用户名: 密码: 验证码:
航空发动机低压涡轮内部流动及换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低压涡轮是航空发动机的重要部件,其效率变化对发动机推(功)重比、耗油率有显著的影响,因此,为提高航空发动机性能、推动先进技术的研发,有必要对低压涡轮内部流动及换热特性进行全面细致的研究。
     本文利用CFD技术对低压涡轮内部气动流动结构、高空低雷诺数(Re数)下内部流动及冷却特性、轮盘盘腔内部换热规律和流动损失机理进行了深入研究,并为下一步的低压涡轮流动及冷却特性实验研究工作开展了相关的实验装置研制及改造工作,主要研究内容如下:
     1.详细研究了某航空发动机涡轮不同工况气动特性。在总结其流动特性和流场结构的基础上进行了优化改型,效率提高0.8%,流量增加2.7%,低压涡轮输出功增加10.4%,证明所采用优化改型方法对发动机性能提升作用显著。
     2.采用气热耦合计算方法,对某航空发动机低压涡轮高空低Re数下的流动及冷却特性进行了深入研究,仔细分析了Re数对低压涡轮效率、流动和换热特性的影响。随着Re数(<2×105)的增加,附面层分离损失不断降低使得低压涡轮效率单调增加;而Re数的降低导致换热系数降低,对比发现在地面高Re数工况下低压涡轮叶片冷却效果最好。
     3.对低压涡轮动叶叶顶冷却射流的研究表明射流能够减小泄漏量、增加泄漏涡强度、促进射流与主流掺混,从而明显提高了涡轮效率,且存在一个最优射流强度πj使得低压涡轮性能达到最优。
     4.在前人实验工作的基础上,对发动机涡轮盘腔内部的流动和换热特性进行深入分析研究,发现在不同的湍流参数λT、预旋比βP和旋转雷诺数Re,工况下,惯性力和离心力占不同的主导地位,从而导致流场结构呈现出规律性变化;Nu数随Re。的增加而增加,低射流强度时Nu数沿径向是递增的,而高射流强度时Nu数沿径向是递减的。
     5.详细介绍为开展低压涡轮内部流动及冷却特性实验研究而对IET短周期涡轮实验台进行的适应性研制改造工作,测试结果表明各实验装置均能满足实验研究工况要求,可以开展相关实验工作。
Low Pressure Turbine (LPT) is an important component of aeroengine. The performance of LPT greatly influences the thrust-weight ratio and specific fuel consumption of aeroengine. It is of imperative to investigate the flow and heat transfer characteristics in LPT for improving the aeroengine performance and advanced technology research.
     The performance of LPT, including the aerodynamic flow features, the flow and cooling characteristics under the condition of altitude low Reynolds number(ALRN), and the flow and heat transfer in rotor-stator cavity are investigated by advanced computional fluid dynamics(CFD) in the thesis. The redesign and improvement work of the short duration turbine rig has also been carried out for further experimental investigation. The main contents of the thesis are listed as follows:
     1. The aerodynamic characteristics of an aeroengine turbine under various working conditions are investigated in detail. The component optimization is, moreover, carried out on the basis of the flow features and flowfield structures of the turbine. The efficiency of the optimized turbine is0.8%higher than the original one. Furthermore, the mass flow is improved by2.7%and the power of the LPT is increased by10.4%. It is concluded that the optimization work can increase the performance of the turbine remarkably.
     2. Flow and cooling characteristics of an aeroengine LPT under ALRN are investigated by conjugate heat transfer methodology, meanwhile the effects of Reynolds number on the LPT efficiency and characteristics of flow and cooling are discussed in detail. With the increasing of Reynolds number (<2x105), the efficiency of the LPT is increasing monotonically because of the decrease of boundary layer separation loss. The heat transfer coefficient is decreasing with the decreasing of Reynolds number.
     3. The research of tip injection of the LPT rotor indicates that the tip injection improves the efficiency apparently, and the turbine efficiency can be best with optimal jet intensity πj. The tip leakage mass flow is decreased and the tip leakage vortex is enhanced by the tip injection, meanwhile the tip injection accelerates the injection flow and main flow to mix together.
     4. Based on the previous experimental results in literatures, the flow and heat transfer characteristics in a pre-swirl rotor-stator cavity are further investigated. The result indicates that the flow features and flowfield structures are mainly influenced by centrifugal force and apparent force with different turbulent flow parameter λr, pre-swirl ratio βρ, and rotational Reynolds number Re. The nusselt number on the rotor surface increases with Re? increasing. Furthermore, the Nusselt number is progressively increasing along with the radial direction when the jet intensity of the rotor-stator cavity is low, however the nusselt number is degressive along with the radial direction when the jet intensity is high.
