用户名: 密码: 验证码:
三配流窗口轴向柱塞泵配流理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向柱塞泵作为液压系统中关键性动力元件,具有压力高、调速范围广、配流结构易于改型等特点,能够适应液压系统简化回路、节能环保的发展要求。采用液压泵直接控制液压缸的运动,是提高电液技术能量效率最直接的方法,是该领域国际上的研究热点,国内外在这方面都开展了许多研究工作。目前,液压系统主要采用阀控方式,存在不足是产生大的节流损失,降低了系统能量效率。人们早就明确,改变这种状况的最有效方式是采用无阀的泵直接控制技术,即通过控制液压泵的排量或转速,改变提供到系统的流量,控制液压缸的位移、速度和输出力的大小。根据对象不同,泵控技术有泵控缸、泵控马达两类,泵控缸又包含泵控对称缸与泵控差动缸。经过20多年的努力,直接泵控技术已取得了非常大的进展,发展了高动态响应比例和伺服泵,引入了变转速控制技术,解决了液压缸两腔的预压紧问题,尤其是对双出杆的对称液压缸,控制技术已非常成熟,并已经在航空领域获得了应用。但是,对于液压技术中广泛应用的差动液压缸,虽然已经取得了许多进展,现有技术都不理想,为了补偿差动缸不对称流量,需要采用许多辅助的方法。比如采用液压泵和马达组成的液压变压器补偿差动缸的不对称流量;采用液控单向阀补油、平衡差动缸流量差的方法。但是,由于差动缸的特殊结构,现有的技术还是不能做到像泵控双出杆缸一样,无需外部的辅助元件,只用一台液压泵就能闭环控制差动缸的运动。为了实现这一目标,本文依据非对称阀控制非对称缸的思想,提出在轴向柱塞泵中采用非对称配流方法控制差动缸的原理,在理论分析的基础上,从建模分析、仿真运算、三维实体建模到研制出一种新型液压泵,并在不同的工作模式下与仿真结果进行试验对比,得出比较合理的新型泵关键元件的结构参数,使样机泵的压力脉动效果达到与现有泵相当的水平,最终达到单泵可以补偿差动缸的不对称面积,闭环控制差动缸的运动,优化回路结构。具体的步骤是,对现有轴向柱塞泵进行重新设计和改型,将轴向柱塞泵的排油窗口保持不变,吸油窗口改型设计为两个窗口,一个窗口接液压缸的有杆腔,另一个窗口连通低压油箱,成为三配流窗口轴向柱塞泵,通过改变泵的排量或转速,直接控制差动缸的运动,相对于现有技术采用液压阀补偿差动缸面积差的回路,达到简化油路、提高系统的能量效率。三配流窗口轴向柱塞泵还能够同时输出两路不同压力的流量,控制两个液压执行器的运动。设计和改型过程中,首先,采用机电系统通用仿真软件SimulationX建立考虑单个柱塞运动特征、油液压缩性和配流面积随转角变化的液压泵仿真模型,通过数字仿真确定泵主要结构的关键参数,特别是缸体和配流盘减震槽的尺寸,采用数字仿真对泵的流量特性、压力特性进行分析;其次,制造出样机泵后,在试验台上对多种转速下泵的压力、流量、容积效率和噪声等特性进行测试,验证原理和仿真设计的正确性,重新设计和改型的泵配流窗口结构,有串联和并联两种形式;第三,利用Matlab/Simulink软件建立泵变转速控制差动缸闭式系统仿真模型,对差动缸运动过程中所受到的不同工况进行仿真研究,根据闭式回路动作要求,在试验台上对泵的输出流量、压力以及差动缸的位移、输出力、速度等参数进行测试,最终通过试验结果验证仿真结果。研究成果表明,采用新型配流原理研制成功的三配流窗口轴向柱塞泵,完全可以平衡差动缸两腔的不对称流量,将在不久的具体设备应用中发挥更大的作用。
As the crucial power components in hydraulic system, axial piston pump has the characters of high pressure, wide speed adjustable range and easy-changed assignment structure and can meet the requirement of hydraulic system for simplifying loop, saving energy and protecting environment. The adoption of hydraulic pump to control directly the movement of hydraulic cylinder is the most direct way to improve the efficiency and energy of electro-hydraulic technology, which is also the international research hotspot in this field and a large amount of research upon this field has made. The present hydraulic system is value-controlling mostly which has disadvantage that leads to great throttling loss and decrease the using efficiency of system energy. It is clearly known that the most effective way to change this situation is to adopt the direct-controlling technology of pump without value-controlling. That is, by controlling the flow or rotate speed of hydraulic pump to change the flow to system and controlling the displacement, speed and output force of cylinder. According to the differential object, pump-control technology include pump-control motor and pump-control cylinder, pump control cylinder again include pump-control symmetric cylinder and pump-control differential cylinder. Passing more than20years'efforts the direct pump-control technology has made a lot of progress, developing the high dynamic response ratio and servo pump, introducing variable speed control technology, solving the tight prepressing problem of two cavity in hydraulic cylinder, especially for the symmetric cylinder, the control technology has perfected very well and applying it into aviation. But to the differential hydraulic cylinder which is widely used in hydraulic technology can still not meet the present need, though a lot of progress has been made. And to make up for the asymmetric flow of differential cylinder, many auxiliary methods has to be adopted such as using hydraulic transformer which is consist of hydraulic cylinder and motor to compensate the asymmetrical flow; adopting hydraulic controlled check valve compensate oil to balance differential cylinder flow difference. However, owing to the special structure of differential cylinder, the present technology can still not be made as pump-control