用户名: 密码: 验证码:
涡轮中气膜孔孔型及叶片气膜冷却的流动和冷却机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机采用燃气轮机可以提高飞机推力、节省空间、减小体积、提高飞机机动性能。随着航空发动机技术的发展,涡轮前温度不断升高,目前最先进航空发动机的涡轮前温度已经接近2000K。因此为了保障航空发动机的正常运行,合理的冷却技术是十分必要的。气膜冷却作为现代航空燃气轮机涡轮冷却技术的一种重要方法,应用广泛,也越来越受到人们的重视。
     在前人开展有关气膜冷却相关流动和传热冷却特性研究的基础上,本文进一步对不同形状的气膜孔孔型进行了数值和实验研究。另外,本文在1+1/2对转涡轮高压动叶叶顶应用了一种新型的冷却结构,并对其在不同工况下的流动和传热冷却性能进行了详细的数值研究。此外,本文在前缘气膜冷却方面也做了部分工作。本文的主要工作和结论如下:
     1.在总结提高气膜冷却效率途径的理论基础之上,针对原双射流气膜孔的缺点,提出了一种新型渐扩型双射流气膜孔,着重研究了渐扩型双射流气膜孔形成反肾形涡对的机理、不同吹风比对双射流气膜孔涡系结构及气膜冷却效率的影响、不同侧向距离对双射流气膜孔下游气膜冷却效率的影响等。详细的数值研究表明,渐扩型双射流气膜孔在多个吹风比下,均能获得比原双射流气膜孔更高的气膜冷却效率。侧向距离对渐扩型双射流气膜孔的影响的研究表明,两单孔侧向距离为1.5D时,渐扩型双射流气膜孔的流动和冷却特性表现良好,形成了均匀的反肾型涡系结构。
     2.根据双射流气膜孔的数值研究结果搭建了低速风洞实验平台,对渐扩型双射流气膜孔等多种气膜孔结构进行了实验研究。研究结果表明:渐扩型双射流气膜孔在两单孔侧向距离为1.5D时,其下游的气膜冷却效率分布受吹风比影响不大,均大于相同吹风比下原双射流气膜孔下游的气膜冷却效率。也大于出口槽型气膜孔下游的气膜冷却效率。
     3.本文对1+/2对转涡轮高压动叶叶顶气膜冷却的传热和冷却性能进行了数值研究,提出了一种新型的高压动叶叶顶冷却布置方案,此方案采用了一种收缩缝型气膜孔彼此相连形成连续式的冷却布置。研究发现当叶顶间隙为0.7mm,吹风比M=1.0时,此气膜孔布置方案与相同冷却气体流量的传统圆形孔冷却结构相比,叶顶热负荷降低20.8%。同时,本文还针对不同吹风比和不同间隙高度下收缩缝型气膜孔冷却结构应用于1+1/2对转涡轮高压动叶叶顶的情况进行了详细的数值研究,得到了此冷却结构详细的传热和冷却特性。
     4.本文对1+1/2对转涡轮低压动叶前缘气膜冷却进行了非定常数值模拟,通过对其流场和温度场的深入研究,分析了前缘气膜冷却在吸力面和压力面上的非定常特性。
Gas turbine engine used in aviation can improve plane thrust, save space, reduce aircraft volume, and improve plane motor performance. With the development of aero engine technology, the temperature before turbine was gaining height. The degree of T3*in the most advanced aircraft engine has been raised to about2000K. It is therefore most necessary to adopt rational cooling strategies to reduce the heat load of turbine vanes and blades, which is important guarantee to extend the life of gas turbine. Film cooling technology, as an important cooling method, has received attention from more and more researchers. Based on the previous research work about film cooling, different film cooling geometry has been studied in this paper. Additionally, a new-type of film cooling geometry has been used on the tip of HPT blade of1+1/2counter-rotating turbine. Detailed numerical research work has been carried out to obtain the heat transfer and cooling performance of the new-type of film coolig geometry. Leading edge film cooling has also been studied in the paper. The main content in this paper is listed as follows:
     1. In order to further improve the film cooling effectiveness of double-jet film-cooling (DJFC) geometry, a diffused double-jet film-cooling geometry is presented in this paper. Numerical investigation of this geometry and cylindrical double-jet geometry is carried out. This paper is focus on the effect of vertical distance of the two holes on film cooling effectiveness. Computational results show that both of the two DJFC holes can lead to anti-kidney vortex structure in all cases. Diffused double-jet geometry is able to provide larger lateral film coverage area on the platform, more symmetrical vortex structure and better cooling effect. It is found that the optimal vertical distance of diffused double-jet geometry is1.5D, while it is ID for cylindrical geometry. Additionally, the laterally averaged film cooling effectiveness of the diffused double-jet hole with vertical distance of1.5D is higher than the cylindrical hole with vertical distance of ID at all blowing ratios investigated.