     5. The development and improvement of IET short duration experiment rig for further experiment study of flow and cooling characteristics is presented. The test results indicate that experiment facilities are well prepared for further experimental study.
引文
[1]刘大响.对加快发展我国航空动力的思考[J].航空动力学报,2001,16(1):1-7.
    [2]蒋洪德.美国航空发动机和计算流体力学发展情况介绍[R].气动热力学发展战略研讨会专题报告汇编,1989,(3):29-36.
    [3]方昌德.航空发动机的发展前景[J].航空发动机,2004.30(1):1-5.
    [4]韩鸿硕(译).美国国防部关键技术计划[R].北京:航空航天部航天科技情报研究所,1990.
    [5]方昌德.美国AIAA呼吁政府支持综合高性能涡轮发动机技术[R].中国航空工业发展研究中心航空技术所,2007.
    [6]陈光,洪杰,马艳红等.航空燃气涡轮发动机结构[M].北京:北京航空航天大学出版社,2010.
    [7]《航空发动机设计手册》总编委会.航空发动机设计手册,第10册:涡轮[M].第一版.北京:航空工业出版社,2001.
    [8]曹玉璋,陶智,徐国强等.航空发动机传热学[M].第一版.北京:北京航空航天大学出版社,2005.
    [9]廉筱纯,吴虎.航空发动机原理[M].第一版.西安:西北工业大学出版社,2005.
    [10]吴大观.航空发动机研制工作论文集[C].第一版.北京:航空工业出版社,2009.
    [11]APTD计划取得阶段性成果[J].燃气涡轮试验与研究,2006,19(3):5-7.
    [12]程代京,谢永慧(译).燃气轮机传热和冷却技术[M].第一版.西安:西安交通大学出版社,2005.Original literature: Han J C, Dutta S, Ekkad S V. Gas turbine heat transfer and cooling technology[M]. First Edition. New York: Taylor&Francis, 2000.
    [13]戴萍,林枫.燃气轮机叶片气膜冷却研究进展[J].热能动力工程,2009,24(1):1-6.
    [14]《航空发动机设计手册》总编委会.航空发动机设计手册,第16册:空气系统及传热分析[M].第一版.北京:航空工业出版社,2001.
    [15]倪萌,朱惠人,裘云等.航空发动机涡轮叶片冷却技术综述[J].燃气轮机技术,2005,18(4):25-33.
    [16]Bradbury, L. J. S. The Structure of a Self-Preserving Turbulent Plane Jet[J]. Journal of Fluid Mechanics,1965,23(1):31-64.
    [17]R. J.Goldstein, A. I. Behbahani, K. Kieger Heppelmann. Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet[J]. Int. J. heat and Mass Transfer, 1986, 29(8):1227-1235.
    [18]R.J. Goldstein, W.S. Seol, Heat transfer to a row of impinging circular air jets including the effect of entrainment[J]. Int. J. heat and Mass Transfer, 1991,34(8):2133-2147.
    [19]Huang Y. Ekkad S. V.Han J. C. Detailed heat transfer distributions under an array of orthogonal impinging jets[J]. AIAA Journal of Thermophysics and Heat Transfer, 1998, 12(1):73-79.
    [20]Jung-Yang San, Mao-De Lai. Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets [J]. Int. J. heat and Mass Transfer, 2001,44(21):3997-4007.
    [21]P.Brevet, C. Dorignac, M. Jolly, J. J. Vullierme. Heat transfer to a row of impinging jets in consideration of optimization[J]. Int. J. heat and Mass Transfer, 2002,45(20):4191-4200.
    [22]Srinath V. Ekkad, David Kontrovitz. Jet impingment heat transfer on dimpled target surfaces[J]. Int. J. Heat and Fluid Flow, 2002, 23(1):22-28.
    [23]Seok Pil Jang, Sung Jin Kim. Fluid Flow and Thermal Characteristics of a MicroChannel Heat Sink Subject to an Impinging Air Jet[J]. J. Heat Transfer, 2005,127(7):770-779.
    [24]Tadhg S. O'Donovan, Darina B. Murray. Effect of Acoustic Excitation on the Heat Transfer to an Impinging Air Jet[R]. ASME 2007-HT-32800.
    [25]Han J C, Park J S. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters[R].1986, NASA Contractor Report 4015.
