用户名: 密码: 验证码:
对转涡轮气动优化设计及其热斑效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于对转涡轮技术在提高涡轮气动效率、降低涡轮端重量以及提高飞机机动性能等诸多方面的优势,欧美等航空强国将对转涡轮技术作为了重要的研究内容,并已将其成功地应用到了新一代军用与民用航空发动机之中。与之相比,我国在对转涡轮技术上的研究还颇为不足,对转涡轮气动设计及优化的经验尚有欠缺。此外,在常规涡轮中,研究者们已经发现了进口热斑会对涡轮的流场和热负荷产生不可忽视的影响,但迄今为止热斑对无导叶对转涡轮流场、气动性能以及热负荷的影响研究还非常少。鉴于此,本文在课题组已有研究成果的基础上,针对对转涡轮的气动优化设计及其热斑效应进行了研究,主要研究内容如下:
     1.对某1+1对转涡轮进行了气动设计,并通过数值模拟的手段对其流场和气动性能进行了分析,总结出了相关设计特征。研究发现涡轮上端壁采用下凹型的曲线有利于降低叶顶反动度,低压级采用“反C”型出功分配将导致低压导叶出口气流角的径向差异较大。
     2.研究了导叶弯曲对1+1/2对转涡轮气动性能的影响,重点研究了导叶在不同正弯角度和不同反弯角度下导叶通道内流场的变化,气流出口特性的变化以及高低压级涡轮等熵效率的变化,进而得到了导叶弯曲对1+1/2对转涡轮气动性能的影响方式及机理,并发现了导叶在小角度反弯时有利于1+1/2对转涡轮效率的提高。
     3.通过对1+1/2对转涡轮在均匀温度进口工况和热斑工况下的定常/非定常数值模拟结果的比较,研究了进口热斑对1+1/2对转涡轮高低压两级转子通道内径向二次流以及涡强度的影响,发现了热斑的引入加剧了气流在高压转子通道内的径向二次流动,增强了高压转子根部通道涡和尾迹涡的强度,但降低了高压转子顶部泄漏涡的强度。还发现了在热斑的影响下,低压转子根部通道涡有所减弱。
     4.开展了热斑对1+1/2对转涡轮叶表、叶顶以及端壁热负荷的影响研究,揭示了进口热斑与径向二次流以及顶部泄漏涡等相互作用对1+1/2对转涡轮热负荷的影响机理,发现了在热斑工况下高压转子叶顶尾部和低压转子叶顶尾部的热负荷因高温气体的掠过而增强,高压转子轮毂后端的热负荷和低压转子轮毂的热负荷因高温气体的径向迁移而增强,此外还发现了迁移至叶顶的高温流体在叶顶泄漏涡的卷吸下远离机匣,从而使得机匣的热负荷在热斑工况下有所下降。
     5.研究了热斑的存在对1+1/2对转涡轮比功和等熵效率等气动性能的影响,发现了热斑工况下叶中高温流体出功增加,而两端低温流体出功降低;由于叶中高温流体在出功的同时还要向两端低温流体输送能量,因此叶中区域的等熵效率因热斑的引入而降低,两端区域的等熵效率因热斑的引入而升高。
Counter-Rotating turbine (CRT) can offer some significant benefits compared with conventional two-stage turbines, such as the elevated efficiency, the reduced weight, the improved performance of aircraft and so on. So, the aviation powers in Europe and America pay great attentions on the study of CRT, and the CRT has been succsfully applied in the military aero-engines and in the civil aero-engines in those countries. However, the recearch level of the CRT in China is very low, especially in the aerodynamic design and optimization. In addition, researchers have found that hot streak can affect the flow field and heat load in conventional turbines, but the study of the hot steak effects on the flow field, aerodynamic performance and heat load in the Vanless Counter-Rotating Turbine (VCRT) is very few. In view of this background, the investigations on the aerodynamic optimization design and hot steak effects in CRT are showed in this paper. The main content in this paper is listed as follows:
     1. An aerodynamic design of a CRT with low pressure stage stator is performed and the numerical tools are employed to study its flow field and aerodynamic performance. The results show that concave shroud can reduce the reaction in the top and the oppocite C-shape work distribution can increase the difference in the angle radial distribution at the low pressure stage stator outlet.
