用户名: 密码: 验证码:
比例边界有限元方法在波浪与开孔结构相互作用及电磁场问题中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文发展了比例边界有限元方法(SBFEM)在波浪与开孔结构相互作用及电磁场问题中的研究。比例边界有限元方法是近年来提出和迅速发展的用来求解线性偏微分方程的一种半解析数值方法,它融合了有限元法和边界元法的优点,又有其特有的优点。该方法只需数值离散计算域边界,减少了一个空间维数;在没有离散的径向方向利用解析的方法求解,具有较高的计算精度。相对于边界元方法,它不需要基本解,也不存在奇异积分问题;对于无限域问题,也无需引入截断边界就能够自动满足无穷远处的辐射边界条件。比例边界有限元方法已成功地应用于弹性静、动力学、断裂力学、结构—无限地基动力相互作用、流固耦合、声波等领域,在许多领域有着非常大的应用前景。
     根据国家自然科学基金重点项目以及中德合作研究项目的研究需要,本文的第一部分开展了SBFEM对波浪与圆弧型开孔柱结构相互作用问题的研究。开孔结构由于具有良好的减小波浪反射和自身所受波浪力的特性,越来越多地受到人们的重视。然而,大多研究工作者侧重于二维平面波浪与直立方沉箱开孔结构的相互作用问题的研究。迄今为止,更能反映实际海洋状况的三维短峰波与圆弧型开孔柱结构的相互作用问题的研究很少。为此,基于线形势流理论并采用改进的圆形比例边界有限元坐标变换系统,本文充分利用SBFEM优点将短峰波与圆弧型开孔柱结构相互作用的波动问题控制方程转换为贝塞尔方程,可以方便地通过贝塞尔或汉克尔函数进行解析求解。据此,重点研究了以下不同类型开孔结构的水动力相互作用:圆弧型贯底式开孔介质防波堤、双层开孔圆筒柱结构、双层圆弧型开孔柱结构、圆筒外接圆弧开孔柱结构、外壁局部开孔双筒柱结构、双层外壁开孔带内柱的圆筒结构、双层外壁开孔带内柱的圆筒结构和圆柱外接双层圆弧型开孔柱结构。当存在圆弧型结构时,本文巧妙地将圆弧延伸构建出了虚拟同心圆,其中圆弧段与圆弧延伸段的孔隙影响系数可由对角矩阵G统一进行表达,以便构建虚拟圆处的边界条件。针对不同结构类型,SBFEM将各个结构分成若干个有限域和一个无限域。无论结构多复杂,SBFEM只需对最外层圆边界进行离散,使空间维数降低一阶,并在圆的半径方向保持解析。本文首次利用变分原理方法推导了关于势函数的各个子域SBFEM方程。其中,有限域和无限域的包含未知展开系数势函数表达式可分别采用贝塞尔函数和汉克尔函数作为基底,并且通过开孔介质两侧的匹配边界条件可以求解待定的展开系数。针对每个结构,都通过数值算例验证了该方法是一种用很少单元便能得到精确结果的高效算法。进一步研究了诸如短峰波波浪参数、结构的几何参数以及孔隙影响系数G等因素对不同结构所受的波浪力和波浪绕射的影响。本文的研究成果为不同形式圆弧型开孔型结构的水动力分析和工程结构设计提供了有价值的参考。
     由于SBFEM的特殊优越性,作者所在的工程抗震研究所开展了与SBFEM的创始人之一澳大利亚新南威尔士大学宋崇民教授的长期国际合作,聘请其为大连理工大学海天学者。宋教授经常来我校讲学和交流,根据我们与宋教授的合作研究的协议以及电磁场问题在人们的日常生活及工程具有重要的意义,本文的第二部分将开拓比例边界元有限元方法在电磁场问题中的研究。尽管论文的两部分物理现象关联性很小,但幸运的是,圆弧型开孔柱结构的相互作用和一些电磁场问题之间的数学表述有很多相似之处,通过同时使用SBFEM对两部分问题的求解,可以非常方便地将论文两部分有机结合起来,同时也为开展交叉学科研究提供了一条有效的途径。在电磁场问题的研究中,论文首先将SBFEM应用于电磁场问题中的静电场问题。从拉普拉斯方程出发,利用变分原理并通过比例坐标和笛卡尔坐标变换,推导和求解出了静电场分析的比例边界有限元方程、电位求解公式以及电场求解公式,提出了一种分析静电场问题半解析方法。与此同时,本文还引入了两种新型比例边界坐标,一类是含平行侧边面的比例坐标,另外一类是含圆形域比例坐标,并且也推导和求解了相应的比例边界有限元方程。在此基础上,文中还重点求解了非齐次、侧边面含有电位以及无穷远电位不为有限值的比例边界有限元方程。通过10个算例计算结果与解析解和其他数值方法比较,结果表明此方法在处理一些电磁工程含有奇异点、非均匀介质和无限域等复杂问题中能显著提高计算效率和计算精度。
     其次,本文发展了SBFEM在另外一类电磁场问题—波导本征值问题中的研究。波导截止频率的计算是一个富有挑战性的问题,各种形式的波导有一定的传输频率范围和传输特性,这对于波导的设计具有非常重要的意义。本文也利用了变分原理并通过比例边界坐标变换,推导了TE波和TM波波导的比例边界有限元频域方程以及波导动刚度方程,同时给出了波导动刚度矩阵的连分式解形式,通过引入辅助变量进一步得出波导特征值方程并求出波导本征值。以矩形、L形波导和叶型加载矩形波导的本征问题分析为例,通过与解析解和其他数值方法比较,结果表明此方法具有精度高、计算工作量小的优点,随着连分式阶数增加收敛速度快,而且SBFEM使用很少的单元数就能很好地解决了含有奇异点问题。脊波导具有较低的截止频率、较宽的工作带宽、低特性阻抗等优点,使得脊波导在微波和毫米波器件中被广泛应用。便随着高容量现代通信系统日益增长的需求,四脊波导也被广泛采用,尤其是在天线和雷达系统。对于四脊加载波导,往往在实际工程应用中,会对加载矩形进行剪切,而对于该类波导本征值研究较少。由于这类型波导多个角点处含有奇异性,使有限元计算中遭到困难,不得不采用网格加密或者采用高阶超级单元办法,增加了计算的复杂性,边界元方法在处理这类奇异问题也比较棘手,例如奇异积分的存在。为此,本文采用SBFEM的优越性可以顺利克服这些缺点,使计算效率和计算精度有很大程度的提高。这其中就包括分析了三类角切四脊加载(正方形、圆形和椭圆)波导的传输特性,并且给出了其中角切四脊加载正方形波导中的部分模式的截止波数计算经验公式,为工程设计提供一定理论依据。本文的解法也对计算电磁学发展作出了有意义的贡献,同时对工程应用也产生很好的效果。
In this paper, the scaled boundary finite element method (SBFEM) has applied to the wave interaction with porous structures and electromagnetic field problems. The scaled boundary finite element method is a newly developed semi-analytical technique to solve systems of partial differential equations. It works by employing a special local coordinate system, called scaled boundary coordinate system, to define the computational field, and then weakening the partial differential equation in the circumferential direction with the standard finite element whilst keeping the equation strong in the radial direction, finally analytically solving the resulting system of equations, termed the scaled boundary finite element equation. This unique feature of the scaled boundary finite element method enables it to combine mangy of advantages of the finite element method (FEM) and the boundary element method (BEM) with the features of its own. For instance, since only the boundaries of computational fields are discretized, the spatial dimensions can be reduced by one. Consequently the data preparation effort can be significantly decreased. Due to its analytical nature in the radial direction, the singularity of field gradients near sharp re-entrant corenes can be modlled with ease and the radiation condition at infinity can be satisfied rigorously. The scaled boundary finite element method was originally developed for solving problems of elasto-statics and elasto-dynamics in solid mechanics, and recently extended to fluid dynamics, fracture mechanics, structure-infinite foundation interaction, acoustic and fluid mechanics, etc. It has been employed successfully for solving problems with singularities and unbounded domains, and has very large application prospect in many fields.
     According to the projects supported by the State Key Program of National Natural Science of China and China-Germany joint research, the scaled boundary finite element method has firstly applied to the wave interaction with arc-shaped porous cylindrical structures. The porous structures have been considered for the sake of good effect on reduction of wave force and wave run-up around the outside of the structure. However, most researchers have focused on the two-dimensional plane wave interaction with upright porous caisson structure, and there is little literature has been report of its applications to the three-dimensional short-crested wave interaction with the arc-shaped porous cylindrical structures. Based on the linear wave theory and modified scaled boundary finite element method with circular shape, the scaled boundary finite element method can easily transform the governing wave equation of the problem into Bessel equation, so the problem can be solved analytically by using Bessel or Hankel functions. Based on the above-mentioned theories, the scaled boundary finite element method has been applied to the short-crested wave interaction with several types of circular or arc-shaped porous structures including arc-shaped bottom-mounted porous breakwater, double-layered porous cylindrical columns, double-layered arc-shaped bottom-mounted porous breakwater, circular cylinder circumscribed arc-shaped porous cylindrical structure, concentric porous cylinder system with partially porous outer cylinder, concentric cylindrical structure with double-layered perforated walls and combined cylinders structure with dual arc-shaped porous outer walls. A central feature of the newly extended method is that, when the porous structures includes arc-shaped porous cylinder, virtual outer cylinder extending the arc-shaped porous cylinder with the same centre is introduced and variable porous-effect parameters is also introduced for the virtual cylinders, so that the final SBFEM equation still can be handled in a closed-form analytical manner in the radial direction and by a finite element approximation in the circumferential direction. For those seven types of porous structures, the entire computational domain for each type is divided into several bounded domains and one unbounded domain, and a variational principle formulation is used to derive the SBFEM equation in each sub-domain. The velocity potential in bounded and unbounded domains are formulated using a sets of Bessel and Hankel functions respectively, and the unknown coefficients are determined from the matching conditions. The results of numerical verification for each type's structure show that the approach discretises only the outermost virtual cylinder with surface finite-elements and fewer elements are required to obtain very accurate results. The influences of the wave parameters, the configuration of the structures and porous-effect parameters on the systems hydrodynamics, including the wave force, wave and diffracted wave contour are extensively examined. The present results are of practical significance to the hydrodynamic analysis and design for the porous structures.
     Thinking about the special advantages of the scaled boundary finite element, the author's Institute of Earthquake Engineering has developed a long-term international cooperation with Professor Song Chongmin of University of New South Wales in Australia, which is co-founder of the scaled boundary finite element and also the Haitian scholars of Dalian University of Technology. Professor Song often gives lectures and exchanges with us. According to the agreement with the cooperation of Professor Song and great significance of electromagnetic field problems in people's daily life and works, the second part of the paper is that the scaled boundary finite element method has also been firstly and successfully applied to electromagnetic field. Although the physical phenomena of the two parts in the paper has little correlation, fortunately, it is well known that there many mathematical similarities between fluid mechanics and electromagnetic field, the scaled boundary finite element can easily combine the two parts, and also provides an effective way to carry out interdisciplinary research. As to the electromagnetic field problems, the scaled boundary finite element method is firstly successfully extended to solve one type of electromagnetic field problems-electrostatic field problems. Based on Laplace equation of electrostatic field problems and a variational principle, the derivations and solutions of SBFEM equations for bounded domain and unbounded domain problems are expressed in details, and the solution for the inclusion of prescribed potential along the side-faces of bounded domains is also presented in details, then the total charges on the side-faces can be semi-analytical solved. Meanwhile, modified scaled boundary finite element method for problems with parallel side-faces and circular shape are introduced, and the SBFE equations for those problems are also derivated and solved in detail. Furthermore, The SBFE non-homogeneous equation, the SBFE equation with prescribed side-face electric potential and the SBFE equation with infinity electric potential at infinity are also derived in detail. The accuracy and efficiency of the method are illustrated by ten numerical examples of electromagnetic field problems with complicated field domain, potential singularity, inhomogeneous and open boundary. In comparison with analytic solution method and other numerical methods, the results show that the present method has a strong ability to resolve potential field singularities analytically by choosing the scaling centre at the singular point, has the inherent advantage of solving the open boundary problems without truncation boundary condition, has efficient application to the problems with inhomogeneous media by placing the scaling centre in the bi-material interfaces, and produces more accurate solution than conventional numerical methods with far less number of degrees of freedom.