     2. A low speed wind tunnel has been constructed to verify the numerical research work of diffused double-jet film-cooling geometry. The experimental results indicate that blowing ratio has little effect on the laterally averaged film cooling effectiveness as the distance of the two single holes of diffused double-jet film-cooling geometry is1.5D.
     3. A new-type of converging-slot hole on1+1/2counter-rotating turbine blade tip has been designed and studied. Baseline flat tip geometry with cylindrical holes was considered. The research work found that the blade tip heat load reduced by20.8%of1+1/2counter-rotating turbine as the new-type of converging-slot hole has been used on the blade tip at blowing ratio M=1.0, tip clearance k=0.7mm. Moreover, this new-type of cooling geometry has been detailed studied at different tip clearance and different blowing ratios. Detailed heat transfer and film cooling performance of this new-type of cooling geometry have been obtained..
     4. In this paper,3D unsteady numerical simulation of leading edge of1+1/2counter-rotating turbine LPT has been carried out to obtain detailed flow field and temperature field. And then, the unsteady characteristics of leading edge film cooling can be received.
引文
[1]程代京,谢永慧(译).燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005.Original literature:Han JC(韩介勤),Dutta S, Ekkad S V. Gas Turbine Heat Transfer and Cooling Technology.1st Editon. New Youk:Taylor&Francis, 2000.
    [2]沈维道,蒋智敏,童钧耕.工程热力学.高等教育出版社,2001.
    [3]Kwak J S, Han J C. Heat Transfer Coefficient and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade. Journal of Turbomachinery.2003, 125(4):648-657.
    [4]廉筱纯,吴虑.航空发动机原理.西安:西北工业大学出版社,2005.
    [5]方昌德,马春燕.航空发动机的发展历程.北京:航空工业出版社,2007.
    [6]Goldstein R J. Film Cooling. Advances in Heat Transfer.1971,7:321-379.
    [7]Bunker R S. A Review of Shaped Hole Turbine Film Cooling Technology. Journal of Heat Transfer.2005,127(4):441-453.
    [8]Goldstein R J, Eckert E R G, Ramsey J W. Film Cooling with Injection through Holes:Adiabatic Wall Temperatures Downstream of a Circular Hole. ASME Jonranl of Engineering for Power.1968,90(4):384-395.
    [9]Goldstein R J, Eckert E R G, Eriksen V L, et al. Film Cooling Following Injection Through Inclined Circular Tubes. Israel Journal of Technology.1970, 8:145-154.
    [10]Leylek J H, Zerkle R D. Discrete-Jet Film Cooling:A Comparison of Computational Results With Experiments. Journal of Turbomachinery.1994, 116(3):358-368.
    [11]Wilfert G, Fottner L. The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade. Journal of Turbomachinery.1996,118(3):468-478.
    [12]Ligrani P M, Wigle J M, Ciriello S, et al. Film-Cooling From Holes With Compound Angle Orientations:Part 1-Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing. Journal of Heat Transfer.1994, 116(2):341-352.
    [13]Ligrani P M, Wigle J M, Jackson S W. Film-Cooling From Holes With Compound Angle Orientations:Part 2-Results Downstream of a Single Row of Holes With 6d Spanwise Spacing. Journal of Heat Transfer.1994,116(2): 353-362.
    [14]Sen B, Schmidt D L, Bogard D G. Film Cooling With Compound Angle Holes: Heat Transfer. Journal of Turbomachinery.1996,118(4):800-806.