     2. The effects of the bowed stator blade on the aerodynamic performance of VCRT are studied. The variations in the flow field and the efficientcy change in the high/low pressure stages due to the different stator bowed angles are showed. The investigations of the influence mechanism of bowed blade on the VCRT aerodynamic performance are carried out. The results indicate that stator with small bowed angle is benifical to the VCRT efficiency.
     3. Steady/unsteady numerical simulations are performed to reveal the hot streak effections on the radial secondary flow and on the vortex in the VCRT rotor passages. The results show that hot streak can reinforce the radial secondary flow and strength the root passage vortex and wake vortex at high pressure stage rotor passages. The results also show that hot streak can weaken the tip leakage vortex at the high pressure stage rotor passages and weaken the the root passage vortex at low pressure stage rotor passages.
     4. The influences of hot streak on the blade surface heat load, the blade tip heat load and the endwall heat load are studied. The study indicates that the heat load is affected by the hot streak, radial secdory flows, leakage vortex and so on. The results show that the heat loat on the aft part of high pressure rotor tip and the heat loat on the aft part of low pressure rotor tip are heavier in hot streak condition due to the passing hot gas. The results also show that the heat load on the aft part of high pressure rotor hub and the heat load on the low pressure stage rotor hub are heavier in the hot streak condition due to the radial secdory flows of hot gas. In addition, the hot gas addrvied to the blade tip remove from shroud due to the leakage vortex, so the heat load on the shroud is lighter in hot streak condition.
     5. The investigation of hot streak effects on the aerodynamic performance of VCRT is performed. The results indicate that the work of hot gas at the midspan increases and the work of cool gas at the endwall decrease in hot streak condition. The results also show that the efficiency at midspan decrease due to the losing energy of hot gas and the the efficiency at endwall increase due to the getting energy of cool gas in hot streak condition.
引文
[1]方昌德,马春燕.航空发动机的发展历程[M].第一版.北京:航空工业出版社,2007.
    [2]曹玉璋.航空发动机传热学[M].第一版,北京:北京航空航天大学出版社,2005.
    [3]Wisler D C. The technical and economic relevance of understanding boundary layer transition in gas turbine engines [C]. NASA/CP-1998-206958,1998.
    [4]程代京,谢永慧(译).燃气轮机传热和冷却技术[M].第一版.西安:西安交通大学出版社,2005.
    [5]Povey T, Qureshi I. Developments in Hot-Streak Simulators for Turbine Testing [J]. Journal of Turbomachinery-Transactions of the Asme, 2009, 131(3).
    [6]Wintucky W T, Stewart W L. Analysis of two-stage counter-rotating turbine efficiencies in terms of work and speed requirements [C]. NACARM E57L05,1958.
    [7]Louis J F. Axial flow counter-rotating turbines. ASME Paper 85-GT-218,1985.
    [8]Sotsenko Y V. Thermogasdynamic effects of the engine turbines with the countra-rotating rotors [C]. ASME Paper 90-GT-63,1990.
    [9]Ponomariov B A, Sotsenko Y V. Using contra-rotating rotors for decreasing sizes and component number in small GTE [C]. ASME Paper 92-GT-414,1992.
    [10]Huber F W, Branstrom B R, Finke A K, Johnson P D, Rowey R J, Veres J P. Design and test of a small two stage counter-rotating turbine for rocketengine application [C]. AIAA Paper 93-2136,1993.
    [11]Keith B D, Basu D K and Stevens C. Aerodynamic test results of Controlled Pressure Ratio Engine (COPE) dual spool air turbine rotating rig [C]. ASMEPaper 2000-GT-0632,2000.