     Then, the scaled boundary finite element method is developed for the solution of waveguide eigenvalue problems. The calculation of the waveguide cutoff frequency is a challenging problem, and various types of waveguides have different transmission frequency range and transmission characteristics, and this has very important significance for the design of the waveguide. This paper develops a new variational principle formulation to derive the SBFEM equations for waveguide eigenvalue problems. And an equation of the dynamic stiffness matrix for waveguide representing between the'flux'and the longitudinal field components relationship at the discretized boundary is established. A continued fraction solution in terms of eigenvalue is obtained. By using the continued fraction solution and introducing auxiliary variables, the flux-longitudinal field relationship is formulated as a system of linear equations in eigenvalue then a generalized eigenvalue equation is obtained. The eigenvalues of rectangular, L-shaped, vaned rectangular are calculated and compared with analytical solution or other numerical methods. The results show that the present method yields excellent results, high precision and less amount of computation time and rapid convergence is observed, Moreover, the problem with the singular point has been successfully solved with few elements. Meanwhile, ridged waveguides have been widely used in microwave and millimeter-wave devices because of their unique characteristics such as low cutoff frequency, wide bandwidth and low impedance characteristics. Among them, as the ever-growing needs of the modern communication systems working at higher and higher capacity, quadruple-ridge waveguides find wide applications, especially in antenna and radar systems. In practical applications, the quadruple ridges in a square waveguide are usually cut at their corners, which contain several reentrant corners. However, the standard FEM yields comparatively poor results when applied to the waveguide whose domain contains re-entrant corners, owing to the singular nature of the solution. The method used to circumvent this difficulty is to refine the mesh locally in the region of the singularity or using higher order basis functions which bring out time-consuming task. The BEM is an attractive technique for solving the waveguide problems. However, fundamental solutions are required and singular integrals exist. Furthermore, it may suffer from the problems caused by sharp corners. In this paper, the scaled boundary can easily overcome these difficulties and make a great improvement for the computational efficiency and computational accuracy. Three types quadruple corner-cut ridged (square, circular and elliptical) waveguides are taken as examples. Variations of the cutoff wave numbers of the dominant and higher-order modes for both TE and TM cases with the corner-cut ridge dimensions are investigated in details. Simple approximate equations are found to accurately predict the cutoff wave number of several modes for the quadruple corner-cut ridged square waveguides. The single mode bandwidths of the waveguides are also calculated. Therefore, these results provide an extension to the existing design data for ridge waveguide and are considered helpful in practical applications. The solution of this paper makes a meaningful contribution on Computational electromagnetics and also produces good results for engineering applications.
引文
[1]Jarlan G E. A perforated wall breakwater [J]. The Dock and Harbour Authority,1961, 41(486):394-398.
    [2]Tao L B, Song H, Chakrabarti S Scaled boundary FEM model for interaction of short-crested waves with a concentric porous cylindrical structure [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,2009,135(5):200-212.
    [3]严恺,梁其荀等.海岸工程(第一版)[M].北京:海洋出版社,2002.
    [4]孙路.波浪对外壁开孔双圆筒结构的作用(博士学位论文)[D].大连:大连理工大学,2005.
    [5]李玉成,孙大鹏等.大连港大窑湾港区11落1#6泊位结构断面物理模型试验报告[R].大连理工大学海岸和近海工程国家重点实验室,2002.
    [6]Terret F L, Osorio J D C, Lean G H. Model studies of a perforated breakwater[C]. Proceedings of Proceedings of 11th Coastal Engineering Conference, London, UK, ASCE,1968,3:1104:1120.
    [7]Marks M, Jarlan G E. Experimental study on a fixed perforate breakwater [C]. Proceedings of 11th Coastal Engineering Conference, London, UK,ASCE,1968,3:1121:1140.
    [8]Nasser M S, McCorquodale J A. Experimental study of wave transmission. Journal of the Highway Division,1974,100(4),279-286.
    [9]Tanimoto K, Haranaka S, Takahashi S. An experimental investigation of wave reflection, overtopping and wave forces for several types of breakwaters and seawalls [R]. Tech, Note pf Port and Harbor Research Int., Ministry of Transport, Japan,1976,No.246.
    [10]Tanimoto K, Yoshimoto Y. Theoretical and experiment study of reflection coefficient for wave dissipating caisson with a permeable front wall [J].Report of the Port and Harbor Research Int. 1982,21(3):43-77.
    [11]麻志雄等.透空式防波堤消波性能试验研究[J].水运工程,1990,10:1:6.
    [12]戴冠英.波浪作用下开孔直立结构的反射与透射性能[J].水利水运科学研究.1993,3:292-300.
    [13]张琴,戴冠英.波浪对开孔直立结构作用力的试验研究[J].水利水运科学研究.1994,4:367-373.
    [14]Wang J Y, Ge Z J. Model study of permeable caisson breakwater with slanting slabs [J].China Ocean Engineering,1993,7(2):207:216.
    [15]Simmonds D J, Chadwick A J, Bird P A D, Pope D J. Field measurements of wave transmission through a rubble mound breakwater[C]. Coastal Dynamics-Proceedings of the International Conference, Plymouth, UK:ASCE,1997,734-743.
    [16]严以新,郑金海,曾小川,谢怀东.多层挡板桩基透空式防波堤消浪特性试验研究[J].海洋工程,1998,16(1):67-74.
    [17]Franco L, De Gerloni M, Passoni G, Zacconi D. Wave forces on solid and perforated caisson breakwaters:comparison of field and laboratory measurements [C].Proceedings of the 26th Coastal Engineering Conference, Copenhagen, Denmark:ASCE,1998,2:1945-1958.
    [18]Rao S, Rao N B S, Sathyanarayana V S. Laboratory investigation on wave transmission through two rows of perforated hollow pile [J]. Ocean Engineering,1998,26(7):675-699.
    [19]Bergmann H, Oumeraci H. Wave pressure distribution on permeable vertical walls [C]. Proceedings of the 26th Coastal Engineering Conference, Copenhagen, Denmark:ASCE,1998,2:2042-2055.
    [20]Neelamani S, Koether G, Schuttrumpf H, Muttray M, Oumeraci H. Wave forces on, and water-surface fluctuations around a vertical cylinder encircled by a perforated square caisson [J]. Ocean Engineering, 2000,27:775-800.
    [21]Neelamani S, Uday Bhaskar N, Vijayalakshmi K. Wave forces on a seawater intake Caisson, Ocean Engineering,2002,29,1247-1263.
    [22]Tabet-Aoul E H, Rousset J M, Belorgey M. Analysis of horizontal forces action on vertical walls of perforated breakwater[C]. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, France,ISOPE,1999,3:712-717.
    [23]Tabet-Aoul E H, Lambert E. Tentative new formula for maximum horizontal wave forces action on perforated caisson [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,2003,129(1):34-40.
    [24]Chakrabarti S K. Wave interaction with an upright breakwater structure[J].Ocean Engineering,1999, 26:1003-1021
    [25]孙精石,张福然,郑保友.无顶盖开孔沉箱波浪力研究.九五攻关项目—深水防波堤新型结构形式研究专题[R].交通部天津水运工程科学研究所.2000.
    [26]Chen X F, Li Y C, Sun D P, Chen R Y. The experimental study of reflection coefficient and wave forces acting on perforated caisson [J]. ACTA Oceanologica Sinica,2002,21(3):451-460.
    [27]Chen X F, Li Y C, Sun D P. Regular wave acting on double-layered perforated caisson. The 12th International Offshore and Polar Engineering Conference, ISOPE,2002,3:736-743.
    [28]Requejo S, Vidal C, Losada I J. Modeling of wave loads and hydraulic performance of vertical permeable structures [J].Coastal Engineering,2002,46(4):249-276.
    [29]Zhu S T, Chwang A T. Experimental studies on caisson-type porous seawalls [J]. Experiments in Fluids,2002,33:512-515.
    [30]刘洪杰.斜向波与带开孔板沉箱结构的相互作用(博士学位论文)[D].大连:大连理工大学.2003.
    [31]滕斌,李玉成,刘洪杰.开孔沉箱与斜向波作用的理论研究和实验验证[J].海洋工程,2004,22(1):37-44.
    [32]周益人,陈国平,黄海龙,王登婷.透空式水平板波浪上托力分布[J].海洋工程,2003,21(4):41-47.
    [33]周益人,陈国平,黄海龙,王登婷.透空式水平板波浪上托力冲击压强试验研究[J].海洋工程,2004,22(3):30-39.
    [34]钟瑚穗,徐昶,过达.桩基透空堤的透浪系数[J].中国港湾建设,2003,126(5):26-30.
    [35]姜俊杰.波浪作用下开孔沉箱垂直方向受力的试验研究(硕士学位论文)[D].大连:大连理工大学.2004.
    [36]Panizzo A, De Girolamo P, Piscopia R. Experimental optimization of perforated structures in presence of ship-generated waves[J]. International Journal of Offshore and Polar Engineering,2004,14(2):98-103.
    [37]马宝联.波浪与开孔直墙式防波堤的相互作用(硕士学位论文)[D].大连:大连理工大学,2004.
    [38]周琼,余之林.海安新港透空式防波堤的试验研究[J].水运工程,2005,377(6):115-118.
    [39]杨宪章,李文玉,曲淑媛.桩基透空堤的消浪效果分析与探讨[J].中国港湾建设,2005,135(2):21-24.
    [40]王国玉,王永学,李广伟.多层水平板透空式防波堤消浪性能试验研究[J].大连理工大学学报,2005,45(6):865-870.
    [41]殷福安.挡板式透空堤透浪特性研究(硕士学位论文)[D].南京:河海大学.2005.
    [42]孙路.波浪对外壁开孔双圆筒结构的作用(博士学位论文)[D].大连:大连理工大学.2005.
    [43]唐琰林,张宁川,刘爱珍.双层水平板型透空式防波堤消波性能试验研究[J].水运工程,2006,27(5):284-288.
    [44]唐琰林.双层水平板型透空式防波堤消波性能研究(硕士学位论文)[D].大连:大连理工大学.2006
    [45]张金虹.透空式防波堤断面波浪模型试验研究[J].水运工程,2006,39(7):24-28.
    [46]刘韬,钟瑚穗,丁七成.消能室式桩基透空堤消浪特征的试验比较研究[J].水运工程,2007,410(12):13-16.
    [47]王文鼎.有挡浪设施的桩基透空码头水动力特性研究(硕士学位论文)[D].大连:大连理工大学,2007.
    [48]刘勇.波浪与Jarlan型开孔墙式防波堤的相互作用(博士学位论文)[D].大连:大连理工大学,2007.
    [49]Chua K H, Clelland D, Shuang S, Sworn A. Model experiments of hydrodynamic forces on heave plates [C]. In:Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering,OMAE,2005:67459.
    [50]Tao L B, Dray D. Hydrodynamic performance of solid and porous heave plates [J]. Ocean Engineering,2008,35:1006-1014.
    [51]刘弘,蔡黎旭.海安新港挡浪板透空堤整体防浪掩护模型试验研[J].湖南交通科技,2008,34(3):147-149.
    [52]Buchanan D E, Wang K H. An Analytical and Experimental Study of Progressive Linear Waves Interacting with Thin Porous Media (Final Report), Houston, Texas, The Department of Civil and Environmental Engineering University of Houston,2008.
    [53]琚烈红,杨正己.设有挡浪板透空堤波浪透射系数实验研究[J].水运工程,2008,414(4):19-22.
    [54]Hsiao S S, Fang H M, Chang C M, Lee T S. Experimental study of the wave energy dissipation due to the porous-plied structure. In:Proceedings of Eighteenth (2008) International Offshore and Polar Engineering Conference, Canada,2008,3:592-598.
    [55]Molin B, Nielsen F G. Heave added mass and damping of a perforated disk below the free surface [C]. Proc.19th Int. Workshop Water Waves & Floating Bodies, Cortona,2004.
    [56]Molin B, Remy F, Rippo T. Experimental study of the heave added mass and damping of solid and perforated disks close to the free surface [R]. Maritime industry, ocean engineering and coastal resources:Taylor & Francis,2008:879-887.
    [57]尹德军,刘韬,丁七成,钟瑚穗.不同结构型式桩基透空式防波堤功效综合实验研究[J].水运工程,2009,425(3):67-69..