symmetric cylinder which can use only one hydraulic pump controlling the movement of differential cylinder in the closed loop and without auxiliary components. To obtain the goal, the article will come up with the theory that applies asymmetric assignment method in axial piston pump to control differential cylinder according to the idea that asymmetric valve controlling asymmetric cylinder and on the basis of theory analysis, through the procedure of modeling construction, simulation, three-dimensional entity modeling to developing a new type hydraulic pump. The article will also include experimental contrast under different operating mode to work out a reasonable structural parameters of the new type pump key elements to accomplish the goal that the pressure pulsation effect of new type pump has the same level with the present pump, eventually realizing the single pump can compensate the asymmetric area of differential cylinder, control the movement of differential cylinder in closed loop and optimize circuit structure. The detailed procedures are in the following:redesign and remodel the present axial piston pump, keep the discharged window of the axial piston pump and redesigning the suction window into two windows in which one window links to rod cavity of the cylinder and the other one connects to low pressure oil tank to structure the three assignment windows axial piston pump, by changing the displacement or rotate speed of the pump to control the movement of the differential cylinder directly. To obtain goals of simplifying the oil-way and improving the energy efficiency of system which is better than the present technology that uses hydraulic valve to compensate the circuit of differential cylinder area difference. Meantime three assignment windows axial piston pump still can output two flows belonging to different pressure to control the movement of two hydraulic actuators. In the process of redesigning and remodeling, first, general simulation software of mechanical and electrical system SimulationX must be used to construct the hydraulic pump simulation model under the consideration of the movement character of single piston, compressibility oil and assignment area change with rotary angle. Then, digital simulation must be used to determine the key parameters of the primary elements in the pump, especially the size of cylinder and suspension groove of port plate, digital simulation is also used to analyze the flow features and pressure features of the pump; second, after the model pump is made out, the pressure flow, volumetric efficiency and noise of the pump under various rotate speed, must be tested on the experimental platform, in the end the validity of the principle and simulation design can be verified. The assignment windows structure of the redesigning and remodeling pump has two ways with series connection and parallel connection; third, the Matlab/Simulink software will be used to construct simulation model of closed system which pump control differential cylinder at variable speed. By simulated study on different operating mode during the movement of differential cylinder, according to operation requirement of closed loop, the output flow, pressure of the pump and the displacement, output force and speed of the differential cylinder are tested on the experimental platform, eventually the result of simulation is proofed by the result of test. The result of research shows that three assignment windows axial piston pump which is made according to the new assignment theory can completely balance the asymmetrical flow of the two cavity in differential cylinder and will play a more important role in the future application of concrete equipment.
引文
[1]刘富良.液压节能技术的应用[J].舰船科学技术,1982,(01):74-87.