    [15]Schmidt D L, Sen B, Bogard D G. Film Cooling With Compound Angle Holes: Adiabatic Effectiveness. Journal of Turbomachinery.1996,118(4):807-813.
    [16]Bons J P, Macarthur C D, Rivir R B. The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness. Journal of Turbomachinery.1996, 118(4):814-825.
    [17]Goldstein R J, Eckert E R G. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling. International Journal of Heat and Mass Transfer.1974,17(5):595-607.
    [18]Thole K, Gritsch M, Schulz A, et al. Flowfield Measurements for Film-Cooling Holes With Expanded Exits. Journal of Turbomachinery.1998,120(2): 327-336.
    [19]Hyams D G, Leylek J H. A Detailed Analysis of Film Cooling Physics Part Ⅲ:Streamwise Injection With Shaped Holes. Journal of Turbomachinery.2000, 122(1):122-132.
    [20]Brittingham R A, Leylek J H. A Detailed Analysis of Film Cooling Physics Part Ⅳ:Compound-Angle Injection With Shaped Holes. Journal of Turbomachinery. 2000,122(1):133-145.
    [21]Chen P H, Hung M S, Ding P P. Film Cooling Performance on Curved Walls With Compound Angle Hole Configuration. Annals of the New York Academy Of Sciences.2001,934:353-360.
    [22]Gritsch M, Colban W, Schar H, et al. Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes. Journal of Turbomachinery. 2005,127(4):718-725.
    [23]Bunker R S. Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot. ASME Paper,2002, GT2002-30178.
    [24]Lu Y, Dhungel A, Ekkad S V, et al. Effect of Trench Width and Depth on Film Cooling From Cylindrical Holes Embedded in Trenches. Journal of Turbomachinery.2009,131(1):11003-11013.
    [25]Sargison J E, Guo S M, Oldfield M L G, et al. A Converging Slot-Hole Film-Cooling Geometry-Part 1:Low-Speed Flat-Plate Heat Transfer and Loss. Journal of Turbomachinery.2002,124(3):453-460.
    [26]Sargison J E, Guo S M, Oldfield M L G, et al. A Converging Slot-Hole Film-Cooling Geometry-Part 2:Transonic Nozzle Guide Vane Heat Transfer and Loss. Journal of Turbomachinery.2002,124(3):461-471.
    [27]Azzi A, Jubran B A. Numerical Modeling of Film Cooling From Converging Slot-Hole. Heat Mass Transfer.2007,43:381-388.
    [28]Okita Y, Nishiura M. Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry. Journal of Turbomachinery.2007,129(2): 331-339.
    [29]Bradbury L J S, Khadem A H. The Distortion of a Jet by Tabs. Journal of Fluid Mechanics.1975,70(4):801-803.
    [30]Ekkad S V, Nasir H, Acharya S. Film Cooling on a Flat Surface with a Single Row of Cylindrical Angled Holes:Effect of Discrete Tabs. Orlando, Florida. Presented at the 2000 IMECE conference.2000.
    [31]Kusterer K, Bohn D, Sugimoto T, et al. Double-Jet Ejection of Cooling Air for Improved Film Cooling. Journal of Turbomachinery.2007,129(4):809-815.
    [32]Kusterer K, Bohn D, Sugimoto T, et al. Influence of Blowing Ratio on the Double-Jet Ejection of Cooling Air. ASME Paper,2007, GT2007-27301: 305-315.
    [33]Kusterer K, Elyas A, Bohn D, et al. Double-Jet Film-Cooling for Highly Efficient Film-Cooling With Low Blowing Ratios. ASME Paper,2008, GT2008-50073:23-34.
    [34]Kusterer K, Elyas A, Bohn D, et al. A Parametric Study on the Influence of the Lateral Ejection Angle of Double-Jet Holes on the Film Cooling Effectiveness for High Blowing Ratios. ASME Paper,2009, GT2009-59321:199-211.
    [35]Kusterer K, Elyas A, Bohn D, et al. Film Cooling Effectiveness Comparison Between Shaped-and Double Jet Film Cooling Holes in a Row Arrangement. ASME Paper,2010, GT2010-22604:1503-1515.
    [36]刘存良,朱惠人,白江涛.收缩-扩张形气膜孔提高气膜冷却效率的机理研究.航空动力学报.2008,23(4):598-604.