    [58]姜俊杰,李玉成,孙大鹏,马宝联.规则波作用下开孔沉箱波浪力计算方法的实验研究[J].水运工程,2009,423(1):208-215.
    [59]姜俊杰,李玉成.规则波作用下有顶板开孔沉箱垂直波浪力试验研究[J].水运工程,2009,426(4):73-79.
    [60]KIRCA V S O, KABDASLI M S. Reduction of non-breaking wave loads on caisson type breakwaters using a modified perforated configuration [J]. Ocean Engineering,2009,36:1316-1331.
    [61]王彦哲.复合式防波堤消波性能试验研究(硕士学位论文)[D].大连:大连理工大学,2010.
    [62]高东博.桩式透空防波堤的性能研究.(硕士学位论文)[D].大连:大连理工大学,2010.
    [63]王环宇,孙昭晨.一种新型浮式防波堤的试验研究[J],港工技术,2009,46(4):6-8.
    [64]Wang H Y, Sun Z C. Experimental study of a porous floating breakwater [J].Ocean Engineering,2010,37:520-527.
    [65]Experimental study on the influence of geometrical configuration of porous floating breakwater on performance [J].Journal of Marine Science and Technology,2010,18(4):574-579.
    [66]王环宇.多孔浮式防波堤的实验研究与数值模拟(博士学位论文)[D].大连:大连理工大学,2010.
    [67]Xia Z S, Sun D P, Liu Y, Li Y C,Wan Q Y. Experimental study on phase difference between total horizontal and vertical forces acting on perforated caissons located on a rubble mound foundation[C]. Proceedings of the Ninth (2010) ISOPE Pacific/Asia Offshore Mechanics Symposium Busan, Korea, 2010:.
    [68]张婷婷,陈国平,马小舟.高桩梁板式透空防波堤透浪特性的研究[J].港工技术,2010,47(7):1-4.
    [69]汪宏,沈丽玉,王勇.双层开孔直立式板结构的消波性能试验[J].水运工程,2011,450(2):21-25.
    [70]Tuck E O. Transmission of water waves through small apertures [J]. Journal of Fluid Mechanics, 1971,49,65-74.
    [71]Porter D. The transmission of surface waves through a gap in a vertical barrier [J]. Proceedings of the Cambridge Philosophical Society,1972,71,411-421.
    [72]Guiney D C, Noye B J, Tuck E O.Transmission of water waves through small apertures [J]. Journal of Fluid Mechanics,1972,55,149-161.
    [73]Sollitt C K, Cross R H. Wave transmission through permeable breakwaters [C]. Proceedings of the 13th Coastal Engineering Conference, Vancouver, Canada, ASVE,1972,3:1827-1846.
    [74]Mei C C, Liu P. L F, Ippen A T. Quadratic loss and scattering of long waves[J]. Journal of the Waterways Harbors and Coastal Engineering Division,1974,100(WW3):217-239.
    [75]Madsen, O S. Wave transmission through porous structures [J]. Journal of the Waterways, Harbors and Coastal Engineering Division,1974,100(3):169-188.
    [76]Kondo H. Analysis of breakwaters having two porous walls [C]. Proceedings of Coastal Structures'79,1979,2:962-977.
    [77]Chwang A T. A porous-wave maker theory [J]. Journal of Fluid Mechanics,1983,132:395-406.
    [78]Chwang A T, Li W. A piston-type porous wave maker theory [J]. Journal of Engineering Mechanics,1983,17:301-313.
    [79]Madsen P A. Wave reflection from a vertical permeable wave absorber [J]. Coastal Engineering,1983,7:381-396.
    [80]Chwang A T, Dong Z. Wave-trapping due to a porous plate [C]. Proceedings of the 15th Symposium on Naval hydrodynamics, Hamburg, German,1984,6:32-42.
    [81]Sulisz W. Wave reflection and transmission at permeable breakwater of arbitrary cross-section [J]. Coastal Engineering.1985,9:371-396.
    [82]Darlrymple R A, Losada M A, Martin P A. Reflection and transmission from porous structures under oblique wave attack [J]. Journal of Fluid mechanics.1991,224:625-644.
    [83]Huang L H, Chao H I. Reflection and transmission of water wave by porous breakwater [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1992,118(5):437-452.
    [84]Bennett G S, McIver P, Smallman J V. A mathematical model of a slotted wavescreen breakwater[J]. Coastal Engineering,1992,18:231-249.
    [85]Wang K H, Ren X G. Flexible porous breakwater [C]. Proceedings of Engineering Mechanics, College Station, TX, USA:ASCE,1992:224-227.
    [86]Wang K H, Ren X G. Water waves on flexible and porous breakwaters [J]. Journal of Engineering Mechanics,1993,119(5):1025-1047.
    [87]李荣庆.斜向波作用下之立式消波建筑物的消波特性[A].第七届中国海岸工程学术讨论会论文集,珠海1993:990-99
    [88]Mallayachari V, Sundar V. Reflection characteristics of permeable seawalls [J]. Coastal Engineering,1994,23(1-2):135-150.
    [89]习和忠.开孔沉箱防波堤消浪作用的理论研究及应用[J].港口工程,1994,6:11-16.
    [90]Yu X P, Chwang A T. Wave-induced oscillation in harbor with porous breakwaters [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1994,120(2):125-144.
    [91]Yu X P, Chwang A T. Wave motion through porous structures [J]. Journal of Engineering Mechanics,1994 120(5)989-1008.
    [92]Yu X P, Chwang A T. Water Waves above Submerged Porous Plate [J]. Journal of Engineering Mechanics,,1994,120(6):1270-1282.
    [93]李荣庆,谢世楞.规则波和不规则波作用下消波建筑物前的波高分析[J].海洋工程,1994,1:1-6.
    [94]Yu X P.Diffraction of Water Waves by Porous Breakwaters [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1995,121(6):275-282.
    [95]Suh K D, Park W S.Wave reflection from perforated-wall caisson breakwaters [J]. Coastal Engineering,1995,26,177-193.
    [96]Li R Q. Hydraulic design method of wave dissipating structure with partially perforated front wall [J]. China Ocean Engineering,1995,9(1):73-82.
    [97]Lee J F, Lan Y J. A second-order solution of waves passing porous structures [J]. Ocean Engineering, 1996,23(2):143-165.
    [98]Ou-Yang H T, Huang L H, Hwang W S. The interference of a semi-submerged obstacle on the porous breakwater [J]. Applied Ocean Research,1997,19:263-273.
    [99]Isaacson M, Premasiri S, Yang G. Wave transmission past slotted barriers [C]. Proceedings of the 7th International Offshore and Polar Engineering Conference,1997,Honolulu, HI USA,3:766-771.
    [100]Isaacson M, Premasiri S, Yang G. Wave Interactions with Vertical Slotted Barrier[C]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1998,124(3):118-126.
    [101]Yip T L, Chwang A T. Water Wave Control by Submerged Pitching Porous Plate [J]. Journal of Engineering Mechanics,1998,124(4):428-434.
    [102]Wu J H, Wan Z P, Fang Y. Wave reflection by a vertical wall with a horizontal submerged porous plate [J]. Ocean Engineering,1998,25(9):767-779,.
    [103]McIver P. Water-wave diffraction by thin porous breakwater [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1999,125(2):66-70.
    [104]Cho I H, Kim M H. Interactions of a horizontal flexible membrane with oblique waves [J]. Journal of Fluid mechanics,1998,367:139-161.
    [105]Cho I H, Kim M H. Wave deformation by a submerged flexible circular disk[J]. Applied Ocean Research,1999,21:263-280.
    [106]Cho I H, Kim M H. Interactions of horizontal porous flexible membrane with wave [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126(5):245-253.
    [107]Yip T L, Sahoo T, Chwang A T. Wave trapping by porous and flexible barriers[C]. Proceedings of the International Offshore and Polar Engineering Conference,2000,3:633-638.
    [108]Lynett P J, Liu P L F, Losada I J, Vidal C. Solitary wave interaction with porous breakwaters[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126(6):314-322.
    [109]Yip T L, Chwang A T. Perforated wall breakwater with internal horizontal plate [J]. Journal of Engineering Mechanics,2000,126(5):533-538.
    [110]Sahoo T, Chan A T, Chwang A T. Scattering of oblique surface waves by permeable barriers [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126(4):196-205-322.
    [111]Sahoo T, Lee M M, Chwang A T. Trapping of generation of waves by vertical porous structures[J]. Journal of Engineering Mechanics,2000,126(10):1074-1082.
    [112]Williams A, Neil Mansour A E M, Lee H S. Simplified analytical solutions for wave interaction with absorbing-type caisson breakwaters [J]. Ocean Engineering,2000,27(11):1231-1248.
    [113]Neves M G, Losada 1 J, Losada M A. Short-Wave and Wave Group Scattering by Submerged Porous Plate [J]. Journal of Engineering Mechanics,2000,126(10):1048-1056.
    [114]Isaacson M, Baldwin J, Ally N, Cowdell S. Wave interactions with perforated breakwater[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126(2):229-235.
    [115]Lo E Y M. Performance of a flexible membrane wave barrier of a finite vertical extent[J]. Coastal Engineering Journal.2000,42(2):237-251.
    [116]Zhu S T, Chwang A T. Analytical Study of Porous Wave Absorber [J]. Journal of Engineering Mechanics,2001,127(4):326-332.
    [117]Zhu S T, Chwang A T. Investigations on the reflection behaviour of a slotted seawall[J]. Coastal Engineering,2001,43:93-104.
    [118]Suh K D, Choi J C, Kim B H, Park W S, Lee K S. Reflection of irregular waves from perforated-wall caisson breakwaters[J]. Coastal Engineering,2001,44:141-151.
    [119]Suh K D, Son S Y, Lee J I et al. Calculation of irregular wave reflection from perforated-wall caisson breakwaters using aregular wave model[C]. Proceedings of the 28th Coastal Engineering Conference, Cardiff, Wales, ASCE,2002:1709-1721.
    [120]Yip T L, Sahoo T, Chwang A T. Wave Oscillation in a Circular Harbor With Porous Wall[J]. Journal of Applied Mechanics,2001,68:603-607.
    [121]Hu H, Wang K H, Williams A N. Wave motion over a breakwater system of a horizontal plate and a vertical porous wall[J]. Ocean Engineering,2002,29(4):373-386.
    [122]Li Y C, Liu H J, Teng B et al. Reflection of oblique incident waves by breakwaters with partially-perforated wall[J]. China Ocean Engineering,2002,16(1):329-334.
    [123]Li Y C, Liu H J, Dong G H. The force of oblique incident wave on the breakwater with a partially perforated wall[J]. Acta Oceanologica Sinica,2005,24(4):121-130.
    [124]Chen X F, Li Y C, Wang Y X et al. Numerical simulation of wave interaction with perforated caisson breakwaters [J]. China Ocean Engineering,2003,17(1):33-43.
    [125]陈雪峰.波浪与开孔沉箱的相互作用(博士学位论文)[D]大连:大连理工大学,2003
    [126]Chen X F, Li Y C, Teng B. Numerical and simplified methods for the calculation of the total horizontal wave force on a perforated caisson with a top cover [J]. Coastal Engineering,2007,54:67-75.
    [127]Takahashi S, Kotake Y, Fujiwra R et al. Performance evaluation of perforated-wall caissons by VOF numerical simulations[C]. Proceedings of the 28th Coastal Engineering Conference, Cardiff,ASCE,2002:1364:1367.
    [128]李玉成.刘洪杰.滕斌.孙大鹏.开孔沉箱在斜向人射波作用下受力研究[J].海洋学报,2003,25(1):100-109.
    [129]刘洪杰.斜向波与带开孔板沉箱结构的相互作用(博士学位论文)[D]大连:大连理工大学,2003
    [130]Williams A N, Wang K H. Flexible porous wave barrier for enhanced wetlands habitat restoration[J]. Journal Engineering Mechanics,2003,129(1):1-8.
    [131]李熙,严以新.透空式防坡堤周围的非线性波浪传播的数值模拟[J].水道港口,2004,25(2):84-85.
    [132]Hsu H J, Huang L H, Hsieh P C. Oblique Impact of Water Waves on Thin Porous Walls[J]. Journal of Engineering Mechanics,2005,131(7):721-732.
    [133]Hsu H J, Huang L H. Oblique water waves impacting on a thin porous wall with a partial-slipping boundary condition [J]. Journal of Hydrodynamic,2011,23(3):361-371.