    [2]马六成.论液压节能技术[J].节能技术,1986,(03):15-19.
    [3]张博.变量缸液压节能系统[J].组合机床与自动化加工技术,1988,(06):30-34、38.
    [4]张海南.超高压液压传动的节能[J].液压与气动,1998,(03):3-4.
    [5]邓斌,刘桓龙,于兰英等.装载机变量液压节能技术[J].建筑机械,2004,(09):80-82.
    [6]贺文涛.造纸设备液压系统的节能技术[J].中华纸业,2009,(01):68-71.
    [7]施虎,龚国芳,杨华勇.隧道盾构液压系统及相关节能技术[J].工程机械,2007,(10):56-59.
    [8]贺文涛.塑料设备液压系统的节能技术[J].橡塑技术与装备,2009,(03):47-52.
    [9]成红梅.液压系统中换向阀的选择与应用[J].机床与液压,2006,(09):250-252.
    [10]王立斎,王锡茂.集成化的新型液压元件—叠加阀[J].组合机床与自动化加工技术,1981,(06):2-11.
    [11]王永其.告别“跑冒滴漏”——我国液压阀产品跻身国际90年代水平[J].机电新产品导报,1995,(04):35.
    [12]高卫国,徐燕申,牛文铁.面向设计的液压阀库建模方法及应用研究[J].组合机床与自动化加工技术,2005,(02):22-24.
    [13]黄启泉.GE中高压液压阀通过部级鉴定[J].机床与液压,1990,(01):49-50.
    [14]徐浩.一级调压阀在液化石油气气化站中的应用[J].化工设备与管道,2003,(01):39、58.
    [15]胡冠卿,俞松芹.国产调压阀在引水式电站的应用[J].四川水力发电,1986,(01):48-52.
    [16]寺田孝一郎,杨美云.液压阀漏油的原因及其解决办法[J].煤矿机电,1983,(04):55-59.
    [17]陶志范.液压阀噪声的形成及减噪措施[J].液压与气动,1986,(04):19-21.
    [18]何文杰.液压阀低温试验系统及相关要点[J].机床与液压,2001,(06):146、152.
    [19]权龙.泵控差动缸回路原理、控制特性和能量效率分析研究[A].第五届全国流体传动 与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集[C],2008.
    [20]权龙,廉白生.应用进出油口独立控制原理改善泵控差动缸系统效率[J].机械工程学报,2005,(03):123-127.
    [21]权龙,李凤兰,王祥.伺服电机定量泵驱动差动液压缸系统效率的研究[J].中国电机工程学报,2006,(08):93-98.
    [22]张红娟,权龙,李斌.永磁同步电动机直驱泵控差动缸位置伺服系统性能研究[J].中国电机工程学报,2010,(24):103-112.
    [23]张红娟,权龙,程珩.永磁同步电动机驱动泵控缸系统抗扰研究[J].中国电机工程学报,2010,(33):84-89.
    [24]董哲,曹鑫铭,周士昌.旁路循环对阀控缸系统动、静态特性的影响[J].液压气动与密封,1992,(03):40-43.
    [25]朱贵贤.阀控缸的液压弹簧刚度和固有频率及加速时间[J].液压气动与密封,1993,(03):18-22.
    [26]孟亚东,李长春,张金英等.阀控非对称缸液压系统建模研究[J].北京交通大学学报,2009,(01):66-70.
    [27]吴张永,王强,贺鹏等.比例阀控非对称缸动力机构的数学模型[A].2002年十一省、区、市机械工程学术年会暨云南省机械工程学会第六届学术年会论文集[C],2002.
    [28]齐文杰等.液压设备故障诊断分析[M].机械工业出版社,1990:48-50.
    [29]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究[J].机床与液压,2000,(5):63-64.
    [30]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析[J].机床与液压,2003,(1):198-200.
    [31]许宏光,陈斌,李尚义等.阀控非对称液压缸的非线性及压力跃变的补偿[J].哈尔滨工业大学学报,1995,27(5):99-102.
    [32]张晓宁,王岩,付永领.非对称液压缸对称性控制[J].北京航空航天大学学报,2007,33(11):1334-1339.
    [33]权龙.泵控缸电液技术研究现状、存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-91.