    [12]Pascal P, Laurent R. Counter-Rotating Turbine designed for Turbopump Rocket Engine [C]. AIAA 2003-4768,2003.
    [13]Denantes F, Bilgen E. Counter-rotating turbines for solar chimney power plants [J]. Renewable Energy,2006,31(12):1873-1891.
    [14]Varvill R, Paniagua G, Kato H. Design and testing of the contra-rotating turbine for the scimitar precooled mach 5 cruise engine [J]. Journal of the British Interplanetary Society, 2009,62(6):225-234
    [15]Weaver M M, Manwaring S R, Abhari R S, Dunn M G, Salay M J, Frey K K and Heidegger N. Forcing function measurements and predictions of a transonic vaneless counter rotating turbine [C]. ASME Paper 2000-GT-0375,2000.
    [16]Haldeman C W, Dunn M G, Abhari R S, Johnson P D and Montesdeoca X A. Experimental and computational investigation of the time-averaged and time-resolved pressure loading on a vaneless counter-rotating turbine [C]. ASME Paper 2000-GT-0445, 2000.
    [17]葛满初.逆向旋转透平的计算与分析[C].见:中国工程热物理学会第六届年会论文.1988.8802140.
    [18]Cai R X, Wu W and Fang G. Basic analysis of counter-rotating turbines [C]. ASME Paper 90-GT-108,1990.
    [19]蔡睿贤.有关对转涡轮基本设计与应用的进一步思考[J].航空动力学报,2001,16(3):193-198.
    [20]季路成,钟文涛,徐建中.关于1+1/2对转涡轮的基本分析和初步设计[J].工程热物理学报,2001,22(2):167-170.
    [21]季路成,肖翔,陈江,徐建中.1+1/2对转涡轮设计及控制方法探索[C].中国工程热物理学会热机气动热力学学术会议论文032006,2003.
    [22]季路成,项林,黄海波,徐建中.1+1/2对转涡轮叶排轴向间距对性能影响的研究[J].工程热物理学报,2002,(05).
    [23]季路成.对转涡轮研究的回顾与展望[J].航空发动机,2006,(04):49-53:416-420.
    [24]季路成.1+3/2与1+1/2对转涡轮对比分析[J].工程热物理学报,2007,28,suppl 1:113-116
    [25]季路成,邵卫卫,王宝臣.一种对转涡轮性能基本分析[J].推进技术,2008,(01):62-66.
    [26]季路成,陈江,项林,徐建中.1+1/2对转涡轮模型试验件气动设计[J].工程热物理学报,2003,(06):943-946.
    [27]季路成,黄海波,陈江,徐建中.涡轮中的激波/叶排相互作用[J].工程热物理学报,2002,23(2):163-166.
    [28]季路成,黄海波,徐建中,陈江.1+1/2对转涡轮应用中的关键技术问题[J].工程热物理学报,2003,(01):35-38.
    [29]季路成,黄海波,陈江,于海力,徐建中.1+1/2对转涡轮用出口超音叶栅设计与试验[J].工程热物理学报,2004,(01):45-48.
    [30]季路成,权晓波,徐建中.一个1+1对转涡轮的初步设计[J].工程热物理学报,2001,(04):438-440.
    [31]方祥军,刘思永,王屏.一种低压无导叶对转涡轮特性分析与设计[J].推进技术,2005,26(3):234-238.
    [32]方祥军,刘思永,王屏,张维军.大扩张通道超声高载荷对转涡轮动叶三维设计方法研究[J].航空学报,2007,28(1):25-31.
    [33]冯国泰,王松涛,顾中华.弯扭掠三维叶片综合流型与流场结构优化的设计思想及应用——弯扭掠叶片设计体系与设计思想研究之二[J].航空发动机,2002,(04):5-11
    [34]王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势[J].中国工程科学,2000,(06):40-48。
    [35]王仲奇.一代新型的轴流式透平机械叶片—叶片的弯扭联合成型理论及其实验结果[C],工程热物理与能源利用学科气动热力学发展战略研讨会专题报告汇编,1989.