    [37]Liu C L, Zhu H R, Bai J T, et al. Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios. Journal of Turbomachinery.2011, 133(1):11011-11020.
    [38]姚玉,张靖周,何飞,等.涡轮叶片吸力面上收敛缝形孔气膜冷却效率的数值研究.航空学报.2010,31(6):1115-1120.
    [39]姚玉,张靖周,何飞,等.涡轮叶片吸力面上收敛缝形孔气膜冷却对叶栅气动损失的影响.航空学报.2010,31(7):1312-1317.
    [40]杨成凤,张靖周,陈利强,等.前缘突脊倾斜气膜冷却效果的实验.工程热物理学报.2008,29(7):1174-1176.
    [41]Bai J T, Zhu H R, Liu C L. Film Cooling Characteristic of Double-Fan-Shaped Film Cooling Holes. ASME Paper.2009, GT2009-59318:185-198.
    [42]戴萍,林枫.不同孔形气膜冷却效率的数值模拟.中国电机工程学报.2010,30(14):102-108.
    [43]于锦禄,赵罡,何立明,等.横向槽横向宽度对气膜孔冷却性能影响的数值研究.中国电机工程学报.2010,30(17):79-84.
    [44]李佳,韩昌,任静,等.基于压敏漆的带横槽气膜冷却实验与数值研究.工程热物理学报.2010,31(2):239-242.
    [45]Mayle R E, Metzger D E. Heat Transfer at the Tip of an Unshrouded Turbine Blade. Proceedings of the 7th International Heat Transfer Conference.1982, pp: 87-92
    [46]Metzger D E, Bunker R S, Chyu M K. Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel. Journal of Heat Transfer.1989, 111(1):73-79.
    [47]Chyu M K, Moon H K, Metzger D E. Heat Transfer in the Tip Region of Grooved Turbine Blades. Journal of Turbomachinery.1989,111(2):131-138.
    [48]Bunker R S, Bailey J C, Ameri A A. Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine:Part 1-Experimental Results. Journal of Turbomachinery.2000,122(2):263-271.
    [49]Azad G S, Han J C, Boyle R J. Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade. Journal of Turbomachinery.2000,122(4):725-732.
    [50]Azad G S, Han J C, Teng S, et al. Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip. Journal of Turbomachinery.2000,122(4):717-724.
    [51]Azad G S, Han J, Bunker R S, et al. Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer. Journal of Heat Transfer.2002, 124(3):452-459.
    [52]Teng S, Han J, Azad G M S. Detailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip. Journal of Heat Transfer.2001,123(4): 803-809.
    [53]Dunn M G, Haldeman C W. Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade. Journal of Turbomachinery.2000, 122(4):692-698.
    [54]Ameri A A, Steinthorsson E. Prediction of Unshrouded Rotor Blade Tip Heat Transfer. ASME Paper.1995,95-GT-142.
    [55]Ameri A A, Steinthorsson E. Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer. ASME Paper.1996,96-GT-189.
    [56]Ameri A A, Steinthorsson E, Rigby D L. Effect of Squealer Tip on Rotor Heat Transfer and Efficiency. Journal of Turbomachinery.1998,120(4):753-759.
    [57]Ameri A A, Steinthorsson E, Rigby D L. Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficency in Axial Turbines. Journal of Turbomachinery.1999,121(4):683-693.
    [58]Ameri A A, Bunker R S. Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine:Part 2-Simulation Results. Journal of Turbomachinery.2000,122(2):272-277.
    [59]Kwak J S, Han J C. Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip. Journal of Heat Transfer.2003,125(3):494-502.
    [60]Newton P J, Lock G D, Krishnababu S K, et al. Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part III:TIP Cooling. Journal of Turbomachinery.2009,131(1):11008-11012.
    [61]Hohlfeld E M, Christophel J R, Couch E L, et al. Predictions of Cooling From Dirt Purge Holes Along the Tip of a Turbine Blade. ASME Paper.2003, GT2003-38251:153-162.
    [62]Ahn J, Mhetras S, Han J C. Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint. Journal of Heat Transfer.2005,127(5): 521-530.