    [34]史维祥.流体传动及控制的现状及新发展[J].流体传动与控制,2003,(1):1-6.
    [35]周伟,王平军,周瑞祥.泵控式电液伺服速度控制系统仿真与分析[J].机床与液压,2011,(01):109-111.
    [36]陈永新.精校机电液位置伺服系统的研究[D].合肥工业大学,2004.
    [37]刘坤.电液伺服系统的智能控制研究[D].燕山大学,2003.
    [38]徐磊,陶建峰,刘成良.电液比例变量泵控制方法研究[J].中国测试,2010(04):1-4
    [39]权龙,许小庆,李敏.电液伺服位置、压力复合控制原理的仿真与试验[J].机械工程学报,2008,(09):100-105.
    [40]CHU M H, KANG Y, CHUANG F, et al. Model-following controller based on neural network for variabledisplacement pump[J]. JSME International Journal,2003,46 (1): 176-178:40-42、52.
    [41]Bahr M K, Svoboda J, Bhat R B. Vibration analysis of constant power regulated seash plate axial pistonpumps[J]. Journal of Sound and Vibration,2003,259(5):1225-1236.
    [42]王国志,吴文海,柯坚等.电液比例闭环变量柱塞泵的实验研究[J].机械科学与技术,2009,(01):136-140.
    [43]黄明辉,王国志等.电液比例变量柱塞泵闭环系统压力特性仿真[J].液压气动与密封,2007,(03):24-27.
    [44]权龙,Neuber T, Helduser S转速可调泵直接闭环控制差动缸伺服系统静特性[J].机械工程学报,2002,38(3):144-148.
    [45]路甬祥.对流体传动与控制技术的系统哲学思考[J].液压气动与密封,2005,(5):4-6.
    [46]BOSCH AG. Radialkolbenpumpe mit elektrohydraulishe Verstellung erlaubt die direkte Einbindung in Regelkreise[J]. O+P,1995,39(11-12):819-821.
    [47]BERBUER J. Neuartige Servoantriebe mit primarer Verdrangersteuerung[D]. Germany: RWTH Aachen,1988.
    [48]PARKER HANNIFIN. Electro-hydraulic actuator:Germany,0395420A21990 [P].1990-08-16.
    [49]MANNESMANN AG. Spritzgiessmaschine mit hydraulischen Verbrauchen:Germany, 3919823A1 [P].1990-12-20.
    [50]LIEBHERR-AERO.Elektrohydraulischer Aktuat:Germany,0271744B1 [P].1988-06-22.
    [51]KAZMEIER B. Energieverbrauchsoptimierte Regelung eines elektrohydraulischen Linearantriebs Kleiner Leistung mit drehzahlgeregeltem Elektromotor und Verstellpumpe[D]. Germany:TUHH,1998.
    [52]H.Murrenhoff.吴根茂译.液压控制技术发展趋势[J].工程设计,1997,(3):20-29.
    [53]姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统[J].军民两用技术与产品,2003,(9):43-48.
    [54]IVANTYSYNOVA M. Die Schraegscheibenmaschine eine Verdraengereiheit mit grossem Entwicklungspotential [C]//lth IFK, Aachen, Germany,1998:359-371.
    [55]Monika Ivantysynova. Displacement Controlled Linear and Rotary Drives for Mobile Machines with Automatic Motion Control[C]. Copyright@2000 Society of Automotive Engineers. Inc:125-132.
    [56]VICKERS INC. Electro-hydraulic system and apparatus with bidirectional electric motor hydraulic unit:USA,98/113581998 [P].1998-03-19.
    [59]JOHANSSON B, PETTER K. Object oriented and distributed modeling of a multi-domain aircraft actuation system[C]//5th ICFP, Hangzhou, China,2001:344-349.
    [60]王占林,裘丽华.差动缸液压伺服系统的研究[J].航空学报,1988,(02):58-67.
    [61]王占林,裘丽华.非对称液压缸伺服系统的理论研究[J].北京航空学院学报,1987,(03):1-10.
    [62]刘长年.非对称伺服油缸的动态研究[J].机床与液压,1985,(03):1-10.