    [134]Hu H H, Wang K H. Damping effect on waves propagating past a submerged horizontal plate and a vertical porous wall[J]. Journal of Engineering Mechanics,2005,131(4):427-437.
    [135]Liu Y, Li Y C, Teng B. Experimental and theoretical investigation of wave forces on a partially-perforated caisson breakwater with a rock-filled Core [J]. China Ocean Engineering, 2006,20(2):179-198.
    [136]Suh K D, Shin S W, Cox D T. Hydrodynamic Characteristics of Pile-Supported Vertical Wall Breakwaters [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2006,132(2):83-96.
    [137]Liu Y, Li Y C, Teng B. Wave interaction with a new type perforated breakwater[J]. Acta Mechanica Sinica,2007,23:351-358.
    [138]Liu Y, Li Y C, Teng B. Wave interaction with a perforated wall breakwater with a submerged horizontal porous plate[J]. Ocean Engineering,2007,34,2364-2373.
    [139]刘勇.波浪与Jarlan型开孔墙式防波堤的相互作用(博士学位论文)[D].大连:大连理工大学,2007.
    [140]刘勇,李玉成,滕斌.明基床上局部开孔沉箱防波堤反射系数的近似计算方法[J].中国造船,2007,48(special):442-449.
    [141]刘勇,李玉成,滕斌.内部带水平多孔板的局部开孔防波堤对波浪反射的理论研究[A].第十三届中国海洋(岸)工程学术讨论会论文集,北京:北京出版社,2007:200-205.
    [142]Lee J F, Cheng Y M. A theory for waves interacting with porous structures with multiple regions [J]. Ocean Engineering 2007,34:1690-1700.
    [143]Lin P Z, Karunarathna A S A S. Numerical study of solitary wave interaction with porous breakwaters[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2007,133(5):352-363.
    [144]刘勇,李玉成,滕斌,吴浩.带横隔板局部开孔沉箱在斜向波作用下的受力研究[J].海洋学报,2008,30(2):137-146.
    [145]Hsu T W, Chang J Y, Lan Y J, Lai J W, Ou S H. A parabolic equation for wave propagation over porous structures [J].Coastal Engineering,2008,55:1148-1158.
    [146]Liu Y, Li Y C, Teng B, Jiang J J, Ma B L.Total horizontal and vertical forces of irregular waves on partially perforated caisson breakwaters [J].Coastal Engineering,2008,55:537-552.
    [147]Cho I H, Kim M H. Wave absorbing system using inclined perforated plates [J]. Journal of Fluid Mechanics,2008,55:537-552.
    [148]Liu Y, Li Y C, Teng B, Dong S. Wave motion over a submerged breakwater with an upper horizontal porous plate and a lower horizontal solid plate [J]. Ocean Engineering,2008,35:1588-1596.
    [149]刘洪杰,刘勇,李玉成.斜向波与带填料开孔板式防波堤相互作用的研究[J].海洋学报,2008,55:537-552.
    [150]Yueh C Y, Chuang S H. Wave Scattering by a Submerged Porous Plate Wave Absorber[C]. Proceedings of the Nineteenth (2009) International Offshore and Polar Engineering Conference Osaka, Japan,2009:1167-1173.
    [151]Zhang J X, Liu H. Wave run-up on a vertical seawall protected by an offshore submerged barrier [J]. China Ocean Engineering,2009,23(3):553-564.
    [152]Zhu D T, Zhu S W. Impedance analysis of hydrodynamic behaviors for a perforated-wall caisson breakwater under regular wave orthogonal attack [J]. Coastal Engineering,2010,57:722-731.
    [153]Zhu D T. Impedance Analytical method of wave run-up and reflection from a slotted-wall caisson breakwater [J]. China Ocean Engineering,2010,24(3):453-465.
    [154]吴浩,孙大鹏,夏志盛.波浪与大开孔消浪结构作用非线性数值模拟[J].海洋工程,2010,28(3):117-122.
    [155]朱大同,傅朝方.波浪与透空管防波堤的相互作用[J].水动力学研究与进展,2010,25(5):587-593.
    [156]朱大同,朱思伟.单层开缝板沉箱防波堤水动力学特性研究[J].海洋工程,2010,28(2):71-75.
    [157]岳景云,庄世璇,游鹏叡.斜向波与具游水室开孔板式防波堤相互作用研究[A].第十五届中国海洋(岸)工程学术讨论会论文集北京:海洋出版社,2011:752-760.
    [158]Liu Y, Li Y C.An alternative analytical solution for water-wave motion over a submerged horizontal porous plate [J]. Journal of Engineering Mathematics,2011,69:385-400.
    [159]Liu Y, Li Y C. A new analytical solution for wave scattering by a submerged horizontal porous plate with finite thickness[J]. Ocean Engineering,2012,42:83-92.
    [160]Liu Y,Li H J.Analysis of wave interaction with submerged perforated semi-circular breakwaters through multipole method[J].Applied Ocean Research,2011, doi:10.1016/j.apor.2011.08.003.
    [161]Evans D V, Peter M A. Asymptotic reflection of linear water waves by submerged horizontal porous plates [J]. Journal of Engineering Mathematics,2011,69:135-154.
    [162]Suh K D, Ji C H, Kim B H.Closed-form solutions for wave reflection and transmission by vertical slotted barrier[J]. Coastal Engineering,2011,58:1089-1096.
    [163]Kim B H. Interactions of waves, seabed and structures (PhD dissertation)[D]. Seoul National University, Seoul, Korea,1998.
    [164]Huang Z H, LiY C, Liu Y. Hydraulic performance and wave loadings of perforated/slotted coastal structures:Areview [J].Ocean Engineering,2011,38:1031-1053.
    [165]Chwang A. T, Chan A T. Interaction between porous media and wave motion[J]. Annual Review of Fluid Mechanics 1998,30:53-84.
    [166]Koutandos E V, Prinos P E. Hydrodynamiccharacteristics of semi-immersed breakwater with an attached porou splate [J]. Ocean Engineering.2011,138:34-48.
    [167]Molin B. Hydrodynamic modeling of perforated structures [J]. Applied Ocean Research,2011,33: 1-11.
    [168]Zhao F F, Kinoshit T, Bao W G, Wan R, Liang Z L, Huang L Y. Hydrodynamics identities and wave-drift force of a porous body [J]. Applied Ocean Research,2011,33:169-177.
    [169]Liu Y, Li Y C. Wave interaction with a wave absorbing double curtain-wall breakwater [J]. Ocean Engineerings 11,38:1237-1245.
    [170]Suh K D, Kim Y W, Ji C H. An empirical formula for friction coefficient of a perforated wall with vertical slits [J]. Coastal Engineering,2011,58(1):85-93.
    [171]Yueh C Y, Chuang S H. A boundary element model for a partially piston-type porous wave energy converter in gravity waves [J]. Engineering Analysis with Boundary Elements,2012,36:658-664.
    [172]Garrido J M, Medin J R. New neural network-derived empirical formulas for estimating wave reflection on Jarlan-type breakwaters [J]. Coastal Engineering,2012,62:9-18.
    [173]Wu Y T, Hsiao S C, Huang Z C, Hwang K S. Propagation of solitary waves over a bottom-mounted barrier [J]. Coastal Engineering,2012,62:31-47.
    [174]Franco L.Vertical breakwaters:the Italian experience [J]. Coast Engineering,1994,22:31-55.
    [175]Sawaragi T, Iwata K. Wave attenuation of a vertical breakwater with two air chambers [J]. Coastal Engineering in Japan,1978,21,63-74.
    [176]Fugazza M, Natale L. General theory of weakly reflective caisson breakwater:modeling and simulation [A]. Proceedings of the Annual Pittsburgh Conference [C].1990,21(4):1555-1559.
    [177]Fugazza M, Natale L. Hydraulic design of perforated breakwaters [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1992,118(1):1-14.
    [178]Bergmann H, Oumeraci H. Hydraulic performance of perforated structures [C]. Fifth International Conference on Coastal and Port Engineering in Developing Countries,1999,1340-1349.
    [179]Chen X F, Li Y C, Sun D P. Regular waves acting on double-layered perforated caissons [C]. In:Proceedings of the 12th(2002) ISOPE,USA,2002,3:736-743.
    [180]Li Y C, Dong G H, Liu H J, Sun D P.The reflection of oblique incident waves by breakwaters with double-layered perforated wall[J]. Coastal Engineering,2003,50:47-60.
    [181]李玉成,刘洪杰,滕斌.双层局部开孔板沉箱对波浪反射的理论研究[J].海洋工程,2005,23(1):18-32.
    [182]Liu Y, Li Y C, Teng B. Interaction between obliquely incident waves and an infinite array of multi-chamber perforated caissons [J]. Journal of Engineering Mathematics,2011, DOI 10.1007/s 10665-011-9484-2.
    [183]Evans D V.The use of porous screens as wave dampers in narrow wave tanks[J]. Journal of Engineering Mathematics,1990,24:203-212.
    [184]Twu S W, Lin D T. On a highly effective wave absorber[J]. Coast Engineering,1991,15:389-405.
    [185]Molin B, Fourest J M. Numerical modeling of progressive wave absorbers [C]. In:Proceedings of the 7th international workshop water waves and floating bodies,Val de Reuil, France 1992,199-203.
    [186]Wang J J. A special solution of wave dissipation by finite porous plates[J]. Applied Mathematics and Mechanics,1992,13(4):353-357.
    [187]Losada I J, Losada M A, Baquerizo A. An analytical method to evaluate the efficiency of porous screens as wave dampers [J]. Appl Ocean Research,1993,15:207-215.
    [188]Porter R, Evans D V. Wave scattering by periodic arrays of breakwaters [J]. Wave Motion 1996,23:95-120.
    [189]Isaacson M, Baldwin J, Premasiri S, Yang G. Wave interactions with double slotted barriers[J]. Applied Ocean Research,1999,21:81-91.
    [190]Williams A N, Mansour A E M, Lee H S. Simplified analytical solutions for wave interaction with absorbing-type caisson breakwaters [J]. Ocean Engineering,2000,27:1231-1248
    [191]Bergmann H, Oumeraci H. Wave loads on perforated caisson breakwaters [C]. In:Proceedings of the 27th coastal engineering conference, ASCE, Sydney, Australia,2000,1622-1635.
    [192]Huang Z H. A method to study interactions between narrow-banded random waves and multi-chamber perforated structures [J]. Acta Mechanica Sinica,2006,22(4):285-292.
    [193]Teng B, Zhang X T, Ning D Z.Interaction of oblique waves with infinite number of perforated caissons [J]. Ocean Engineering,2004,31:615-632.
    [194]Liu Y, Li YC, Teng B. The reflection of oblique waves by an infinite number of partially perforated caissons [J]. Ocean Engineering,2007,34:1965-1976.
    [195]Krishnakumar C, Sundar V, Sannasiraj S A. Hydrodynamic Performance of Single- and Double-Wave Screens [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2010,136(1): 59-65.
    [196]Krishnakumar C, Sundar V, Sannasiraj S A. Attenuation of wave energy by double chambered breakwaters [J]. Advances in Water Resources and Hydraulic Engineering,2009, IV:1311-1315.
    [197]Kenny F M, James J D, Melling T H. Non-linear wave force analysis of perforated marine structures[C]. Offshore Technology Conference, OTC 2501, Houston, Texas,USA,1976,781-796.
    [198]Tanimoto K, Takahashi S. Japanese experience on composite breakwaters[C]. Proceedings of International Workshop on Wave Barriers in Deepwaters, Port and Harbour Research Institute, Yokosuka, Japan,1994,362-399.
    [199]Tanimoto K, Endoh H, Takahashi S. Field experiments on a dual cylindrical caisson breakwater[C]. 23rd International Conference on Coastal Engineering, ASCE, Venice, Italy,1992,1625-1638.
    [200]Sundaravadivelu R V S, Rao T S. Wave forces and moments on an intake well [J]. Ocean Engineering,1999,26,363-380.
    [201]Wang K H, Ren X. Wave interaction with a concentric porous cylinder system [J]. Ocean Engineering,1994,21(4),343-360.
    [202]Li Y C, Sun L,Teng B.Wave Action on Double-Cylinder Structure With Perforated Outer Wall [C]. ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering (OMAE2003), Cancun, Mexico,2003,149-156.
    [203]Darwiche M K M, Williams A N, Wang K H. Wave interaction with semi-porous cylindrical breakwater[J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1994,120 (4),382-403.