    [26]Ekkad S V, H an J C. Detailed heat transfer distributions in two-pass square channels with rib turbulaters[J]. International Journal of Heat and Mass Transfer, 1998, 41(23): 2525-2537.
    [27]Z. Wang, P. T. Ireland, S. T. Kohler, J.W. Chew, Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs[J]. ASME, Journal of Turbomachinery, 1998, 120(1):63-69.
    [28]M. E. Taslim, A. Lengkong. 45 deg Staggered Rib Heat Transfer Coefficients in a Square Channel[J]. ASME, Journal of Turbomachinery, 1998, 120(3):571-580.
    [29]G. J. Koroky, M. E. Taslim, Rib Heat Transfer Coefficient Measurements in a Rib-Roughened Square Passage[J]. ASME, Journal of Turbomachinery, 1998, 120(2): 376-385.
    [30]G. Rau, M. Cakan, D. Moeller, T. Arts, The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel[J]. ASME, Journal of Turbomachinery, 1998, 120(2):368-375.
    [31]C. Gau, I. C. Lee. Flow and impingement cooling heat transfer along triangular rib-roughened walls[J]. Int. J. heat and Mass Transfer, 2000, 43(24): 4405-4418.
    [32]Iacovides H. The measurement of local w all heat transfer in stationary U-ducts of strong curvature, with smooth and rib-roughened walls[J]. Journal of Turbomachinery, 2000, 122(2):386-392.
    [33]Robert Kimi, Sadanari Mochizuki, Akira Murata. Effect of Rib Arrangements on Heat Transfer and Flow Behavior in a Rectangular Rib-Roughened Passage:Application to Cooling of Gas Turbine Blade Trailing Edge[J]. ASME, Journal of Heat Transfer, 2001, 123(4):675-681.
    [34]Gm s. Azad, Mohammad J Uddin, Je-Chin Han, Hee-Koo Moon. BorisGlezer, Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-deg Angled Rib Turbulators[J]. ASME, Journal of Turbomachinery, 2002, 124(2):251-259.
    [35]M. Hirota, H. Fujita, H. Yokosawa, Experimental Study on Convective Heat Transfer for Turbulence Flow in a Square Duct With a Ribbed Rough Wall (Characteristics of Mean Temperature Field) [J]. ASME, Journal of Heat Transfer, 1994, 116(2):332-340.
    [36]Chanteloup D. Combined 3-D flow and heat transfer measurements in a 2-pass internal coolant passage of gas turbine airfoils [J]. Journal of Turbomachinery, 2002, 124(2):710-718.
    [37]Chanteloup D. Flow effect on the bend region heat transfer distribution of 2-pass internal coolant pass ages of gas turbine airfoils:influence of film cooling extraction[R]. ASME 2003-GT-38702.
    [38]Bailey J C. Heat transfer and friction in channels with very high blockage 45 degree staggered turbulators[R]. ASME 2003-GT-38611.
    [39]Pape D. Influence of the 180o bend geometry on the pressure loss and heat transfer in a high aspect ratio rectangular smooth channel[R]. ASME 2004-GT-53753.
    [40]Jenkins S C. The effect of ribs and tip wall distance on heat transfer for a varying aspect ratio two-pass ribbed internal cooling channel[R]. ASME 2008-GT-51207.
    [41]顾维藻,涂建平,刘文艳,等.燃气轮机涡轮叶片冷却通道内的流动与传热研究[J].工程热物理学报,1996,17(3):323-327.
    [42]邓宏武,陶智,徐国强,等.旋转状态下有转角带肋U形通道内换热实验研究[J].大连理工大学学报,2001,41(11)S38-S41.
    [43]刘浪,丁水汀,陶智等.带肋变截面回转通道内沿程有效压力分布特性的实验研究[J].航空动力学报,2003,18(3):353-357.
    [44]Lau S C, Mcmillin R D, Kukreja R T. Segmental heat transfer in a pin fin channel with ejection holes[J]. Int J Heat Mass Transfer, 1992, 35(6):1407-1417.
    [45]Jenn-Jiang Hwang, ChauChin Lui. Measurement of endwall heat transfer and pressure drop in a pin-fin wedge duct[J]. Int J Heat Mass Transfer, 2002, 45(4):877-889.
    [46]张丽,朱惠人,刘松龄等.出流比对扰流柱通道弦向出流量影响实验[J].航空学报,2007,28(1):42-45.