    [63]李洪人,王栋梁,李春萍.非对称缸电液伺服系统的静态特性分析[J].机械工程学报,2003,(02):18-22.
    [64]左健民,王积伟.泵控系统的模糊控制器设计[JJ].电气传动自动化,1996,(04):38-43.
    [65]权龙,李凤兰.注塑机电液控制系统节能原理及最新技术[J].机床与液压,1999,(05):6-7
    [66]曹美忠,权龙.变速泵控差动缸特性分析与应用研究[D].太原理工大学,2005.
    [67]李建国,权龙.电液泵控差动缸的动态控制[J].流体传动与控制,2009,(04):5-7.
    [68]蒋丰年,段京云,朱晓毅.用蓄能器和差动缸组成能量回收式举升系统[J].液压与气动,2004,(01):27-29.
    [69]付永领.新型飞机机载作动系统的原理研究[D].北京:北京航空航天大学.1995.
    [70]祁晓野.机载功率电传作动器的原理研究[D].北京:北京航空航天大学.2001.
    [71]JIANG Jihai. Direct drive variable speed electro-hydraulic servo system to position control of a ship Rudder[C]//4th IFK, Dresden, Germany,2004:103-114.
    [72]Neubert Th..Elektro-hydraulische Antriebssysteme mit drehzahnveranderbaren Pumpen. Fachbeitrag zum 1.IFK,1998.3, in Aachen, Germany.
    [73]Littmann K, Wachter R., Zschocke G. Gerauscharmer drehzahlvariabler Pumpenantrieb. O+P Olhydraulik und Pneumatik,1995,39(11-12):828-834.
    [74]Nagel G, Exner P. Variabler Forderstrom mit Konstantpumpen. O+P Olhydraulik und Pneumatik,1996,40(4):238-242.
    [75]权龙,Neuber T, Helduser S转速可调泵直接闭环控制差动缸伺服系统动特性[J].机械工程学报,2003,38(2):13-17.
    [77]中村一郎.総論油压エしべ一タ.油空压技术,1998,37(13):1~9.
    [78]张健民.能量回馈式VVVF液压电梯速度系统研究.机械工程学报2000 36(7)61~65.
    [79]Quan L. Lagergelung fur Differentialzylinder mit dre-hzahlveranderbaren Pumpen. O+P Olhydraulik und Pneumatik 2000 44(9) 562-566.
    [80]权龙Neuber T, Helduser S转速可调泵直接闭环控制差动缸伺服系统静特性.机械工程学报2002 38(3)144~148.
    [81]权龙.变量泵、比例阀和蓄能器复合控制差动缸回路原理及应用研究[J].机械机械工程学报,2006,42(5):115-119.
    [82]Glauss M. Hydraulishe Regelpumpe mit Industribus Ansteuerung und integrierter digitaler on-board Elektronik, O+P, Olhydraulik und Pneumatik,2000,44(9):552-556.
    [83]Feuser A, Dantlgraber J, Spath D. Servopumpen-antriebe Fur Differentialzylinder, O+P Olhydraulik und Pneumatik,1995,39(7):540-544.
    [84]Lechner E, Berbuer J. Schnelle Pumpenverstellung und neuartige Schaltungskonzepte fur verlustarme, hochdynamische Regelantriebe, O+POlhydraulik und Pneumatik,1989, 33(3):186-194.
    [85]QUAN Long. Lagergelung fur Differentialzylinder mit drehzahlveranderbaren Pumpen, O+P Olhydraulik und Pneumatik,2000,44(9):562-567.
    [86]Robert R. Energiesparender geregelter Linearantrieb mit Differentialzylinder, Fachbeitrag zum 2th IFK,2000.3, in Dresden, Germany.
    [87]王占林.近代液压控制[M].北京:机械工业出版社,1997:100-200.
    [88]武永红,张往华,段锁林.泵控缸电液位置伺服系统的迭代学习控制[J].太原科技大学学报,2006,(04):277-280.
    [89]高强,钱林方,侯远龙.泵控缸电液位置伺服系统的神经网络模型参考自适应控制[J].机床与液压,2008,(06):110-112.
    [90]高强,侯远龙,钱林方.泵控缸电液位置伺服系统的自适应模糊滑模控制[J].机床与液压,2007,(12):94-96.