    [204]Williams A N, Li W. Wave interaction with a semi-porous cylindrical breakwater mounted on a storage tank [J]. Ocean Engineering,1998,25(2-3):195-219.
    [205]Williams A N, Li W, Wang K H. Water wave interaction with a floating porous cylinder [J]. Ocean Engineering,2000,27(1):1-28.
    [206]Teng B, Han L, Li Y C, Wave diffraction with a vertical cylinder with two uniform columns and porous outer wall [J]. China Ocean Engineering,2000,14(3):297-306.
    [207]滕斌,韩凌,李玉成.波浪对透空外壁双筒柱的绕射[J].海洋工程,2001,19(1):32-37.
    [208]滕斌,赵明,李玉成.波浪对上部开孔带内柱的圆筒结构的绕射[J].海洋学报,2001,23(6):133-142.
    [209]滕斌,李玉成孙路.波浪与外壁透空双筒柱的相互作用[J].中国工程科学,2001,10(3):41-47.
    [210]Williams A N, Li W. Water wave interaction with an array of bottom-mounted surface-piercing porous cylinders [J]. Ocean Engineering,2000,27(8):841-866.
    [211]Vijayalakshmi K. Hydrodynamics of a perforated circular caisson encircling a vertical cylinder (PhD Dissertion)[D]. New Delhi, Indian Institute of Technology Madras,2005.
    [212]Vijayalakshmi K, Neelamani S, Sundaravadivelu R, Murali K. Wave run-up on a concentric twin perforated circular cylinder [J]. Ocean Engineering,2007,34 (2),327-336.
    [213]Vijayalakshmi K, Sundaravadivelu R, Murali K, Neelamani S. Hydrodynamics of a concentric twin perforated circular cylinder system [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2008,134(3):166-177.
    [214]李玉成,孙路,滕斌.波浪与外壁开孔双筒柱群的相互作用[J].力学学报,2005,37(2):141-147.
    [215]Sankarbabu K, Sannasiraj S A, Sundar V. Interaction of regular waves with a group of dual porous circular cylinders [J]. Applied Ocean Research,2007,29,180-190..
    [216]Sankarbabu K, Sannasiraj S A Sundar, V. Hydrodynamic performance of a dual cylindrical caisson breakwater[J]. Coastal Engineering,2008,55,431-446.
    [217]Zhong Z, Wang K H. Solitary wave interaction with a concentric porous cylinder system [J]. Ocean Engineering,2006,33:927-949.
    [218]Song H, Tao L B. Short-crested wave interaction with a concentric porous cylindrical structure [J]. Applied Ocean Research,2007,29:199-209.
    [219]Zhao F F, Bao W G, Kinoshita T, Itakura H. Interaction of waves and a porous cylinder with an inner horizontal porous plate [J].Applied Ocean Research,2010,32:252-259.
    [220]Chandrasekaran S, Sharma A. Potential-flow-based numerical study for the response of floating offshore structures with perforated columns [J]. Ships and Offshore Structures,2010,5(4):327-336.
    [221]Zhu D T. Wave run-up on a coaxial perforated circular cylinder[J]. China Ocean Engineering,2010,25(2):201-214.
    [222]Chen J T, Lin Y J, Lee Y T, Wu C F. Water wave interaction with surface-piercing porous cylinders using the null-field integral equations[J].Ocean Engineering,2011,38:409-418.
    [223]程建生,缪国平,王景全等.圆弧型贯底式多孔介质防波堤防浪效果的解析研究[J].哈尔滨工程大学学报,2008,29(1):5-10.
    [224]程建生,缪国平,袁辉.波浪在圆弧型浮式多孔介质防波堤绕射的解析[J].解放军理工大学学报(自然科学版),2010,11(5):551-556.
    [225]Tsai C P, Jeng D S, Hsu J R C. Computations of the almost highest short-crested waves in deep water[J]. Applied Ocean Research,1994,16(6):317-326.
    [226]Saleheen H I, Ng K T. Three-dimensional finite-difference bidomain modeling of homogeneous cardiac tissue on a data-parallel computer[J]. IEEE Transactions on Biomedical Engineering,1997, 44(2):200-204.
    [227]Shlager K L, Schneider J B. A selective survey of the finite-difference time-domain literature. IEEE Transactions on Antennas and Propagation Magzine[J].1995,37(4):39-56.
    [228]Newman E H. An overview of the hybrid MM/Green's function method in electromagnetics[J]. Proceedings of the IEE,1998,76(3):270-282.
    [229]Gulbin Dural, M. I. Aksun. Closed-Form Green's Functions for General Sourcesand Stratified Media[J]. IEEE Transactions on Microwave and Techniques,1995,43(7):1545-1552.
    [230]Volakis J L, Ozdemir T F, Gong J. Hybrid finite element methodologies for antennas and scattering[J]. IEEE Transactions on Antennas and Propagation,1997,45(3):493-507.
    [231]Dong X Q, An T Y. A new FEM approach for open boundary Laplace's problem[J]. IEEE Transactions on Microwave and Techniques,1996,44(1):157-160.
    [232]Djordjevic M, Notaros B M. Higher order hybrid method of moments physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces[J]. IEEE Transactions on Antennas andPropagation,2005,53(2):800-813
    [233]Nakano H, Kawano T, Kozono Y, Yamauchi J. A fast MoM calculation technique using sinusoidal basis and testing functions for a wire on a dielectric substrate and its application to meander loop and grid array antennas[J]. IEEE Transactions on Antennas and Propagation,2005,53(10):3300-3307.
    [234]Tsuboi H, Tanaka M. Three dimensional eddy current analysis by the boundary element method using vector potential[J]. IEEE Transactions on Magnetics,1990,26(2):454-457.
    [235]周克定.工程电磁场专论[M].武汉:华中工学院出版社,1986.
    [236]马柏林.奇点展开法综述[J].电子学报,1985,13(5):108-115.
    [237]Luebbers R J, Foose W A, Reyner G. Comparison of GTD propagation model wide-band path loss simulation with measurements [J]. IEEE Transactions on Antennas and Propagation,1989,37(4): 499-505
    [238]Pathak P H, Burnside W D, Marhefka R J. A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface[J]. IEEE Transactions on Antennas and Propagation,1980,28(5):631-642
    [239]Biryukov S V. Fast variation method for elastic strip calculation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2002,49(5):635-642
    [240]Shieh L E, Navarro J M. Frequency-variation method for system identification[J]. IEEE Transactions on Circuits and System,1974,754-763.
    [241]张勇.计算电磁学的无单元方法研究(博士学位论文)[D].武汉:华中科技大学,2006.
    [242]张淮清.电磁场计算中的径向基函数无网格法研究(博士学位论文)[D].重庆:重庆大学,2008
    [243]Thomas J W. Numeral partial differential equations finite difference methods [M].New York: Spinger-Verlag New York Inc,1995:13-18.
    [244]Zienkiewicz O C, Taylor K L. The finite element method [M]. Fifth Edition:Butterworth Heinemann,2000:15-20.
    [245]龙述尧.边界单元法概论[M].北京:中国科学文化出版社,2002:15-20.
    [246]倪光正,钱秀英等.电磁场数值计算[M].北京:高等教育出版社,1996.
    [247]刘更,刘天祥,谢琴.无网格法及其应用[M].西北工业大学出版社,2005.
    [248]Wolf J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite-element multi-cell cloning [J]. Earthquake Engineering and Structural Dynamics,1994,23:233-250.
    [249]Wolf J P, Song C M. Finite-element modeling of unbounded media [M]. John Wiley and Sons, Chichester,1996.
    [250]Dasgupta G. A finite element formulation for unbounded homogeneous continua [J]. Journal of Applied Mechanics-Transactions of the ASME,1982,49(1):136-140.
    [251]Wolf J P, Weber B. On calculating the dynamic-stiffness matrix of the unbounded soil by cloning [A].In:Dunger R, Pande G N, Studer J A, eds. International Symposium on Numerical Methods inGeomechanics [C]. Rotterdam:A.A. Balkema,1982,486-494.
    [252]Wolf J P, Song C M. Dynamic-stiffness matrix of unbounded medium by finite-element multi-cell cloning [J]. Earthquake Engineering & Structural Dynamics,1994,23(3):233-250.
    [253]Song C M, Wolf J P. Unit-impulse response matrix of unbounded medium by finite-element based forecasting [J]. International Journal for Numerical Methods in Engineering,1995,38(7):1073-1086.
    [254]Wolf J P, Song C M. Dynamic-stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method [J]. Earthquake Engineering & Structural Dynamics,1994, 23(11):1181-1198.
    [255]Wolf J P, Song C M. Consistent infinitesimal finite-element cell method:Three-dimensional vector wave equation [J]. International Journal for Numerical Methods in Engineering,1996,39(13):2189-2208.
    [256]Song C M, Wolf J P. The scaled boundary finite-element method — alias consistent infinitesimal finite-element cell method — for elastodynamics [J]. Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
    [257]Song C M, Wolf J P. The scaled boundary finite-element method:analytical solution in frequency domain [J]. Computer methods in applied mechanics and engineering,1998,164:249-264.
    [258]Li B N, Cheng L Deeks A J, Zhao M. A semi-analytical solution method for two-dimensional Helmholtz equation [J]. Applied Ocean Research 2006,28:193:207.
    [259]Song C M, Wolf J P. Body loads in scaled boundary finite-element method [J]. Computer Methods in Applied Mechanics and Engineering,1999,180(1):117-135.
    [260]Deeks A J, Wolf J P. A virtual work derivation of the scaled boundary finite-element method for elastostatics [J]. Computational Mechanics,2002,28(6):489-504.
    [261]Song C M, Wolf J P. The scaled boundary finite-element method — alias consistent infinitesimal finite-element cell method — for diffusion [J]. International Journal for Numerical Methods in Engineering,1999,45(10):1403-1430.
    [262]Wolf J P, Song C M. The scaled boundary finite-element method — a primer:derivations [J]. Computers and Structures,2000,78:191-210.
    [263]Wolf J P, Song C M. The scaled boundary finite-element method — a primer:solution procedures [J]. Computers and Structures,2000,78:211-225.
    [264]Wolf J P. The scaled boundary finite element method [M]. John Wiley and Sons, Chichester,2003.
    [265]Deeks A J, Wolf J P. Stress recovery and error estimation for the scaled boundary finite-element method [J]. International Journal for Numerical Methods in Engineering,2002,54(4):557-583.
    [266]Deeks A J, Wolf J P. An h-hierarchical adaptive procedure for the scaled boundary finite-element method [J]. International Journal for Numerical Methods in Engineering,2002,54(4):585-605.
    [267]Deeks A J, Wolf J P. Semi-analytical elastostatic analysis of unbounded two-dimensional domains [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002, 26:1031-1057.
    [268]Song C M. A matrix function solution for the scaled boundary finite-element equation in statics [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(23-26):2325-2356.
    [269]Doherty J P, Deeks A J.Scaled boundary finite-element analysis of a non-homogeneous elastic half-space. [J]. International Journal for Numerical Methods in Engineering,2003,57:955-973.
    [270]Doherty J P, Deeks A J. Scaled boundary finite-element analysis of a non-homogeneous axisymmetric domain subjected to general loading [J]. International Journal for Numerical Methods in Engineering,2003,27:813-835.
    [271]Doherty J P, Deeks A J. Semi-analytical far field model for three-dimensional finite-element analysis [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004, 28(11):1121-1140.
    [272]阎俊义,金峰,张楚汉.基于线性系统理论的FE-SBFE时域耦合方法,清华大学学报(自然科学版),2003,43(11):1554-1566.
    [273]Deeks A J. Prescribed side-face displacements in the scaled boundary finite-element method [J]. Computers and Structures,2004,82:1153-1165.
    [274]Song C M. Weighted block-orthogonal base functions for static analysis of unbounded domains [A], In:Proceedings of the 6th World Congress on Computational Methanics [C], Beijing, China,2004, 615-620.
    [275]Song C M. Dynamic analysis of unbounded domains by a reduced set of base functions [J]. Computer Methods in Applied Mechanics and Engineering,2006,195(33-36):4075-4094.
    [276]Genes M C, Kocak S. Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model [J]. International Journal for Numerical Methods in Engineering,2005,62(6):798-823.