    [47]Yong-Jun Jang, Hamn-Ching Chen, Je-Chin Han. Flow and Heat Transfer in a Rotating Square Channel With 45 deg Angled Ribs by Reynolds Stress Turbulence Model[J]. ASME, Journal of Turbomachinery, 2001,123(1):124-132.
    [48]Tong-Miin Liou, Meng-Yu Chen, Meng-Hsiun Tsai. Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-deg Ribs[J]. ASME, Journal of Turbomachinery, 2002, 124(2):260-268.
    [49]GJ. Hwang, S. C. Tzeng, C. P. Mao, C. Y. Soong. Heat Transfer in a Radially Rotating Four-Pass Serpentine Channel With Staggered Half-V Rib Turbulatos[J]. ASME, Journal of Heat Transfer, 2001,123(1):39-50.
    [50]张庆,孟光.涡轮叶片冷却数值模拟进展[J].燃气轮机技术,2004,17(4):23-28.
    [51]Hylton L D, Milhec M S, Turner E R, Nealy D A. York R E, Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes[R].1983, NASA-CR-168015.
    [52]李海滨,冯国泰,王松涛等.涡轮三维叶栅的气热耦合数值模拟[J].工程热物理学报,2003,24(5):770-772.
    [53]苏生,刘建军,安柏涛.内冷涡轮叶栅三维气热耦合数值模拟[J].航空动力学报, 2007,22(12):2018-2024.
    [54]董平.航空发动机气冷涡轮叶片的气热耦合数值研究[D].哈尔滨:哈尔滨工业大学,2009.
    [55]Bohn. D., Heuer. T. Conjugate flow and heat transfer calculation of a high pressure turbine nozzle guide vane[R]. AIAA Paper 2001-3304.
    [56]Bohn. D. E., Tümmers. C. Numerical 3-D conjugate flow and heat transfer investigation of a transonic convection-cooled thermal barrier coated turbine guide vane with reduced cooling fluid mass flow[R]. ASME 2003-GT-38431.
    [57]Bohn. D., Heuer. T., Kortmann. J. Numerical conjugate flow and heat transfer investigation of a transonic convection-cooled turbine guide vane with stress-adapted thicknesses of different thermal barrier coating[R]. AIAA Paper 2000-1034.
    [58]W. D.Morris and K. Farhad Rahmat-abadi. Convective heat transfer in rotating ribbed tubes[J]. Int. J. heat Mass Transfer, 1996,39 (11):2253-2266.
    [59]A. Ooi, G. Iaccarino, P, A. Durbin, M. Behnia. Reynolds averaged simulation of flow and heat transfer in ribbed ducts[J]. Int. J. Heat and Fluid Flow, 2002,23(6):750-757.
    [60]Akira Murata, Sadanari Mochizuki. Large eddy simulation with a dynamic subgrid-scale model of turbulent heat transfer in an orthogonally rotating rectangular duct with transverse rib turbulators[J]. International Journal of Heat and Mass Transfer, 2003,43(7):1243-1250.
    [61]H. Iacovides, M. Raisee. Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades[J]. Int. J. Heat and Fluid Flow, 1999,20(3): 320-328.
    [62]M. J. Noot, R. M. M. Mattheij. Numerical Analysis of Turbine Blade Cooling Ducts[J]. Mathematical and Computer Modeling, 2000, 31(1):77-98.
    [63]York. W. D., Leylek. J. H. Three dimensional conjugate heat transfer simulation of an internally cooled gas turbine vane[R]. ASME 2003-GT-28551.
    [64]Facchini. B., Magi. A., Greco. A. S. D. Conjugate heat transfer simulation of a radially cooled gas turbine vane[R]. ASME 2004-GT-54213.
    [65]Takahashi. T., Watanabe. K., Sakai. T. Conjugate heat transfer analysis of a rotor blade with rib-roughened internal cooling passages[R]. ASME 2005-GT-68227.
    [66]Metzger D E, Berry R A, Bronson J P. Developing heat transfer in rectangular duct with staggered array of short pin fins[J]. Journal of Heat Transfer,1982,104(4):700-706.
    [67]苏红桢,刘松龄,许都纯.叉排形扰流柱排内部流场的实验研究[J].航空动力学报,1998,13(2):51-55.
    [68]B. Zhu, X. Chi, R.A. Dennis,et al. Internal Cooling inside an L-Shaped Duct with Pin-Fin Turbulators under Rotating and Non-Rotating Conditions with and without Sand Particles[R]. ASME 2007-GT-27598.
