.
    Vander Mijnsbrugge K, Beeckman H, De Rycke R, et al. Phenylcoumaran benzylic ether reductase, aprominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifyingcells[J]. Planta.2000,211(4):502-509.
    Vanholme R, Morreel K, Ralph J, et al. Lignin engineering[J]. Current opinion in plant biology.2008,11(3):278-285.
    Vass o D G, Kim S J, Milhollan J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosotebush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol estersinto the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol[J]. Archives ofbiochemistry and biophysics.2007,465(1):209-218.
    Verhoeyen M E, Bovy A, Collins G, et al. Increasing antioxidant levels in tomatoes through modification of theflavonoid biosynthetic pathway[J]. Journal of experimental botany.2002,53(377):2099-2116.
    Von Wettstein D, Gough S and Kannangara C G. Chlorophyll biosynthesis[J]. The Plant Cell.1995,7(7):1039.
    Wang D, Bai H, Chen W, et al. Identifying a Cinnamoyl Coenzyme A Reductase (CCR) Activity with4-Coumaric Acid: Coenzyme A Ligase (4CL) Reaction Products in Populus tomentosa[J]. Journal of PlantBiology.2009,52(5):482-491.
    Wang L J, Jiang W B and Huang B J. Promotion of5-aminolevulinic acid on photosynthesis of melon(Cucumis melo) seedlings under low light and chilling stress conditions[J]. Physiologia plantarum.2004,121(2):258-264.
    Wang X, He X, Lin J, et al. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.)[J].Journal of molecular biology.2006,358(5):1341-1352.
    Weaver L M and Herrmann K M. Dynamics of the shikimate pathway in plants[J]. Trends in plant science.1997,2(9):346-351.
    Wei J, Zhao H, Zhang J, et al. Cloning of cDNA encoding CCoAOMT from Populus tomentosa anddown-regulation of lignin content in transgenic plant expressing antisense gene[J]. Acta Botanica Sinica.2001,43(11):1179.
    Welford R, Clifton I, Turnbull J, et al. Structural and mechanistic studies on anthocyanidin synthase catalysedoxidation of flavanone substrates: the effect of C-2stereochemistry on product selectivity andmechanism[J]. Organic&Biomolecular Chemistry.2005,3(17):3117-3126.
    Whetten R, MacKay J and Sederoff R. Recent advances in understanding lignin biosynthesis[J]. AnnualReview of Plant Biology.1998,49(1):585-609.
    Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, andbiotechnology[J]. Plant Physiology.2001,126(2):485.
    Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress[J]. Current opinion in plant biology.2002,5(3):218-223.
    Wyrambik D and GRISEBACH H. Purification and Properties of Isoenzymes of Cinnamyl-AlcoholDehydrogenase from Soybean-Cell-Suspension Cultures[J]. European Journal of Biochemistry.1975,59(1):9-15.
    Xie D Y, Jackson L A, Cooper J D, et al. Molecular and biochemical analysis of two cDNA clones encodingdihydroflavonol-4-reductase from Medicago truncatula[J]. Plant physiology.2004,134(3):979-994.
    Xie Z, Zhang Z L, Zou X, et al. Annotations and functional analyses of the rice WRKY gene superfamilyreveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant physiology.2005,137(1):176-189.
    Xu F, Cai R, Cheng S, et al. Molecular cloning, characterization and expression of phenylalanineammonia-lyase gene from Ginkgo biloba[J]. African Journal of Biotechnology.2008,7(6):721-729.
    Xu F, Cheng H, Cai R, et al. Molecular cloning and function analysis of an anthocyanidin synthase gene fromGinkgo biloba, and its expression in abiotic stress responses[J]. Molecules and cells.2008b,26(6):536-547.
    Xu F, Cheng S, Cheng S, et al. Time course of expression of chalcone synthase gene in Ginkgo biloba[J]. plantphysiol. Mol. Biol.2007,33(4):309-317.
    Xu F, Li L, Zhang W, et al. Isolation, characterization, and function analysis of a flavonol synthase gene fromGinkgo biloba[J]. Molecular Biology Reports.2012,39(3):2285-2296.
    Ye Z H and Varner J E. Differential expression of two O-methyltransferases in lignin biosynthesis in Zinniaelegans[J]. Plant Physiology.1995,108(2):459-467.
    Yoshida K, Iwasaka R, Shimada N, et al. Transcriptional control of the dihydroflavonol4-reductase multigenefamily in Lotus japonicus[J]. Journal of plant research.2010,123(6):801-805.
    Yoshioka S, Taniguchi F, Miura K, et al. The novel Myb transcription factor LCR1regulates theCO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii[J].The Plant Cell Online.2004,16(6):1466-1477.
    Youn B, Camacho R, Moinuddin S G A, et al. Crystal structures and catalytic mechanism of the Arabidopsiscinnamyl alcohol dehydrogenases AtCAD5and AtCAD4[J]. Org. Biomol. Chem.2006,4(9):1687-1697.
    Yousefzadi M, Sharifi M, Behmanesh M, et al. Salicylic acid improves podophyllotoxin production in cellcultures of Linum album by increasing the expression of genes related with its biosynthesis[J].Biotechnology letters.2010,32(11):1739-1743.
    Yuan T, Fujioka S, Takatsuto S, et al. BEN1, a gene encoding a dihydroflavonol4-reductase (DFR)-like protein,regulates the levels of brassinosteroids in Arabidopsis thaliana[J]. The Plant Journal.2007,51(2):220-233.
    Zabala G, Zou J, Tuteja J, et al. Transcriptome changes in the phenylpropanoid pathway of Glycine max inresponse to Pseudomonas syringae infection[J]. BMC plant biology.2006,6(1):26.
    Zaprometov M N and Bukhlaeva V I. Efficiency of use of various C14-precursors for the biosynthesis offlavonoids in the tea plant[J]. Biokhimiia.36(2):270-285.
    Zenk M H. Biosynthese von vanillin in Vanilla planifolia Andr[J]. Z. Pflanzenphysiol.1965,53:404-414.
    Zhang L, Wang G, Chang J, et al. Effects of1-MCP and ethylene on expression of three CAD genes andlignification in stems of harvested Tsai Tai (Brassica chinensis)[J]. Food Chemistry.2010,123(1):32-40.
    Zhao Q and Dixon R A. Transcriptional networks for lignin biosynthesis: more complex than we thought?[J].Trends in plant science.2011,16(4):227-233.
    Zhong R, Morrison III W H, Himmelsbach D S, et al. Essential role of caffeoyl coenzyme AO-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant physiology.2000,124(2):563-578.
    Zhou B, Li Y, Xu Z, et al. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollenhypocotyls of turnip (Brassica rapa)[J]. Journal of Experimental Botany.2007,58(7):1771-1781.
    Zhou B, Yan S H and Li Y H. Expression of Anthocyanin Biosynthetic Genes during Fruit Development in‘Fengxiang’Strawberry[J]. Advanced Materials Research.2012,455:443-448.
    Zhou R, Jackson L, Shadle G, et al. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin inMedicago truncatula[J]. Proceedings of the National Academy of Sciences.2010,107(41):17803-17808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700