    [277]Li B N, Cheng L, Deeks A J, Teng B. A modified scaled boundary finite-element method for problems with parallel side-faces. Part Ⅰ. Theoretical developments [J]. Applied Ocean Research,2005, 27:216-223.
    [278]Li B N, Cheng L, Deeks A J, Teng B. A modified scaled boundary finite-element method for problems with parallel side-faces. Part Ⅱ. Application and evaluation [J]. Applied Ocean Research, 2005.27:224-234.
    [279]Deeks A J, Augarde C E. A meshless local Petrov-Galerkin scaled boundary method [J]. Computational Mechanics,2005,36:159-170.
    [280]Doherty J P, Deeks A J. Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded media [J].Computers and Geotechnics,2005,32:436-444
    [281]Vu T H, Deeks A J. Use of higher-order shape functions in the scaled boundary finite element method [J]. International Journal for Numerical Methods in Engineering,2006,65(10):1714-1733.
    [282]Tao L B, Song H, Chakrabarti S. Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder [J]. Computer Methods in Applied Mechanics and Engineering,2007,197:232:242.
    [283]Yang Z J, Deeks A J, Hong H. A Frequency-Domain Approach for transient dynamic analysis using scaled boundary finite element method (Ⅰ):approach and validation [C]. The 10th Int. Conf. Comp. Meth. in Engng. & Sci (EPMESC X), Computational methods in engineering and science, Sanya, China,2006:256.
    [284]Yang Z J, Deeks A J, Hong H. A Frequency-Domain Approach for Transient Dynamic Analysis Using Scaled Boundary Finite Element Method (Ⅱ):Application to Fracture Problems[C]. The 10th Int. Conf. Comp. Meth. in Engng. & Sci (EPMESC X), Computational methods in engineering and science, Sanya, China,2006:765-773.
    [285]Yang Z J, Deeks A J. A Frobenius solution to the scaled boundary finite element equations in frequency domain for bounded media [J]. International Journal for Numerical Methods in Engineering, 2007,70:1387-1408.
    [286]Song C M, Mohammad H B. A boundary condition in Pad'e series for frequency-domain solution of wave propagation in unbounded domains [J]. International Journal for Numerical Methods in Engineering,2007,69:2330-2358.
    [287]Mohammad H B, Song C M. A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry [J]. International Journal for Numerical Methods in Engineering,2008,74:209-237.
    [288]Song C M. The scaled boundary finite element method in structural dynamics [J]. International Journal for Numerical Methods in Engineering,2009,77:1139-1171.
    [289]Birk C, Song C M. A continued-fraction approach for transient diffusion in unbounded medium [J]. Computer Methods in Applied Mechanics and Engineering,2009,198:2576-2590.
    [290]Prempramote S, Song C M, Tin-Loi F, Lin G. High-order doubly asymptotic open boundaries for scalar wave equation [J]. International Journal for Numerical Methods in Engineering,2009, 79:340-374.
    [291]Birk C, Prempramote S, Song C M. An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains [J]. International Journal for Numerical Methods in Engineering,2012,89:269-298.
    [292]Vu T H, Deeks A J. A p-adaptive scaled boundary finite element method based on maximization of the error decrease rate [J]. Computational Mechanics,2008,41:441-455.
    [293]Vu T H, Deeks A J. A p-hierarchical adaptive procedure for the scaled boundary finite element method [J]. International Journal for Numerical Methods in Engineering,2008,73:47-70.
    [294]Bird G E, Trevelyan J, Augarde C E. A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics [J]. Engineering Analysis with Boundary Elements, 2010,34:599-610.
    [295]Hu Z Q, Lin G, Wang Yi, Liu J. A Hamiltonian-based Derivation of Scaled Boundary Finite Element Method for Elasticity Problems [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012213.
    [296]胡志强,林皋,王毅,刘俊.基于Hamilton体系的弹性力学问题的比例边界有限元方法[J].计算力学学报,2011,28(4):510-516.
    [297]Chiong I, Song C M. Development of polygon elements based on the scaled boundary finite element method. [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012226.
    [298]Zhang Y, Lin G, Hu Z Q. Isogeometric analysis based on scaled boundary finite element method. [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012237.
    [299]Li M, Song H, Guan H, Zhang H. Schur decomposition in the scaled boundary finite element method in elastostatics [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012243.
    [300]Zhang Z H Yang Z J, Liu G H, Hu Y J. An adaptive scaled boundary finite element method by subdividing subdomains for elastodynamic problems [J]. SCIENCE CHINA Technological Sciences, 2011,54(Suppl.1):101-110.
    [301]林志良.比例边界有限元法及快速多极子边界元法的研究与应用(博士学位论文)[D].上海:上海交通大学,2010.
    [302]Lin Z L, Liao S J. The scaled boundary FEM for nonlinear problems. [J]. Communications in Nonlinear Science and Numerical Simulation,2011,16:63-75.
    [303]Birk C, Behnke R. A modified scaled boundary finite element method for three-dimensional dynamic soil-structure interaction in layered soil [J]. International Journal for Numerical Methods in Engineering,2012,89:371-402.
    [304]Wolf J P, Song C M. Unit-impulse response matrix of unbounded medium by infinitesimal finite-element cell method Computer Methods in Applied Mechanics and Engineering,1995,122: 251-272.
    [305]Wolf J P, Song C M. Consistent infinitesimal finite-element:in-plane motion [J]. Computer Methods in Applied Mechanics and Engineering,1995,123:355-370.
    [306]Wolf J P, Song C M. Consistent Infinitesimal Finite Element Cell Method—Three-Dimensional Scalar Wave Equation [J]. ASME Journal of Applied Mechanics,1996,63:650-654.
    [307]Wolf J P, Song C M. Consistent infinitesimal finite-element cell method:in-plane motion [J]. Computer Methods in Applied Mechanics and Engineering,1995,123(1-4):355-370.
    [308]Song C M, Wolf J P. Consistent infinitesimal finite-element cell method for diffusion equation in unbounded medium [J]. Computer Methods in Applied Mechanics and Engineering,1996,132: 319-334.
    [309]Wolf J P, Song C M. Consistent infinitesimal finite-element cell method in frequency domain [J]. Earthquake Engineering and Structural Dynamics,1996,25:1307-1327.
    [310]Song C M, Wolf J P. Consistent infinitesimal finite-element cell method for incompressible unbounded medium [J]. Communications in Numerical Methods in Engineering,1997,13:21-32.
    [311]Wolf J P, Song C M. Unit-impulse response of unbounded medium by scaled boundary finite-element method [J]. Computer Methods in Applied Mechanics and Engineering,1998, 159:355-367.
    [312]Wolf J P, Song C M. The scaled boundary finite-element method-a fundamental solution-less boundary-element method [J]. Computer Methods in Applied Mechanics and Engineering,2001, 190:55511-5568.
    [313]Wolf J P. Response of unbounded soil in scaled boundary finite-element method [J]. Earthquake Engineering and Structural Dynamics,2002,31:15-32.
    [314]Wolf J P, Song C M. Some cornerstones of dynamic soil-structure interaction [J]. Engineering Structures,2002,24:13-28.
    [315]Deeks A J, Wolf J P. Semi-analytical solution of Laplace's equation in non-equilibrating unbounded problems [J]. Computers and Structures,2003,81:1525-1537.
    [316]Deeks A J. Scaled boundary method:advantages for elastostatics [C]. WCCM/APCOM, Beiging, China,2004:288-293.
    [317]Vu T H, Deeks A J. Analysis of Concentrated Boundary Loads in the Scaled Boundary Finite Element Method [C]. The 10th Int. Conf. Comp. Meth. in Engng. & Sci (EPMESC X), Computational methods in engineering and science, Sanya, China.2006:747-755.
    [318]Artel J, Becker W. On kinematic coupling equations within the scaled boundary finite-element method [J]. Archive of Applied Mechanics,2006,76:617-633.
    [319]Yang Z J, Deeks A J. A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Computational Mechanics,2007,40:725-738.
    [320]Hebel J, Becker W. Analysis of thin laminated plates by means of the scaled boundary finite element method [C].79th Annual Meeting of the Gesellschaft fur Angewandte Mathematik und Mechanik (Proceedings in Applied Mathematics and Mechanics), Bremen, Germany,2008,8:10285-10286.
    [321]Dieringer R, Hebel J, Becker W. Extension of the scaled boundary finite element method to plate bending problems [C].82th Annual Meeting of the Gesellschaft fur Angewandte Mathematik und Mechanik (Proceedings in Applied Mathematics and Mechanics), Graz, Austria,2011,11:203-204.
    [322]Yang Z J, Zhang Z H, Liu G H, Ooi E T. An h-hierarchical adaptive scaled boundary finite element method for elastodynamics [J].Computers and Structures 2011,89:1417-1429.
    [323]Radmanovic B, Katz C. A High Performance Scaled Boundary Finite Element Method [J]. IOP Conf. Series:Materials Science and Engineering 2010,10:012214.
    [324]Prempramote S, Birk C, Song C M. A high-order doubly asymptotic open boundary for scalar waves in semi-infinite layered systems [J].IOP Conf. Series:Materials Science and Engineering, 2010,10:012215.
    [325]Yan J Y, Jin F, Xu Y J. A seismic free field input model for FE-SBFE coupling in time domain [J]. Earthquake Engineering and Engineering Vibration,2003,2(1):51-57.
    [326]Yan J Y, Zhang C H, Jin F. A coupling procedure of FE and SBFE for soil-structure interaction in the time domain [J]. International Journal for Numerical Methods in Engineering,2004, 59:1453-1471.
    [327]Yan J Y, Jin F, Zhang C H. A finite element-scaled boundary finite element coupling for soil-structure interactions [C].WCCM/APCOM, Beiging, China,2004.
    [328]阎俊义.结构-地基相互作用的FE-SBFE时域耦合方法及工程应用(博士学位论文)[D].北京:清华大学,2004.
    [329]阎俊义,金峰,张楚汉FE-SBFE时域耦合波输入模型[J].燕山大学学报,2004,28(2):108-110..
    [330]Zhang X, Wegner J L, Haddow J B. Three-dimensional dynamic soil-structure interaction analysis in the time domain[J]. Earthquake Engineering & Structural Dynamics.1999,28(12):1501-1524.
    [331]Wegner J L, Zhang X. Free-vibration analysis of a three-dimensional soil-structure system [J]. Earthquake Engineering and Structural Dynamics.2001,30(1):43-57.
    [332]Ekevid T, Wiberg N E. Wave propagation related to high-speed train A scaled boundary FE-approach for unbounded domains. [J]. Computer Methods in Applied Mechanics and Engineering. 2002,191:3947-3964.
    [333]Doherty J P, Deeks A J, Houlsby G T. Evaluation of foundation stiffness using the scaled boundary finite element method [C]. WCCM/APCOM, Beiging, China,2004.
    [334]Genes M C, Kocak S. Transient analysis of large-scaled soil-structure interaction systems embedded in layered unbounded mediums via a coupled FE-BE-SBFE model [C]. WCCM/APCOM, Beiging, China,2004.
    [335]Genes M C, Kocak S. Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model [J]. International Journal for Numerical Methods in Engineering,2005,62:798-823.
    [336]Lehmann L.Transient analysis of soil-structure interaction problems -an optimized FFEM-SBFEM approach [C]. WCCM/APCOM, Beiging, China,2004.
    [337]Lehmann L. An effective finite element approach for soil-structure analysis in the time-domain [J]. Structural Engineering and Mechanics,2005,21 (4):1-14.
    [338]Wegner J L, Yao M M, Zhang X. Dynamic wave-soil-structure interaction analysis in the time domain [J].Computers and Structures 2005,83:2206-2214.
    [339]任红梅SBFEM在地下结构地震响应分析中的应用(硕士学位论文)[D].大连:大连理工大学,2005.
    [340]任红梅,林皋.基于SBFEM的地下结构抗震分析[J].岩土工程学报,2005,13(3):819-823.
    [341]林皋,任红梅.复杂不均匀地层中地下结构波动响应频域分析[J].大连理工大学学报,2008,48(1):105-111.
    [342]杜建国,林皋.地基刚度和不均匀性对混凝土大坝地震响应的影响[J].安徽建筑工业学院学报(自然科学版),2005,13(3):28-31.
    [343]杜建国,林皋,钟红.基于锥体理论的三维拱坝无限地基SBFEM模型[J].水电能源科学,2006,24(1):25-29.