    [63]杨佃亮,丰镇平.叶顶凹槽对燃气透平动叶气动性能及叶顶传热的影响.西安交通大学学报.2008,42(07):838-842.
    [64]杨佃亮,丰镇平,余小兵.凹槽叶顶非定常间隙泄漏流动和传热的数值研究.工程热物理学报.2009,30(04):591-594.
    [65]杨佃亮,丰镇平.叶顶形状对动叶顶部流动和传热的影响研究.西安交通大学学报.2008,42(05):537-540.
    [66]李军,王金山,蒋勇,等.凹槽状动叶顶部非定常气膜冷却性能的研究.西安交通大学学报.2010,44(05):5-9.
    [67]Abhari R S, Epstein A H. An Experimental Study of Film Cooling in a Rotating Transonic Turbine. Journal of Turbomachinery.1994,116(1):63-70.
    [68]Takeishi K, Aoki S, Sato T, et al. Film Cooling on a Gas Turbine Rotor Blade. Journal of Turbomachinery.1992,114(4):828-834.
    [69]Mehendale A B, Han J C. Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer. Journal of Turbomachinery.1992, 114(4):707-715.
    [70]Mehendale A B, Han J C, Ou S. Influence of High Mainstream Turbulence on Leading Edge Heat Transfer. Journal of Heat Transfer.1991,113(4):843-850.
    [71]Mehendale A B, Han J C, Ou S, et al. Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection:Part II—Effect on Film Effectiveness and Heat Transfer Distributions. Journal of Turbomachinery.1994, 116(4):730-737.
    [72]Ou S, Han J C, Mehendale A B, et al. Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection:Part I—Effect on Heat Transfer Coefficients. Journal of Turbomachinery.1994,116(4):721-729.
    [73]Teng S, Sohn D K, Han J. Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade. Journal of Turbomachinery. 2000,122(2):340-347.
    [74]Du H, Ekkad S V, Han J C. Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade. Journal of Turbomachinery.1999,121(3):448-455.
    [75]Du H, Han J C, Ekkad S V. Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade. Journal of Turbomachinery.1998,120(4):808-817.
    [76]Ahn J, Schobeiri M T, Han J, et al. Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade. ASME Paper.2004, IMECE2004-59852, pp. 565-574.
    [77]Ahn J, Schobeiri M T, Han J, et al. Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint. ASME Paper.2005, GT2005-68344, pp.375-384.
    [78]Abhari R S, Guenette G R, Epstein A H, et al. Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations. Journal of Turbomachinery.1992,114(4):818-827.
    [79]Dunn M G, Kim J, Civinskas K C, et al. Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine. Journal of Turbomachinery-.1994,116(1):14-22.
    [80]Lin Y L, Shih T I P. Film Cooling of a Cylindrical Leading Edge With Injection Through Rows of Compound-Angle Holes. Journal of Heat Transfer.2001, 123(4):645-654.
    [81]Garg V K, Ameri A A. Comparison of Two-Equation Turbulence Models for Prediction of Heat Transfer on Film-Cooled Turbine Blades. Numerical Heat Transfer Part a-Applications.1997,32(4):347-371.
    [82]颜培刚,王松涛,韩万金,等.涡轮叶栅前缘气膜冷却数值模拟.航空动力学报.2003,18(05):623-628.
    [83]杨帆,朱惠人,李广超.叶片前缘气膜冷却数值模拟.机械设计与制造.2007(04):23-25.
    [84]王雷,王健.基于孔径变化的气膜冷却孔的优化设计.飞机设计.2008,28(04):53-56.
    [85]王晓东,康顺.涡轮叶栅前缘槽缝气膜冷却的数值模拟.工程热物理学报.2008,29(11):1835-1838.
    [86]李少华,张玲,朱励,等.涡轮叶片前缘气膜冷却的流线分析.中国电机工程学报.2010,30(14):96-101.
    [87]Wu C H. A General Theory Three-Dimentional Flow in Subsonic and Supersonic Streamline Curvature.1952 NACA-TN-2604.
    [88]Smith D J L, Frost D H. Calculation of The Flow Past Turbomachine Blades. Proceedings of the Institution of Mechanical Engineers.1969, Vol.184:72-85.