    [69]Metzger D E, Fan C, Haley S W. Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays[J]. ASME, Journal of Engineering for Gas Turbine and Power,1984,106(2):252-257.
    [70]Sparrow E M, Grannis V B. Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins[J]. International Journal of Heat and Mass Transfer, 1991, 34 (3):589-600.
    [71]Grannis V B, Sparrow E M. Numerical simulation of fluid flow through an array of diamond-shaped pin fins[J]. Numerical Heat Transfer, 1991,19(3):381-403.
    [72]Uzol Q, Camci C. Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications, Part 1:endwall heat transfer and total pressure loss characteristics[R]. ASME 2001-GT-0180.
    [73]Li Q L, Chen Z, Flechtner U. Heat transfer and pressure drop characteristics in rectangular channel with elliptic pin fins [J]. International Journal of Heat and Fluid Flow, 1998,19(2): 245-250.
    [74]Wisler D C. The Technical and Economic Relevance of Understanding Boundary Layer Transition in Gas Turbine Engines[R]. NASA/CP-1998-206958.
    [75]Weinberg M, Wyzykowski J. Development and testing of a commercial turbofan engine for altitude UAV applications[R]. ASME 2001-GT-2972.
    [76]Lake J P, King P I, Rivir R B. Reduction of separation losses on a turbine blade with low Reynolds number[R]. AIAA Paper 1999-0242.
    [77]Castner R, Chiappetta S, Wyzykowski J, Adamczyk J. An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance[R]. ASME 2002-GT-30004.
    [78]Mayle R E. The Role of Laminar-Turbulent Transition in Gas Turbine Engines[R]. ASME 1991-GT-261.
    [79]Domey D J, Lake J P, King P I, et al. Experimental and numerical investigation of losses in low pressure turbine blade rows[R]. AIAA Paper 2000-0737.
    [80]Langtry R B, Sjolander S A. Prediction of transition for attached and seprarted shear layers in turbomachinery[R]. AIAA Paper 2002-3641.
    [81]Matsunuma T, Tsukuba. Effects of Reynolds Number and Free-stream Turbulence on Turbine Tip Clearance Flow[R]. ASME 2005-GT-68009.
    [82]Oztiirk B, Schobeiri M T, Ashpis D E. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment along the Suction Surface of a Low Pressure Turbine Blade[R]. ASME 2005-GT-68600.
    [83]Zhang X F, Vera M, Hodson H, Harvey N. Separation and Transition Control on an Aft-loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation[R]. ASME 2005-GT-68892.
    [84]Vera M, Zhang X F, Hodson H, Harvey N. Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at low Reynolds Numbers:High-Speed Validation[R]. ASME 2005-GT-68893.
    [85]Bohl D G, Volino R J. Experiments with Three Dimensional Passive Flow Control Devices on Low-pressure Turbine Airfoils[R]. ASME 2005-GT-68969.
    [86]Rizzetta D P, Visbal M R. Numerical study of active flow control for a transitional highly loaded low-pressure turbine[J]. Journal of Fluids Engineering, 2006,128(5): 956-967.
    [87]Takayuki Matsunuma. Unsteady Flow Field of an Axial-Flow Turbine Rotor at a Low Reynolds Number[J]. Journal of Turbomachinery. 2007, 129(2):360-371.
    [88]Sonoda T, Schreiber H A. Aerodynamic Characteristics of Supercritical Outlet Guide Vanes at Low Reynolds Number Conditions[R]. ASME 2006-GT-90882.
    [89]乔渭阳,王占学,伊进宝.低雷诺数涡轮叶栅损失的实验与数值模拟[J].推进技术,2004,25(4):426-429.
    [90]邹正平,宁方飞等.雷诺数对涡轮叶栅流动的影响[J].工程热物理学报,2004(2):216-219.
    [91]李维,邹正平.低雷诺数环境中低压涡轮部件的气动设计探索[J].推进技术,2004,25(3):219-223.
    [92]赵晓璐,秦立森.高空低雷诺数低压涡轮试验研究[R].中国科学院工程热物理研究所 研究报告,2006.
    [93]李维,邹正平,赵晓路.雷诺数对涡轮部件性能的影响[J].航空动力学报,2004,19(6):822-827.
    [94]Denton J D. Loss Mechanisms in Turbomachines[R]. ASME 1993-GT-435.
    [95]Howell R J, Ramesh O N, Hodson H P, Harvey N W, Schulte V. High Lift and Aft-Loaded Profiles for Low-Pressure Turbines[J]. Journal of Turbomachinery, 2001,123(4):181-188.