    [36]陈海生.弯曲叶片透平叶栅和单级轴流风机气动特性的实验和数值模拟研究[D].工程热物理研究所,2003.
    [37]王仲奇,韩万今,徐文远,才大颖.冲角和叶片倾斜对矩形叶栅出口二次流场的影响[J],工程热物理学报,1989,10(2):164-167.
    [38]王仲奇,韩万今,徐文远,赵桂林.在低展弦比透平静叶栅中叶片的弯曲作用[J].工程热物理学报,1990,11(3):255-262.
    [39]陈海生,谭春青,梁锡智.低展弦比涡轮静叶栅叶片正弯曲作用的实验研究[J].机械工程学报,2005,41(2):65-76.
    [40]Liu H C, Booth T C, Tall W A. An application of 3-D viscous flow analysis to the design of low-aspect-ratio turbine [C]. ASME Paper 79-GT-53,1979
    [41]Shi J, Han J, Zhou S, et al. An investigation of a highly loaded transonic turbine stage with compound leaded vanes [J]. ASME Journal of Engineering for Gas Turbine and Power, 1986,108(4):265-269.
    [42]王仲奇,韩万今,徐文远.在低展弦比透平叶片的弯曲方法研究[J].工程热物理学报,1995,16(1):35-38.
    [43]Harrison S. The Influence of Blade Lean on Tuthine Losses [J]. ASME Journal of Tuthomachinery, 1992,114(1):618-624.
    [44]Moustapha S H, Paron G J, Wade J H T. Secondary flow in cascades of highly loaded turbine blades [J]. ASME Journal of Engineering for Gas Turbine and Power, 1985, 105(10):1031-1038.
    [45]王仲奇,韩万今,谭春青,石红,周漠春.大转角透平叶片弯曲形状对叶栅损失和分布的影响[J].工程热物理学报,Vol.14,No.2,1993.
    [46]谭春青,张华良,陈海生,赵洪雷,董学智,山本孝正.弯叶片对大转角平面涡轮叶栅气动性能影响的实验研究[J].燃气涡轮试验与研究,2009,(01):8-12.
    [47]Kawagishi H, Kawasaki S. The effect of nozzle on turbine efficiency [R]. PWR-Vol 13, Design Repair and Refurbishment of Steam Turbines ASME 1991.
    [48]Munk M and Prim R C. On the multiplicity of steady gas flows having the same streamline pattern [C]. Proceedings of the National Academy of Sciences, U.S.,1947,33:137-141
    [49]Butler T L, Sharma O P, Joslyn H D and Dring R P. Redistribution of an inlet temperature distortion in an axial flow turbine stage [J]. AIAA Journal of Propulsion and Power, 1989, 5(1):64-71.
    [50]Kerrebrock J L and Mikolajczak A A. Intra-stator transport of rotor wakes and its effect on compressor performance [J]. Journal of Engineering for Power-Transactions of the ASME, 1970,92(4):359-369.
    [51]Shang T, Guenette G R, Epstein A H and Saxer A P. The influence of inlet temperature distortion on rotor heat transfer in a transonic turbine [C]. AIAA Paper 95-3042,1995.
    [52]Chana K S and Jones T V. An investigation on turbine tip and shroud heat transfer [J]. Journal of Turbomachinery-Transactions of the ASME, 2003,125(3):513-520.
    [53]Povey T, Chana K S, Jones T V and Hurrion J. The effect of hot-streaks on HP vane surface and endwall heat transfer: An experimental and numerical study [C]. ASME Paper 2005-GT-69066,2005.
    [54]Jenkins S C, Varadarajan K and Bogard D G. The effects of high mainstream turbulence and turbine vane film cooling on the dispersion of a simulated hot streak [C]. ASME Paper 2003-GT-38575,2003.
    [55]Jenkins S C, Bogard D G. Scaling of guide vane coolant profiles and the reduction of a simulated hot streak [J]. Journal of Turbomachinery-Transactions of the Asme,2007, 129(3): 619-627.