    [344]杜建国,林皋,胡志强.非均质无限地基上高拱坝的动力响应分析[J].岩石力学与工程学报,2006,25(增2):4104-4111.
    [345]杜建国,林皋.比例边界有限元子结构法研究[J].世界地震工程,2007,23(1):67-72.
    [346]杜建国,林皋.基于比例边界有限元法的结构-地基动力相互作用时域算法的改进[J].水利学报,2007,38(1):8-14.
    [347]Lin G, Du J G, Hu Z Q, et al. Earthquake analysis including the effects of foundation inhomogeneity. Frontiers of Architecture and Civil Engineering in China,2007:41:50.
    [348]Bazyar M H, Song C M. Time-harmonic response of non-homogeneous elastic unbounded domains using the scaled boundary finite-element method [J]. Earthquake Engineering and Structural Dynamics,2006,35:357-383.
    [349]Bazyar M H. Dynamic soil-structure interaction analysis using scaled boundary finite element method (Ph.D. Dissertation) [D]. Sydney, Australia:The University of New South Wales,2007.
    [350]Song C M, Bazyar M H. Development of a fundamental-solution-less boundary element method for exterior wave problems [J]. Communications in Numerical Methods in Engineering,2008,24:257-279.
    [351]Birk C, Bochert J. Time-domain soil-structure interaction analysis using the scaled boundary finite element method and rational stiffness approximations [C].79th Annual Meeting of the Gesellschaft fur Angewandte Mathematik und Mechanik(Proceedings in Applied Mathematics and Mechanics), Bremen, Germany,2008,8:10265-10266.
    [352]Birk C. Time-domain analysis of wave propagation in unbounded domains based on the scaled boundary finite element method [C].80th Annual Meeting of the Gesellschaft fur Angewandte Mathematik und Mechanik (Proceedings in Applied Mathematics and Mechanics), Gdansk, Poland,2009,9:91-94.
    [353]Schauer M, Lehmann L. Large Scale Simulation with Scaled Boundary Finite Element Method.80th Annual Meeting of the Gesellschaft fur Angewandte Mathematik und Mechanik (Proceedings in Applied Mathematics and Mechanics), Gdansk, Poland,2009,9:103-106.
    [354]王钰睫.拱梁分载法的改进与ANSYS程序实现(硕士学位论文)[D].大连:大连理工大学,2009.
    [355]朱秀云.核电厂房地基抗震适应性及楼层谱不确定性分析(硕士学位论文)[D].大连:大连理工大学,2009.
    [356]逢俊杰.分层地基一核电厂房的动力相互作用分析(硕士学位论文)[D].大连:大连理工大学,2010.
    [357]丁锦铭.基础埋置对核电厂房地震响应的影响分析(硕士学位论文)[D].大连:大连理工大学,2010.
    [358]Bransch M, Lehmann L. A nonlinear HHT-a method with elastic-plastic soil-structure interaction in a coupled SBFEM/FEM approach [J].Computers and Geotechnics,2011,38:80-87.
    [359]Liu T Y, Zhao C B, Zhang C H, Jin F. A semi-analytical artificial boundary for time-dependent elastic wave propagation in two-dimensional homogeneous half space [J]. Soil Dynamics and Earthquake Engineering,2010,30,1352-1360.
    [360]Birk C, Behnke R. Dynamic response of foundations on three-dimensional layered soil using the scaled boundary finite element method [J].IOP Conf. Series:Materials Science and Engineering,2010,10:012228.
    [361]Schauer M, Langer S. Large scale simulation of wave propagation in soils interaction with structures using FEM and SBFEM [J]. Journal of Computational Acoustics,2011,19 (1):75-93.
    [362]Schauer M, Roman J E, Enrique S, Quintana S L. Parallel Computation of 3-D Soil-Structure Interaction in Time Domain with a Coupled FEM/SBFEM Approach [J]. Journal of Scientific Computing,2012, DOI:10.1007/s10915-011-9551-x.
    [363]Seiphoor A, Haeri S M, Karimi M. Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam-foundation interaction effects [J]. Soil Dynamics and Earthquake Engineering,2011,31:792-804.
    [364]Genes M C. Dynamic analysis of large-scale SSI systems for layered unbounded media via a parallelized coupled finite-element/boundary-element/scaled boundary finite-element model [J]. Engineering Analysis with Boundary Elements,2012,36(5):845-857.
    [365]Liu J Y, Lin G, Hu Z Q, Zhang Y. The Calculating Model of the Gravity Dam-Reservoir-Foundation Based on the High-Order Transmitting Boundary [J].Procedia Engineering 2012,28:224-229.
    [366]Song C M, Wolf J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method [J]. Computers and Structures,2002,80:183-197.
    [367]Song C M. A super-element for crack analysis in the time domain [J]. International Journal for Numerical Methods in Engineering,2004,61:1332-1357.
    [368]Chidgzey S R, Deeks A J. Higher order terms of elastic crack tip field using the scaled boundary finite element method [C]. WCCM/APCOM, Beiging, China,2004:310.
    [369]Chidgzey S R, Deeks A J. Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method [J]. Engineering Fracture Mechanics,2005,72:2019-2036.
    [370]Song C M. Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners [J]. Engineering Fracture Mechanics,2005,72:1498-1530.
    [371]Song C M. Analysis of singular stress fields at multi-material corners under thermal loading [J]. International Journal for Numerical Methods in Engineering,2006,65:620-652.
    [372]Yang Z J. Application of scaled boundary finite element method in static and dynamic fracture problems [J]. Acta Mechanica Sinica,2006,22:243-256.
    [373]Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method [J]. Engineering Fracture Mechanics 2006,73:1711-1731.
    [374]Liu J Y, Lin G. Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces [J]. China Ocean Engineering,2007,21(2):293-303.
    [375]Yang Z J, Deeks A J. Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method [J].Engineering Fracture Mechanics,2007, 74:2547-2573.
    [376]Yang Z J, Deeks A J. Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method [J]. International Journal of Fracture,2007,143:333-354.
    [377]Yang Z J, Deeks A J, Hao H.Transient dynamic fracture analysis using scaled boundary finite element method:a frequency-domain approach [J]. Engineering Fracture Mechanics,2007, 74:669-687.
    [378]吴桐.粘性离散裂缝模型及其对混凝土尺寸效应的模拟(硕士学位论文)[D].杭州:浙江大学,2007.
    [379]Chidgzey S R, Trevelyan J, Deeks A J. Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics [J]. Computers and Structures 2008,86:1198-1203.
    [380]Song C M, Vrcelj Z. Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method [J]. Engineering Fracture Mechanics,2008,75:1960-1980.
    [381]余学芳,刘国.比例边界单元法模拟混凝土梁混合裂缝扩展[J].中山大学学报(自然科学版),2008,47(2):23-27.
    [382]杨贞军,Deeks A J基于频域比例边界有限元法的双材料界面裂缝瞬态动应力强度因子的计算[J].中国科学G辑:物理学、力学、天文学,2008,38(1):77-88.
    [383]Yang Z J, Deeks A J. Calculation of transient dynamic stress intensity factors at bimaterial interface cracks using a SBFEM-based frequency-domain approach [J]. Science in China Series G:Physics, Mechanics & Astronomy,2008,55(5):519-531.
    [384]刘钧玉.裂纹内水压对重力坝断裂特性影响的研究(博士学位论文)[D].大连:大连理工大学,2008.
    [385]刘钧玉,林皋,杜建国.基于SBFEM的多裂纹问题断裂分析[J].大连理工大学学报,2008,48(3):392-397.
    [386]刘钧玉,林皋,范书立,杜建国,胡志强.裂纹面受荷载作用的应力强度因子的计算[J].计算力学学报,2008,25(5):621-626.
    [387]刘钧玉,林皋,胡志强,李建波.裂纹内水压分布对重力坝断裂特性的影响[J].土木工程学报,2009,42(3):132-141.
    [388]刘钧玉,林皋,胡志强.重力坝-地基-库水系统动态断裂分析[J].工程力学,2009,26(11):114-120.
    [389]刘钧玉,林皋,李建波,胡志强.重力坝动态断裂分析[J].水利学报,2009,40(9):1096-1102.
    [390]Ooi E T, Yang Z J. Modelling multiple cohesive crack propagation using a finite element-scaled boundary finite element coupled method [J]. Engineering Analysis with Boundary Elements, 2009,33:915-929.
    [391]Mayland W, Becker W. Scaled boundary finite element analysis of stress singularities in piezoelectric multi-material systems.80th Annual Meeting of the Gesellschaft fur Angewandte Mathematik und Mechanik (Proceedings in Applied Mathematics and Mechanics), Gdansk, Poland,2009,9:99-102.
    [392]Bird G E, Trevelyan J, Augarde C E. A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics [J]. Engineering Analysis with Boundary Elements,2010,34:599-610.
    [393]Song C M. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012042.
    [394]Ooi E T, Yang Z J. A hybrid finite element-scaled boundary finite element method for crack propagation modeling [J]. Computer Methods in Applied Mechanics and Engineering, 2010,199:1178-1192.
    [395]Ooi E T, Yang Z J. Efficient prediction of deterministic size effects using the scaled boundary finite element method [J]. Engineering Fracture Mechanics,2010,77:985-1000.
    [396]Zhu C L, Li J B, Lin G, Zhong H. Study on the relationship between stress intensity factor and J integral for mixed mode crack with arbitrary inclination based on SBFEM [J]. IOP Conf. Series: Materials Science and Engineering,2010,10:012066.
    [397]朱朝磊,李建波,林皋.基于SBFEM任意角度混合型裂纹断裂能计算的J积分方法研究[J].土木工程学报,2011,44(4):16-22.
    [398]刘钧玉,林皋,胡志强裂纹面荷载作用下多裂纹应力强度因子计算[J].工程力学,2011,28(4):7-12.
    [399]Ooi E T, Yang Z J. Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method[J]. Engineering Fracture Mechanics,2011,78:252-273.
    [400]Ooi E T, Yang Z J. Modelling dynamic crack propagation using the scaled boundary finite element method [J]. International Journal for Numerical Methods in Engineering,2011,88:329-349.
    [401]Chowdhury M S, Song C M, Gao W. Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2011,78:2369-2389.
    [402]Gravenkamp H, Song C M, Prager J. A numerical approach for the computation of dispersion relations for plate structures using the scaled boundary finite Element method [J]. Journal of Sound and Vibration,2012, doi:10.1016/j.jsv.2012.01.029.
    [403]Deeks A J, Cheng L. Potential flow obstacles using the scald boundary finite-element method. International Journal for Numerical Methods in Fluids,2003,41(7):721-741.
    [404]Li B N. Cheng L, Deeks A J. Wave diffraction by vertical cylinder using the scaled boundary finite-element [C]. Proceeding CDROM of the sixth world congress on computational mechanics in conjunction with the second Asian-Pacific congress on computation mechanics, Beijing, China,2004.
    [405]Li B N, Cheng L, Deeks A J et al. Substructuring in the scaled boundary finite-element analysis of wave diffraction [R]. The University of Western Australia,2004.
    [406]Li B N, Cheng L, Deeks A J, Teng B. A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments [J]. Applied Ocean Research,2005,27:216-223.
    [407]Li B N, Cheng L, Deeks A J, Teng B. A modified scaled boundary finite-element method for problems with parallel side-faces. Part Ⅱ. Application and evaluation [J]. Applied Ocean Research,2005,27:224-234.
    [408]Li B N. Extending the scaled boundary finite element method to wave diffraction problems (Ph.D. Dissertation) [D]. Perth Australia:The University of Western Australia,2007.
    [409]滕斌,赵明,何广华.三维势流场的比例边界有限元求解方法[J].计算力学学报,2006,23(3):301-306.
    [410]滕斌,何广华,李博宁,程亮.应用比例边界有限元法求解狭缝对双箱水动力的影响[J].计算力学学报,2006,24(2):29-37.
    [411]何广华.应用比例边界有限元法求解波浪对物体的绕射(硕士学位论文)[D].大连:大连理工大学,2006
    [412]何广华,滕斌,李博宁.程亮应用比例边界有限元法研究波浪与带狭缝三箱作用的共振现象[J].水动力学研究与进展,2006,21(3):418-424.
    [413]Teng B, Zhao M, He G H. Scaled boundary finite element analysis of the water sloshing in 2D containers [J]. International Journal for Numerical Methods in Fluids,2006,52:659-678.