    [96]D. A. Nealy. M.S. Mihelc. L. D. Hylton. H. J. Gladden. Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(1):149-158.
    [97]王仲奇,秦仁.透平机械原理[M].北京:机械工业出版社,1985.
    [98]D. Kuchmann. The Aerodynmaic Desgin of Aircraft[M]. Pergamon Press. 1978.
    [99]W. R. Hawthorne. Rotional Flow through Cascades[J]. J. Mech. and Appl. Mach. 1955, 8(3): 266-279.
    [100]Squire and K. Winter. The Secondary Folw in Cascade of Airfoils in a Nonuniform Stream[J]. Journal of Aeronautical Sciences.1951,18(5):271-277.
    [101]A. Klein. Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines[R]. BHRAT1004, 1966.
    [102]M. F. Blair. An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls[J]. ASME, Journal of Heat Transfer, 1974, 96(4):524-529.
    [103]S. A. Sjolander. The Endwall Boundary Layer in an Annular Cascade to Turbine Nozzle Guide Vanes[R]. Carleton U, Canata, TR ME/A 75-4,1975.
    [104]L. S. Langston, M. L. Nice, and R. M. Hooper. Three-Dimensional Flow Within a Turbine Blade Passage[J]. ASME, Journal of Engineering for Power, 1977, 99(1):21-28.
    [105]P. Marchal, and C. H. Sieverding. Secondary Flows Within Turbomachinery Bladings, Secondary Flow in Turbomachines[R].1977, AGARD CP214.
    [106]J. Ishii, and S. Honami. A Three-Dimensional Turbulent Detached Flow with a Horseshoe Vortex[J]. ASME, Journal of Engineering for Gas Turbines and Power, 1986, 108(1): 125-130.
    [107]J. Moore. Flow Trajectories, Mixing and Entropy Fluxes in a Turbine Cascade, Viscous Effects in Turbomachines[R].1983, AGARD CP351.
    [108]O. P. Sharma, and T. L. Butler. Predictions of End Wall Losses and Secondary Flows in Axial Flow Turbine Cascades[J]. Journal of Turbomachinery, 1987, 109(2): 229-236.
    [109]R. J. Goldstein, and R. A. Spores. Turbulent Transport on the Endwall in the Region between Adjacent Turbine Blades[J]. Journal of Heat Transfer, 1988,110(4):862-869.
    [110]H.P. Wang. Flow Visualization in a Linear Turbine Cascade of high Performance Turbine Blades[J]. Journal of Turbomachinery.1997, 119(1):1-8.
    [111]WuCH(吴仲华)A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types[R].1952, NACA TN 2604.
    [112]Wang Zhengming(王正明)Solution of Transonic SI Surface Flow by Successively Reversing the Direction of Integration of the Stream Function Equation[R]. ASME 1984-GT-23.
    [113]Wilkinson D H. Calculation of blade to blade flow in a turbomachine by streamline curvature[R]. Aeronautical Research Council Report and Memorandum,1972, No. 3704.
    [114]Zhao X L(赵晓路)Solution of transonic flow along SI stream surfaces employing non-orthogonal curvilinear coordinates and corresponding non-orthogonal velocity components[J]. I Mech E Conference Publications,1984:183-189.
    [115]徐建中,顾春伟.拟流函数—叶轮机械三维流场分析和设计问题的一种求解方法[J].中国科学A辑,1992,22(2):208-216.
    [116]F. R. Menter. Two Equation Eddy Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
    [117]Spalart P and Allmaras S. A One-equation Turbulence Model for Aerodynamic Flows[R]. AIAA Paper 1992-0439.
    [118]B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London, England, 1972.
    [119]V. Yakhot, S. A. Orszag, Renormalization Group Analysis of Turbulence:I. Basic Theory[J]. Journal of Scientific Computing, 1986, 1(1):1-51.
    [120]D. C. Wilcox. Turbulence Modeling for CFD[R]. DCW Industries, Inc., La Canada, California, 1998.
    [121]Menter, F. R., Zonal Two Equation k-co Turbulence Models for Aerodynamic Flows[R]. AIAA Paper 1993-2906.
    [122]Menter, F.R., Langtry, R.B., Likki, S.R. et al. A Correlation based Transition Model using Local Variables Part 1-Model Formulation[R]. ASME 2004-GT-53452.
    [123]Langtry, R.B., Menter, F.R., Likki, S.R. et al. A Correlation based Transition Model using Local Variables Part 2:Test Cases and Industrial Applications[J]. ASME 2004-GT-53454.