    [56]Jenkins S C, Bogard D G. The effects of the vane and mainstream turbulence level on hot streak attenuation [J]. Journal of Turbomachinery-Transactions of the Asme, 2005,127(1): 215-221.
    [57]Barringer M D, Thole K A and Polanka M D. Experimental evaluation of an inlet profile generator for high-pressure turbine tests [J]. Journal of Turbomachinery-Transactions of the ASME,2007,129(2):382-393.
    [58]Barringer M D, Thole K A and Polanka M D. Effects of combustor exit profiles on vane aerodynamic loading and heat transfer in a high pressure turbine [J]. Journal of Turbomachinery-Transactions of the ASME, 2009,131(2):021008(1-10).
    [59]Barringer M D, Thole K A and Polanka M D. An experimental study of combustor exit profile shapes on endwall heat transfer in high pressure turbine vanes [J]. Journal of Turbomachinery-Transactions of the ASME, 2009, 131(2):021009(1-10).
    [60]Mathison R M, Haldeman C W, Dunn M G. Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine-Part I:Vane Inlet Temperature Profile Generation and Migration [J]. Journal of Turbomachinery-Transactions of the Asme, 2012, 134(1):011006(1-11).
    [61]Mathison R M, Haldeman C W, Dunn M G. Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine-Part II:Influence of Inlet Temperature Profile on Blade Row and Shroud [J]. Journal of Turbomachinery-Transactions of the Asme, 2012,134(1):011007(1-8).
    [62]Mathison R M, Haldeman C W, Dunn M G. Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine-Part III:Impact of Hot-Streak Characteristics on Blade Row Heat Flux [J]. Journal of Turbomachinery-Transactions of the Asme,2012,134(1):011008(1-9).
    [63]Haldeman C W, Dunn M G, Mathison R M. Fully Cooled Single Stage HP Transonic Turbine-Part I:Influence of Cooling Mass Flow Variations and Inlet Temperature Profiles on Blade Internal and External Aerodynamics [J]. Journal of Turbomachinery-Transactions of the Asme, 2012,134(3).
    [64]Haldeman C W, Dunn M G, Mathison R M. Fully Cooled Single Stage HP Transonic Turbine-Part II:Influence of Cooling Mass Flow Changes and Inlet Temperature Profiles on Blade and Shroud Heat-Transfer [J]. Journal of Turbomachinery-Transactions of the Asme, 2012,134(3).
    [65]Jenny P, Lenherr C, Kalfas A. Effect of hot streak migration on unsteady blade row interaction in an axial turbine [M].2010.
    [66]Rai M M and Dring R P. Navier-Stokes analyses of the redistribution of inlet temperature distortions in a turbine [J]. AIAA Journal of Propulsion and Power, 1990,6(3):276-282.
    [67]Krouthen B and Giles M B. Numerical investigation of hot streaks in turbines [J]. AIAA Journal of Propulsion and Power, 1990, 6(6):769-776
    [68]Dorney D J, Davis R L, Edwards D E and Madavan N K. Unsteady analysis of hot streak migration in a turbine stage [J]. AIAA Journal of Propulsion and Power, 1992, 8(2): 520-529.
    [69]Dorney D J, Davis R L and Sharma O P. Two-dimensional inlet temperature profile attenuation in a turbine stage [C]. ASME Paper 91-GT-406,1991.
    [70]Sharma O P, Pichett G F and Ni R H. Assessment of unsteady flows in turbines [C]. ASME Paper 90-GT-150,1990.
    [71]Dorney D J. Numerical investigation of hot streak temperature ratio scaling effects [C]. AIAA Paper 96-0619,1996.
    [72]Harasgama S P. Combustor exit temperature distortion effects on heat transfer and aerodynamics within a rotating turbine blade passage [C]. ASME Paper 90-GT-174, 1990.