    [91]费树辉,雷秀,樊飞龙.基于泵控缸位置伺服系统的模糊控制系统设计[J].机械工程与自动化,2006,(06):106-108.
    [92]陈奎生,傅连东,易建钢等.非对称泵缸系统模型跟踪控制研究[J].中国机械工程,2005,(08):678-682.
    [93]SPROCKHOFF V. Untersuchungen von Regelungen am hydrostaischen Zylinderantrieb mit Servopumpe[D]. Germany:RWTH Aachen,1979.
    [94]刘延俊.液压回路与系统[M].北京:化学工业出版社,2009.2.
    [95]李兴中,陈启松,朱福元.液压设备管理维护手册[M].上海:上海科学技术出版社,1998.9.
    [96]张利平.现代液压技术应用220例[M].北京:化学工业出版社,2004.8.
    [97]李枫,刘彩玉.柱塞泵密封结构的改造[J].润滑与密封,2004,(02):98-99.
    [98]李思谦,陈广庆,行方邦次.斜盘式轴向柱塞泵伺服变量机构设计计算[J].液压与气动,2011,(01):78-80.
    [99]蒋幸幸.缸体旋转式柱塞泵配油盘结构设计与研究[J].成都航空职业技术院学报,2010,(01):57-60、92.
    [100]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力特性的影响[J].甘肃工业大学学报,1995,(03):35-38.
    [101]赵弘,那焱青,那成烈.液压泵阻尼结构形式的改造[J].机床与液压,2000, (05):17-18.
    [102]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].浙江大学,2009.
    [103]那成烈.三角槽节流口面积的计算[J].甘肃工业大学学报,1993, (02):45-48.
    [104]李壮云.液压元件与系统[M].北京:机械工业出版社,2005.6.
    [105]张利平.液压传动系统及设计[M].北京:化学工业出版社,2005.6.
    [106]芮延年.液压与气压传动[M].苏州:苏州大学出版社,2005.3.
    [107]宋俊,王淑莲.液压元件优化[M].北京:机械工业出版社,1999.9.
    [108]李壮云,葛宜远,陈尧明.液压元件与系统[M].北京:机械工业出版社,1999.5.
    [109]刘延俊.液压元件使用指南[M].北京:化学工业出版社,2007.10.
    [110]张利平.液压泵及液压马达原理、使用与维护[M].北京:化学工业出版社,2008.10.
    [111]嵇光国.液压泵故障诊断与排除[M].北京:机械工业出版社,1997.4.
    [112]陆望龙.液压系统使用与维修手册[M].北京:化学工业出版社,2008.1.
    [113]陆望龙.实用液压机械故障排除与修理大全[M].长沙:湖南科学技术出版社,2007.6.
    [114]周士昌.液压气动系统设计运行禁忌470例[M].北京:机械工业出版社,2002.9.
    [115]邵俊鹏,周往繁,韩桂华等.液压系统设计禁忌[M].北京:机械工业出版社,2008.1.
    [116]张利平.液压控制系统及设计[M].北京:化学工业出版社,2006.4.
    [117]李松晶,阮健,弓永军.先进液压传动技术概论[M].哈尔滨:哈尔滨工业大学出版社,2008.2.
    [118]黄志坚,袁周.液压设备故障诊断与监测实用技术[M].北京:机械工业出版社,2006.4.
    [119]张利平.液压站[M].北京:化学工业出版社,2008.1.
    [120]越应樾.液压泵及其修理[M].上海:上海交通大学出版社,1998.10.
    [121]Demag Inc. Plastic injection moulding machine controlled with speed variable pump, Germany,3919823A1[P].1990-12-20.
    [122]LODEWYKS J. Variable displacement pump closed loop controlled differential cylinder system[D]. Aachen, RWTH,1994.
    [123]RAHMFELD R. Development and control of energy saving hydraulic servo driven for mobile machine[D]. Hamburg; TUHH,2002.
    [124]JORG G, IVANTYSYNOVS M. Model adaptation for robust design of hydraulic joint servo actuators [C]//4th ISFP, Wuhan, China,2003:16-24.