    [124]Van Driest, E.R. and Blumer, C.B. Boundary Layer Transition: Freestream Turbulence and Pressure Gradient Effects[J]. AIAA Journal,1963,1(6):1303-1306.
    [125]Smith AMO, Gamberoni N. Transition, Pressure Gradient and Stability Theory[R]. Report ES 26388, Douglas Aircraft Co., El Segundo, California.1956.
    [126]Suzen Y. B., Huang P. G. Modeling of Flow Transition Using an Intermittency Transport Equation[R]. NASA-CR-1999-209313.
    [127]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [128]ANSYS CFX HELP.
    [129]E. M. Curtis, H. P. Hodson, M. R. Banieghbal, et al. Development of Blade Profiles for Low Pressure Turbine Applications[R]. ASME 1996-GT-358.
    [130]吴仲华.燃气热力性质表[M].北京:科学出版社,1959.
    [131]陈光.航空发动机结构设计分析[M].北京:北京航空航天大学出版社,2006.
    [132]孙志刚,黄洪雁,谭春青等.某型燃机涡轮过渡段流场优化设计[J].工程热物理学报,2008,29(6):940-942.
    [133]J. B. Young, J. H. Horlock. Defining the Efficiency of a Cooled Turbine[J]. ASME, Journal of Turbomachinery,2006,128(4):658-667.
    [134]杨世铭,陶文铨.传热学[M].第三版.北京:高等教育出版社,1998.
    [135]Booth, T. C, Dodge P. R., and Hepworth, H. K. Rotor-Tip Leakage:Part 1-Basic Methodology [J]. ASME, Journal of Engineering for Power, 1982,104(1):154-161.
    [136]Kwak, J. S., and Han, J. C. Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip[R]. ASME 2002-GT-30194.
    [137]Kwak, J. S., and Han, J. C. Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade[R]. ASME 2002-GT-30555.
    [138]Acharya, S., Yang, H., and Ekkad, S. V Numerical simulation of film cooling on the tip of a gas turbine blade[R]. ASME 2002-GT-30553.
    [139]Lock, G. D., Newton, P. J., Krishnababu, S. K., et al. Aero-Thermal Investigation of Tip Leakage Flow in Axial Flow Turbines:Part Ⅲ-Tip Cooling[R]. ASME 2007-GT-27368.
    [140]Morphis, G, and Bindon, J. P. The effects of relative motion, blade edge radius and gap size on the blade tip pressures distribution in an annular turbine cascade with clearance[R]. ASME 1988-GT-256.
    [141]Yaras, M. I., and Sjolander, S. A. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades, Part I:Tip gap flow[J]. Journal of Turbomachinery,1992,114(3): 652-659.
    [142]Srinivasan, V, and Goldstein, R. J. Effect of endwall motion on blade tip heat transfer[J]. Journal of Turbomachinery, 2003,125(2):267-273.
    [143]Krishnababu,S. K., Hodson,H. P., Booth,G D.,et al. Aerothermal Investigation of Tip Leakage Flow in a Film Cooled Industrial Turbine Rotor [J]. Journal of Turbomachinery, 2010,132(2):021016(1-9).
    [144]Rolls-Royce pic. The Jet Engine[M]. Fifth edition. Birmingham England:Renault Printing Co Ltd 1996.
    [145]Chew J W. Computation of Flow and Heat Transfer in Rotating Cavities [D]. University of Sussex, United Kingdom,1982.
    [146]Metzger D E, Bunker R S and Bosch G. Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet ImpingementfJ]. ASME, Joumal of Turbomachinery,1991,113(1):52-59.
    [147]Ong C L, Owen J M. Prediction of Heat Transfer in a Rotating Cavity With a Radial Outflow[J]. ASME, Journal of Turbomachinery,1991,113(1):115-122.
    [148]Pilbrow R, Karabay H, Wilson M and Owen J M. Heat Transfer in a "Cover-Plate" PreSwirl Rotating-Disk System[J], ASME, Journal of Turbomachinery,1999,121(2): 249-256.
    [149]D Zhang, S Varah, Lock, G. D., M Wilson. Thermal Modelling of Heat Transfer in a Rotating Disc Due to a Superposed Flow of Cooling Air[R].2006, IHTC13, Sydney, Australia.
    [150]Youyou Yan, Mahmood Farzaneh Gord, Gary D. Lock, et al. Fluid dynamics of a pre-swirl rotor-stator system[J]. ASME, Journal of Turbomachinery,2003,125(4):641-647.