    [73]Takahashi R K, Ni R H. Unsteady euler analysis of the redistribution of an inlet temperature distortion in a turbine [C], AIAA 90-2262, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Orlando FL, July 16-18,1990.
    [73]Takahashi R K and Ni R H. Unsteady hot streak simulation through a 1-1/2 stage turbine [C]. AIAA Paper 91-3382,1991.
    [74]Saxer A P and Felici H M. Numerical analysis of 3-D unsteady hot streak migration and shock interaction in a turbine stage [J]. Journal of Turbomachiney,1996,118 (4):268-277.
    [75]Shang T and Epstein A H. Analysis of hot streak effects on turbine rotor heat load [J]. Journal of Turbomachinery-Transactions of the ASME,1997,119(3):544-553.
    [76]Gundy-Burlet K L and Dorney D J. Effects of radial location on the migration of hot streaks in a turbine [J]. AIAA Journal of Propulsion and Power, 2000, 16(3):377-387.
    [77]Dorney D J and Sondak D L. Effects of tip clearance on hot streak migration in a high-subsonic single-stage turbine [J]. Journal of Turbomachinery-Transactions of the ASME,2000,122(4):613-620.
    [78]Prasad D and Hendricks G J. A numerical study of secondary flow in axial turbines with application to radial transport of hot streaks [J]. Journal of Turbomachinery-Transactions of the ASME,2000,122(4):667-673.
    [79]Hawthorne W R. Secondary circulation in fluid flow[C]. London, Ser. A, 1951,206: 374-387.
    [80]Sondak D L, Gupta V, Orkwis P D and Dorney D J. Effects of blade count on linearized and nonlinear hot streak clocking simulations [J]. AIAA Journal of Propulsion and Power, 2002, 18(6):1273-1279.
    [81]Aksoy H, Liu J S, Couey P and Reyes V. Three-dimensional analysis of hot streak attenuation in a high pressure turbine stage [C]. AIAA Paper 2002-3646,2002.
    [82]He L, Menshikova V and Haller B R. Effect of hot-streak counts on turbine blade heat load and forcing [J]. AIAA Journal of Propulsion and Power, 2007, 23(6):1235-1241.
    [83]Salvadori S, Montomoli F, Martelli F, et al. Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine With Inlet Temperature Distortions [J]. Journal of Turbomachinery-Transactions of the Asme, 2011,133(3).
    [84]Basol A M, Jenny P, Ibrahim M, et al. Hot Streak Migration in a Turbine Stage:Integrated Design to Improve Aerothermal Performance [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 2011,133(6).
    [85]Ong J, Miller R J, Denton J D. The prediction of hot streak migration in a high-pressure turbine [J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 2010,224(A1):119-128.
    [86]Mamaev B I, Petukhovskiy M M, Asme. Gas temperature profile attenuation through a multistage axial-flow turbine [M].2009.
    [87]季路成,杨吉民,徐建中.关于1+1对转涡轮中热痕现象的研究[J].工程热物理学报,2001,22(6):683-686.
    [88]刘高文,刘松龄.热斑在1-1/2级涡轮内的非定常迁移数值模拟[J].航空动力学报,2004,19(6):855-859.
    [89]李宇,邹正平,刘火星,叶建,李维,周志翔.叶片安装角偏差对涡轮通道内热斑迁移的影响[C].中国工程热物理学会热机气动热力学学术会议论文,天津,编号:082041,2008.
    [90]赵庆军.无导叶对转涡轮流动特性分析及其进口热斑迁移机理研究[D].工程热物理研究所,2007.
    [91]Zhao Q J, Wang H S, Zhao X L, and Xu J Z. Numerical investigation on the influence of hot streak temperature ratio in a high-pressure stage of vaneless counter-rotating turbine [J].International Journal of Rotating Machinery, Vol.2007, 2007.
    [92]Zhao Q J, Wang H S, Zhao X L, and Xu J Z. Investigation of influencing factors of hot streaks migration in high pressure stage of a vaneless counter-rotating turbine [J]. Science in China Series E-Technological Sciences, Vol.51, No.2, 2008:127-144.