    [89]Wu C H. Three-Dimensional Turbomachine Flow Equations Expressed with Respect to Non-Orthogonal. IS ABE Paper.1976.
    [90]Zhao X L. Solution of Transonic Flow along SI Stream Surfaces Employing Non-Orthogonal Curvilinear Coordinates and Corresponding Non-Orthogonal Velocity Components. I Mech E Conference Publications.1984:183-189.
    [91]徐建中,顾春伟,石建成,等.拟流函数法—叶轮机械内三维流动分析问题和设计问题的一种求解方法.中国科学A辑.1992(02):208-216.
    [92]Wilkinson D H. Calculation of Blade-to-Blade Flow in a Turbomachine by Streamline Curvature. Aeronautical Research Council Report and Memorandum, 1972 No.3704.
    [93]Caspar J A, Hobbs D E, Davis R L. The Calculation of Two Dimensional Compressible Potential Flow in Cascades Using Finite Area Techniques. AIAA Paper,79-0077.1979.
    [94]陈凯.燃气涡轮冷却结构设计与气热弹多场耦合的数值研究.哈尔滨工业大学:博士学位论文,2010.
    [95]Wilcox D C. Multiscale Model for Turbulent Flows. AIAA Journal.1988, 26(11):1311-1320.
    [96]Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal.1994,32(8):1598-1605.
    [97]Barth T J, Jesperson D C. The Design and Application of Upwind Schemes on Unstructured Meshes. AIAA Paper,89-0366.1989.
    [98]Hylton L D, Mihelc M S, Turner E R, et al. Analytical and Experimental Evaluation of The Heat Transfer Distribution Over the Surfaces of Turbine Vanes. NASA Lewis Research Center,1983 NASA CR 168015.
    [99]Sinha A K, Bogard D G, Crawford M E. Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio. Journal of Turbomachinery.1991,113(3):442-449.
    [100]Buetefisch K A, Vennemann D. The Electron-Beam Technique in Hypersonic Rarefied Gas Dynamics. European Space Agency.1973:217-255.
    [101]Wallner R. Heat Transfer in Flooded Shell-and-Tube Evaporators. Tokyo, Japan. Proceedings of the Fifth International Heat Transfer Conference.1974.
    [102]Day C R B, Oldfield M L G, Lock G D. Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions. Experiments in Fluids.2000,29:111-129.
    [103]Booth T C, Dodge P R, Hepworth H K. Rotor-Tip Leakage:Part I-Basic Methodology. Journal of Engineering for Power.1982,104(1):154-161.
    [104]Bar-Itzhack I Y, Harman R R. Implicit and Explicit Spacecraft Gyro Calibration. AIAA Guidance, Navigation and Control Conference and Exhibit.2004, AIAA 2004-5343.
    [105]黄忠湖,王月奇,韩鉴元,等.叶尖间隙对跨音涡轮性能影响的试验研究.航空动力学报.1989(04):333-336.
    [106]Rhee D, Cho H H. Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in Low-Speed Annular Cascade-Part I:Near-Tip Surface. Journal of Turbomachinery.2006,128(1):96-109.
    [107]Rhee D, Cho H H. Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in a Low-Speed Annular Cascade—Part II: Tip and Shroud. Journal of Turbomachinery.2006,128(1):110-119.
    [108]王会社,张磊,雒伟伟,等.变工况下缩放型流道涡轮动叶中激波对吸力面气膜冷却的影响.工程热物理学报.2010(11).
    [109]张磊,王会社,王正明,等.某型高性能常规涡轮对转改型研究.工程热物理学报.2010(02).
    [110]张永军,王会社,王文三,等.无导叶对转涡轮高压动叶叶尖开槽的研究.工程热物理学报.2009(03):402-406.
    [111]张惠,王会社,徐建中,等.1+1/2对转涡轮高压动叶气膜冷却数值研究.工程热物理学报.2008(03):385-389.
    [112]赵庆军,王会社,唐菲,等.进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析.中国科学(E辑:技术科学).2008(01):55-71.
    [113]王会社,张惠,赵庆军,等.1+1/2对转涡轮高压动叶顶部间隙流场数值研究.工程热物理学报.2007(05):751-754.
    [114]赵庆军,王会社,赵晓路,等.无导叶对转涡轮进口热斑迁移特性分析.工程热物理学报.2007(01):40-42.