    [151]Paul Lewis, Mike Wilson, Gary Lock, J. Michael Owen. Physical Interpretation of Flow and Heat Transfer in Preswirl Systems[J]. Journal of Engineering for Gas Turbines and Power, 2007,129(3):769-777.
    [152]Farthing, P. R., Long, C. A., Owen, J. M., and Pincombe, J. R. Rotating Cavity with Axial Throughflow of Cooling Air: Flow Structure[J]. ASME, Journal of Turbomachinery, 1992, 114(1):237-246.
    [153]Epstein A H, Guenette G E, Norton R. The MIT Blowdown Turbine Facility[R]. ASME 1984-GT-116.
    [154]Guenette G E, Epstein A H, Ito E. Turbine Aerodynamic Performance Measurements in Short Duration Facilities[R]. AIAA Paper 1989-2690.
    [155]Porecca L, Denos R. Determination of Efficiency of a Cooled Turbine Stage Tested in a Compression Tube Facility[C]. In the 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines. Cambridge, 2002.
    [156]Haldeman C W, Dunn M G, Lotsof J, et al. Uncertainty Analysis of Turbine Aerodynamic Performance Measurements in Short Duration Test Facilities[R]. AIAA Paper 1991-2131.
    [157]Atkins N R, Miller R J and Ainsworth R W. Performance measurements in a transient turbine test facility-Preliminary instrumentation development[R]. The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, 2002.
    [158]Chana K S, Hurrion J R and Jones T V. The design, development and testing of a non-uniform inlet temperature generator for the QinetiQ transient turbine research facility[R]. ASME 2003-GT-38469.
    [159]Bergholz R F, Dunn M G and Steuber G D. Rotor/stator heat transfer measurements and CFD predictions for short-duration turbine rig tests[R]. ASME 2000-GT-0208.
    [160]李静美.关于瞬态设备在透平叶片传热实验中应用的调研报告[R].中国科学院力学研究所气动部激波管叶栅风洞实验室,1996.
    [161]李静美.激波管叶栅风洞.关于激波管叶栅风洞和涡轮叶片实验研究的论文集[C].中国科学院力学研究所气动部激波管叶栅风洞实验室,1996.
    [162]Keogh R C, Guenette G R, Spadaccini C M, Sommer T P and Florjancic S. Aerodynamic performance measurements of a film-cooled turbine stage-Experimental results [R]. ASME 2002-GT-30344.
    [163]Haldeman C W, Dunn M G, Barter J W, Green B R and Bergholz R F. Experimental investigation of vane clocking in a one and 1/2 stage high pressure turbine[R]. ASME 2004-GT-53477.
    [164]Polanka M D, Clark J P, White A L and Meininger M. Turbine tip and shroud heat transfer and loading Part B:Comparisons between prediction and experiment including unsteady effects[R]. ASME 2003-GT-38916.
    [165]周勇,赵晓路,徐建中.短周期实验台涡轮机匣换热实时测量初探[J].工程热物理学报,2008,29(2):208-212.
    [166]张惠,王会社,徐建中,赵晓路.1+1/2对转涡轮高压动叶气膜冷却研究[J].工程热物理学报,2008,29(3):395-399.
    [167]赵庆军.无导叶对转涡轮流动特性分析及进口热斑迁移机理研究[D].北京:中国科学院研究生院,2007.
    [168]唐菲,陈党慧,秦立森,赵庆军,徐建中.对转涡轮短周期试验台性能测试[J].工程热物理学报,2006,27(6):944-946.
    [169]秦立森,赵晓路,陈党慧,唐菲,徐建中.IET短周期涡轮实验台[J].燃气涡轮试验与研究,2006,19(2):47-52.
    [170]秦立森,赵晓路,徐建中.短周期全尺寸涡轮试验台及关键技术[J].燃气涡轮试验与研究,2002,15(1):47-51.
    [171]陈党慧,唐菲,赵晓路,秦立森,徐建中.暂冲式短周期试验台涡轮性能测试方法及误差预估[J].测试技术学报,2006,20(5):339-443.
    [172]蔡军.短周期对转涡轮实验台加热系统初步设计方案[R].中国科学院工程热物理研究所研究,2009.
    [173]蔡军.短周期对转涡轮实验台冷气罐隔热计算[R].中国科学院工程热物理研究所研究,2009.
    [174]张华,赵文柱.热工测量仪表[M].第三版.北京:冶金工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700