    [93]赵庆军,王会社,唐菲,赵晓路,徐建中.进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析[J].中国科学E辑:技术科学,2008,38(1):55-71.
    [94]Zhao Q J, Tang F, Wang H S, Du J Y, Zhao X L and Xu J Z. Influence of hot streak temperature ratio on low pressure stage of a vaneless counter-rotating turbine [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2008,130(3): 031901(1-10).
    [95]Zhao Q J, Tang F, Wang H S, Du J Y, Zhao X L and Xu J Z. Influence of hot streak temperature ratio on low pressure stage of a vaneless counter-rotating turbine [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, Vol.130, No.3,2008: 031901(1-10).
    [96]Hollanders H, Lerat A and Peyret R. Three-dimensional calculation of transonic viscous flows by an implicit method [J].AIAA Journal,1985,23(11):1670-1678.
    [97]Rai M M. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction: Part I-Methodology [J].AIAA Journal of Propulsion and Power, 1989, 5(3):305-311.
    [98]Rai M M. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction: Part II-Results [J]. AIAA Journal of Propulsion and Power, 1989, 5(3):312-319.
    [99]Madavan N K, Rai M M and Gavali S. Multipassage three-dimensional Navier-Stokes simulation of turbine rotor-stator interaction [J]. AIAA Journal of Propulsion and Power, 1993,9(3):389-396.
    [100]Jameson A, Schmidt W and Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes [C]. AIAA Paper 81-1239, 1981.
    [101]Jameson A. Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings [C]. AIAA Paper 91-1596,1991.
    [102]Spalart P and Allmaras S. A one-equation turbulence model for aerodynamic flows [C]. AIAA Paper 92-0439, 1992.
    [103]Schwab J R, Stabe R G and Whitney W J. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile [C]. AIAA Paper 83-1175, 1983.
    [104]Stabe R G, Whitney W J and Moffitt T P. Performance of a high-work low-aspect ratio turbine tested with a realistic inlet radial temperature profile [C]. AIAA Paper 84-1161, 1984.
    [105]Aungier R H. Turbine aerodynamics: Axial-flow and radial-flow turbine design and analysis [C]. ASME Press.2006.
    [106]《航空发动机设计手册》总编委会.航空发动机设计手册.第10册:涡轮.第一版.北京:航空工业出版社,2001.
    [107]刘锡阳,温泉,赵晓路.双涵道叶轮机S2流面反问题计算方法[J].工程热物理学报,2006,27(3):417-419.
    [108]朱荣国.使用非正交曲线坐标与速度分量S2流面反问题流场线松弛解[J].工程热物理学报,1980,1(1):28-35.
    [109]舒士甄,朱力,柯玄龄,蒋滋康.叶轮机械原理[M].第一版.北京:清华大学出版社, 1991.
    [110]夏禹.涡轮叶片CAD系统研究[D].西北工业大学,2004.
    [111]周逊,韩万金.涡轮矩形叶栅中的漩涡模型的进展回顾[J],航空动力学报,2004,16(3):199-198.
    [112]林奇燕,郑群,岳国强.叶栅二次流漩涡结构与损失分析[J],航空动力学报,22(9):1518-1525.
    [113]王仲奇,冯国泰,王松涛,陈乃兴.透平叶片中的二次流旋涡结构的研究[J].工程热物理学报,23(5):553-556.
    [114]Jilek J. An experimental investigation of the three-dimensional flow within large-scale turbine cascades[C]. ASME Paper, No.86-GT-170
    [115]沈维道,蒋智敏,童钧耕.工程热力学[M].第三版,高等教育出版社,2000.
    [116]潘锦珊.气体动力学基础[M].第一版,国防工业出版社,1989.
    [117]王会社,赵庆军,赵晓路,徐建中.1+1/2对转涡轮激波结构的数值研究[J].工程热物理学报,2005,26(2):225-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700