    [115]赵庆军,王会社,赵晓路,等.涡轮转速对无导叶对转涡轮流动特性的影响.工程热物理学报.2007(06).
    [116]张惠,王会社,唐菲,等.非设计工况下1+1/2对转涡轮性能研究.工程热物理学报.2007(04):571-573.
    [117]唐菲,陈党慧,秦立森,等.1+1/2对转涡轮短周期试验台性能测试.工程热物理学报.2006(06):944-946.
    [118]王会社,赵庆军,张惠,等.1+1/2对转涡轮低压动叶激波结构的研究.工程热物理学报.2006(06):941-943.
    [119]赵庆军,王会社,赵晓路,等.无导叶对转涡轮三维流场数值分析.推进技术.2006(02):114-123.
    [120]王会社,杨科,赵庆军,等.动叶顶部间隙对1+1/2对转涡轮性能的影响.工程热物理学报.2006(03):399-401.
    [121]赵庆军,王会社,赵晓路,等.无导叶对转涡轮三维流场的非定常数值模拟.工程热物理学报.2006(01):35-38.
    [122]季路成,黄海波,徐建中,等.1+1/2对转涡轮应用中的关键技术问题.工程热物理学报.2003(01):35-38.
    [123]季路成,项林,黄海波,等.1+1/2对转涡轮叶排轴向间距对性能影响的研究.工程热物理学报.2002(05):565-568.
    [124]季路成,钟文涛,徐建中.关于1+1/2对转涡轮的基本分析和初步设计.工程热物理学报.2001(02):167-170.
    [125]赵庆军,王会社,赵晓路,等.进口热斑径向作用位置对无导叶对转涡轮低压级温度场的影响.工程热物理学报.2009(02):214-216.
    [126]赵庆军,杨中,王会社,等.进口热斑径向作用位置对无导叶对转涡轮高压级温度场的影响.工程热物理学报.2008(10):1549-1652.
    [127]Qingjun Z, Fei T, Huishe W, et al. Influence of Hot Streak Temperature Ratio on Low Pressure Stage of a Vaneless Counter-Rotating Turbine. ASME Paper. 2007,2007-GT-27028.
    [128]Qingjun Z, Huishe W, Fei T, et al. Investigation of Influencing Factors of Hot Streaks Migration in High Pressure Stage of a Vaneless Counter-Rotating Turbine. Science in China Series E-Technological Sciences.2008,51(2): 127-144.
    [129]Heyes F J G, Hodson H P. Measurement and Prediction of Tip Clearance Flow in Linear Turbine Cascades. Journal of Turbomachinery.1993,115(3):376-382.
    [130]Mischo B, Behr T, Abhari R S. Flow Physics and Profiling of Recessed Blade Tips:Impact on Performance and Heat Load. Journal of Turbomachinery.2008, 130(2):21008.
    [131]Jennions I K, Adamczyk J J. Evaluation of the Interaction Losses in a Transonic Turbine HP Rotor/LP Vane Configuration. Journal of Turbomachinery.1997, 119(1):68-76.
    [132]Sondak D L, Dorney D J. Simulation of Vortex Shedding in a Turbine Stage. Journal of Turbomachinery.1999,121(3):428-435.
    [133]Hummel F. Wake-Wake Interaction and Its Potential for Clocking in a Transonic High-Pressure Turbine. Journal of Turbomachinery.2002,124(1): 69-76.
    [134]Nirmalan N V, Hylton L D. An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling. Journal of Turbomachinery.1990,112(3):477-487.
    [135]Abuaf N, Bunker R, Lee C P. Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade. Journal of Turbomachinery.1997,119(2):302-309.
    [136]Ames F E. Aspects of Vane Film Cooling With High Turbulence:Part I-Heat Transfer. Journal of Turbomachinery.1998,120(4):768-776.
    [137]Ames F E. Aspects of Vane Film Cooling With High Turbulence:Part II-Adiabatic Effectiveness. Journal of Turbomachinery.1998,120(4):777-784.
    [138]Ou S, Mehendale A B, Han J C. Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer:Effect of Film Hole Row Location. Journal of Turbomachinery.1992,114(4):716-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700