    [414]Lehmann L, Ruberg T. Application of hierarchical matrices to the simulation of wave propagation in fluids [J]. Communications in Numerical Methods in Engineering,2006,22:489-503.
    [415]曹凤帅,滕斌.应用比例边界有限元法求解多种二维浮体水动力特性[J].Ⅰ海洋工程,2008,26(1):102-103.
    [416]Cao F S, Teng B. Scaled boundary finite element analysis of wave passing a submerged breakwater. [J]. China Ocean Engineering,2008,22(2):241-251.
    [417]Cao F S, Teng B. Analysis of wave passing a submerged breakwater by a scaled boundary finite element method. [C]. Proceedings of the Fifth International Conference on Fluid Mechanics,,New Trends in Fluid Mechanics Research, Shanghai, China,2007:296-299.
    [418]曹凤帅.比例边界有限元法在势流理论中的应用(博士学位论文)[D].大连:大连理工大学,2009.
    [419]Tao L B, Song H. Scaled Boundary FEM Solution of 2D Steady Incompressible Viscous Flows [C]. Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2008), Estoril, Portugal,2008:57285.
    [420]Song H, Tao L B. Hydroelastic Response of a Circular Plate in Waves Using Scaled Boundary FEM [C]. Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2009), Honolulu, Hawaii, USA,2009:79271.
    [421]Song H, Tao L B. Semi-analytical solution of Poisson's equation in bounded domain [J]. ANZIAM Journal,2009,51,C 169.
    [422]Li Miao, Zhang H, Guan H. Study of offshore monopole behaviour due to ocean waves. [J]. Ocean Engineering,2011,38:1946-1956.
    [423]吴泽艳,王立峰,陈莘莘,武哲.基于FEM-SBFEM的无穷域势流问题重叠型区域分解计算[J].数值计算与计算机应用,2011,32(3):229-237.
    [424]Tao L B, Song H, Chakrabarti S. Scaled boundary fern solution of short-crested wave diffraction by a vertical cylinder [J]. Computer Methods in Applied Mechanics and Engineering,2007,197:232-242.
    [425]Song H, Tao, L B. Modelling of water wave interaction with multiple cylinders of arbitrary shape [J]. Journal of Computational Physics,229(5):1498-1513,2010.
    [426]Song H, Tao L B. Scaled boundary FEM solution of wave diffraction by a square caisson [C]. Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2008), Estoril, Portugal,2008:57279.
    [427]Tao L B, Song H. Hydrodynamic diffraction by multiple elliptical cylinders [J]. ANZIAM Journal, 2008,50,C474.
    [428]Tao L B, Song H, Chakrabarti S. Spacing effect on hydrodynamics of two adjacent offshore caissons [C]. Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2009), Honolulu, Hawaii, USA,2009:79226.
    [429]Song H, Tao L B. The effect of short-crested wave phase on a concentric porous cylinder system in the wind blowing open sea [C].16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia,2007,1275-1282.
    [430]Song H, Tao L B. An efficient scaled boundary FEM model for wave interaction with a nonuniform porous cylinder [J], International Journal for Numerical Methods in Fluids,2010,63:96-118.
    [431]Song H, Tao L B. Second-order wave diffraction by a circular cylinder using scaled boundary finite element method [J].IOP Conf. Series:Materials Science and Engineering 2010,10:012244.
    [432]Song H, Tao L B. Wave interaction with an infinite long horizontal elliptical cylinder [C]. Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011), Rotterdam, The Netherlands,2011:49829.
    [433]林皋,杜建国.基于SBFEM的坝-库水相互作用分析[J].大连理工大学学报,2005,45(5):723-729.
    [434]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析(博士学位论文)[D].大连:大连理工大学,2007.
    [435]杜建国,林皋,谢清粮.一种新的求解坝面动水压力的半解析方法[J].振动与冲击,2009,28(3):31-34.
    [436]Lin G, Du J G, Hu Z Q. Dynamic dam-reservoir interaction analysis including effect of reservoir boundary absorption [J]. Science in China Series E:Technological Sciences,2007,50(Suppl.1):1-10.
    [437]Li S M. Diagonalization procedure for scaled boundary finite element method in modeling semi-infinite reservoir with uniform cross-section [J]. International Journal for Numerical Methods in Engineering,2009,80:596-608.
    [438]Lin G, Wang Y, Hu Z Q. Hydrodynamic pressure on arch dam and gravity dam including absorption effect of reservoir sediments [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012234
    [439]Wang Y, Lin G, Hu Z Q. A Coupled FE and Scaled Boundary FE-Approach for the Earthquake Response Analysis of Arch Dam-Reservoir-Foundation System [J]. IOP Conf. Series:Materials Science and Engineering,2010,10:012212.
    [440]王翔.高阶双渐近透射边界及其在大坝-库水相互作用中的应用(博士学位论文)[D].北京:清华大学,2010..
    [441]王翔,宋崇民,金峰.离散高阶Higdon-like透射边界[J].工程力学,2010,27(2):12-18..
    [442]Li S M. Coupled Finite Element-Scaled Boundary Finite Element Method for Transient Analysis of Dam-Reservoir Interaction [J]. Lecture Notes in Computer Science,2011,6785:26-34.
    [443]Gao Y C, Jin F, Wang X, Wang J Y. Finite Element Analysis of Dam-Reservoir Interaction Using High-Order Doubly Asymptotic Open Boundary [J]. Mathematical Problems in Engineering,2011, doi:10.1155/2011/210624.
    [444]Wang X, Jin F, Prempramote S, Song C M. Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary [J]. Computers and Structures, 2011,89:668-680.
    [445]王翔,金峰.动水压力波高阶双渐近时域平面透射边界Ⅰ:理论推导[J].水利学报,2011,42(7):839-847.
    [446]王翔,金峰.动水压力波高阶双渐近时域平面透射边界Ⅱ:计算性能[J].水利学报,2011,42(8):986-994.
    [447]王毅,胡志强.基于比例边界有限元的拱坝动水压力计算[J].水电能源科学,2011,29(2):44-46.
    [448]李上明.基于比例边界有限元法的坝库瞬态耦合分析[J].华中科技大学学报(自然科学版),2011,39(9):108-111.
    [449]Lin G, Wang Y, Hu Z Q. An efficient approach for frequency-domain and time-domain hydrodynamic analysis of dam-reservoir systems [J]. Earthquake Engineering and Structural Dynamics,2012, DOI:10.1002/eqe.2154.
    [450]Lehmann L, Langer S, Clasen D. Scaled boundary finite element method for acoustics [J]. Journal of Computational Acoustics,2006,14 (4):489-506.
    [451]Lehmann L. Application of a coupled finite element/scaled boundary finite element procedure to acoustics [A]. Proceedings of Coupled Problems[C], ECCOMAS, Santorini, Greece,2005.
    [452]魏翠玲,徐海宾,韩晓斌,张宝华,田小峰.沥青路面模量反演方法研究[J].河北工程大学学报(自然科学版),2007,24(1):1-3.
    [453]Mahmoud H, Ashraf E H. Two-dimensional development of the dynamic coupled consolidation scaled boundary finite-element method for fully saturated soils. Soil Dynamics and Earthquake Engineering,2007,27:153:165.
    [454]Birk C, Prempramote S, Song C M. High-order doubly asymptotic absorbing boundaries for he acoustic wave equation [C]. Proceedings of 20th International Congress on Acoustics, ICA 2010, Sydney, Australia,2010:1-8.
    [455]Birk C, Song C M.A continued-fraction approach for transient diffusion in unbounded medium [J]. Computer Methods in Applied Mechanics and Engineering,2009,198:2576-2590.
    [456]Birk C, Song C M. A local high-order doubly asymptotic open boundary for diffusion in a semi-infinite layer [J]. Journal of Computational Physics,2010,229:6156-6179.
    [457]李凤志.渗流自由面分析的比例边界有限元法[J].计算物理,2009,26(5):665-670.
    [458]Li F Z. Scaled boundary finite-element and substructure analysis on the seepage problems [J]. Modern Physics Letters B,2010,24 (13):1491-1494.
    [459]Bazyar M H, Graili Adel. A practical and efficient numerical scheme for the analysis of steady state unconfined seepage flows [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011, DOI:10.1002/nag.1075.
    [460]皱志利.水波理论及其应用[M].北京:科学出版社,2005.
    [461]李敬.级数法求解轴对称的静电场[J].云南师范大学学报,1997,17(3):43-45.
    [462]马西奎.最小二乘边界配点法在电磁场边值问题数值分析中的应用[J].微波学报,1994,37(2):17-22.
    [463]Ballist I, Christian H. The multiple multipole method in electro-and magnetostatic problems[J]. IEEE Transactions on Magnetics,1983,19(6):2367-2370.
    [464]盛剑霓.电磁场与波分析中半解析法的理论方法与应用[M].北京:科学出版社,2006:1-35.
    [465]Song B, Fu J. Modified indirect boundary element technique and its application to electromagnetic potential problems [J].IEE proceeding-h of Microwaves Antennas and Propagation, 1992,139(3):292-296.
    [466]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998:51-70.
    [467]Bamji S S, Bulinski A T. Electric field calculations with the boundary element method[J]. IEEE Transactions on Electrical Insulation,1993,28(3):420-424.
    [468]樊德森.静电场边值问题的矩量法解[J].计算物理,1989,6(1):1-8.
    [469]王江忠,赵良,刘之方.二维开域静电场有限元与边界元迭代解法的研究[J].华北电力大学学报,2002,29(增刊):36-40.
    [470]王志华.有限元与无单元耦合法在电磁场数值计算中的应用研究(硕士学位论文)[D].石家庄:河北工业大学,2006:1-25
    [471]李茂军.基于边界元法与无网格局部Petrov-Galerkin法的耦合法和区域分解法(硕士学位论文)[D].重庆:重庆大学,2009:1-36.
    [472]Alfonzetti G Aiellol S, Borzi G, Dilettoso E, Salerno N. Comparing FEM-BEM and FEM-DBCI for open-boundary electrostatic field problems [J]. The European Journal Applied Physics,2007, 39:143-148.
    [473]郑勤红.计算复杂场域静电场问题的多极理论[J].电子科技大学学报,1997,26(6):599-604.
    [474]解福瑶,戴雯,何萍,杨永柏.用分域边界元计算微带内导体同轴传输线的特性阻抗[J].云南师范大学学报,2001,21(2):47-50.
    [475]朱满座.数值保角变换及其在电磁理论中的应用(博士学位论文)[D].西安:西安电子科技大学,2008.
    [476]王栋,阮江军,杜志叶,阮祥勇,刘守豹.并行求解含有电位悬浮导体的静电场数值问题[J].中国电机工程学报,2011,31(6):131-136.
    [477]封艳彦.超高压输电线路电磁场的仿真研究(硕士学位论文)[D].重庆:重庆大学,2004:11-28.
    [478]Marais N, Davidson D B. Numerical evaluation of hierarchical vector finite elements on curvilinear domains in 2-D[J]. IEEE Transactions on Antennas and Propagation,2006,54,(2):734-738.
    [479]Schiff B, Yosibash Z. Eigenvalues for waveguides containing re-entrant corners by a finite-element method with super-elements [J]. IEEE Transactions on Microwave Theory and Techniques, 2000,48(2):214-220.
    [480]喻志远.任意截面波导的模式截面场的数值分析[J].电波科学学报,2001,16(3):291-314.
    [481]Swaminathan M, Arvas E, Sarka T K,etc. Computation of cut-off wave number of TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation [J]. IEEE Transactions on Microwave Theory and Techniques,1990,MTT-38(2):154-159.
    [482]Schiff B, Yosibash Z. Eigenvalues for waveguides containing re-entrant corners by a finite-element method with super-elements [J]. IEEE Transactions on Microwave Theory and Techniques,2000, 48(2):214-220.
    [483]Zheng Q H, Yi J D, Zeng H,etc. Application of the multipole theory method to the analysis of waveguides with sharp metal edges[J]. Microwave and Optical Technology Letters,2001,28(2): 101-105.
    [484]Sarkar T K et al. Computation of the propagation characteristics of TE and TM modes in arbitrarily shaped hollow waveguides utilizing the conjugate gradient method [J]. J Electromag Wave, 1989:143-165.
    [485]Swaminathan M et al., Computation of cutoff wavenumbers of TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation [J]. IEEE Trans Microwave Theory Tech, 1990,38(11):154-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700