    [125]RAHMFELD R, IVANTYS YNOVA M. Linear actuator use differential cylinder[C]//17th ICHP, Ostrava, Czech Republic,2001:129-137.
    [126]权龙.转速可调泵直接闭环控制差动缸伺服系统的动特性[J].机械机械工程学报,2003,39(2):13-17.
    [127]权龙.泵控缸电液技术的研究现状、存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-92.
    [128]郜立焕,孙俊伟等.配流盘新型减振方案的研究,机床与液压,1001-3881{2008}9-212-2:212-213、259.
    [129]彭佑多,颜良,陈效平等.多作用恒流轴向柱塞泵配流盘减震特性研究[J].机床与液压,2010,(17):12-14.
    [130]Manring Noah D. Value-plate design for an axial piston pump operation at low displacements[J]. Journal of Mechanical Design,2003:125200-205.
    [131]郜立焕,刘世亮,柴玉东等.轴向柱塞泵排油腔减振槽的CFD解析[J].兰州理工大学学报,2008,(04):61-64.
    [132]Franco N. Pump Design by Force Balance[J].Hydraulics Pneum,1961,14(5):101-107.
    [133]N A Shute, D E Tumbull The Thrust Balancing of Axial Piston Machines [R].BHRA Report RR 772, Bed-ford,1963.
    [134]BRUJAN E A. Bubble dynamics in a compressible shearthinning liquid[J]. Fluid Dynamics Research,1998 (23):291-318.
    [135]YOUNG F R.Cauitation[M]. New York:McGRAW-HILL Book Company,1989.
    [136]MALKAR, NESICS, GULIND D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear,2007 (262):791-799.
    [137]AL-BUKHAITI M A, AHMED S M, BADRAN F M F, et al. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium while cast iron[J]. Wear,2007 (262):1187-1198.
    [138]刘晓红,于兰英,刘桓龙等.液压轴向柱塞泵配流盘气蚀机理[J].机械工程学报,2008, (11):203-208.
    [139]沙南生,李军.功率电传机载一体化电作动系统的研究[J].北京航空航天大学学报,2004,30(9):909-912.
    [140]LVANTYSYN J, JVANTYSYNOVA M. Hydrostatic pumps and motors[M]. New Dehli:Academic Books International,2001.
    [141]Edge K A. A Study of Pressure Fluctuations in the Suctioo Line of Positive Displacement pumps. Proceedings of the Institution of Mechanical Engineering.1985, 199 (B4):211-217.
    [142]Edge K A, Darling J. Pumping Dynamics of Swash Plate Piston Pumps. Journal of Dynamic Systems Measurement and Control-Transactions of The ASME.1989,111 (2):307-312.
    [143]KOJIMA E, NAGAKURA H. Characteristics of fluid-borne noise generated by fluid power pumps[J]. Bulletin of the JSME,1982,25 (199):46-53.
    [144]ZAICHENKO I Z, BOLTYANSKII A D. Reducing noise levels of axial piston pumps[J]. Russ Engine Journal,1969,49 (4):21-23.
    [145]KOIIMA E, SHINADA M. Characteristics of fluidborne noise generated by a fluid power pump[J]. Bulletin of the JSME,1986,29 (258):4147-4155.
    [146]PETTERSSON M E. Design of fluid power piston pumps with special reference to noise reduction[D]. Link-ping:Link-ping University,1995.
    [147]ERICSON L. Measurement system for hydrostatic pump flow pulsations[D]. Link-ping: Link-ping University,2005.
    [148]JOHANSSON A. Design principles for noise reduction in hydraulic piston pumps-simulation, optimization and experimental verification[D]. Link-ping:Link-ping University,2005.
    [149]JOHNSTON D N. Measurement and prediction of the fluid borne noise characteristics of hydraulic system [D]. Bath:University of Bath,1987.
    [150]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.9.
    [151]吴根茂,邱敏秀,王庆丰等.实用电液比例技术[M].杭州:浙江大学出版社,1993.9.
    [152]王俊峰,孟令启.现代传感器应用技术[M].北京:机械工业出版社,2006.8.
    [153]杨文华.液控原理[M].北京:学术书刊出版社,1990,337-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700