用户名: 密码: 验证码:
底商多层砌体结构倒塌机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构倒塌是地震造成人员伤亡最主要的原因,汶川地震中,底商多层砌体结构房屋倒塌普遍,在北川县城,该类型结构倒塌率达80%。底商多层砌体结构房屋在我国长江以南地区的中小城市非常普遍,据不完全统计,我国现存该类型的房屋约2000万栋,涉及居住人口1.2亿。研究该类型结构的抗震设计方法,提高该类型结构房屋的抗倒塌能力是社会的迫切需求。
     北川县电信局职工住宅楼是典型的底商多层砌体结构,在汶川地震中仅中等破坏。本文结合该典型实例,通过对比分析获取了能有效提高底商多层砌体结构抗倒塌能力的抗震构造措施,并通过振动台倒塌对比试验验证了该构造措施的有效性;同时,为将该发现应用到既有底商房屋的抗震加固中,还需建立关键承重构件的抗侧刚度和延性的计算方法,为此开展了系列墙片试验及理论分析。本文主要工作如下:
     1)通过实地调查,掌握了北川县电信局职工住宅楼实际构造和震后状态;采用脉动法对该结构进行了模态测试,获得了横向、纵向和扭转频率;对比分析表明该结构最突出的特点是底层临街面纵墙采用了“翼墙”,这一构造不但增加了承重能力,而且减小了底层前后纵墙的刚度差异,减轻了结构的扭转效应,平衡了地震荷载在各道纵墙间的分配,显著提高了结构的抗倒塌能力。
     2)根据第一强度理论,推导出了砌体结构开裂时的层间位移角限值公式;由该公式可知,层高一定时,砌体墙片的刚度越大,其延性越差。同时,通过对比各种砌体材料的本构关系,推荐了一种用于模拟烧结粘土砖的本构关系模型,并采用该本构关系对北川县电信局职工住宅楼进行了非线性地震反应分析计算。通过计算,建议砌体结构的弹塑性层间位移角限值取1/160,该值与后续砌体墙片的拟静力试验结果一致。
     3)采用预应力加载装置,实现了与原型结构轴压比相等的模型振动台试验。试验结果表明,该预应力加载装置对模型振动台试验是可行且有效的,该装置为今后振动台试验中模型人工质量的施加提供了一条新途径。
     4)通过4个单层模型的振动台倒塌对比试验,获得了底商砌体结构地震时的倒塌破坏模式。试验表明,同一方向上各道墙体的刚度不协调造成地震中各道墙体被逐个击破,是砌体结构破坏或倒塌的主要模式。试验验证了临街面纵墙中“翼墙”在抗倒塌中的关键作用。
     5)为了使砌体结构的刚度设计方法有据可依,本文对现有的砌体墙片层间等效抗侧刚度公式进行了深入分析,指出了现有方法的缺陷,并在此基础上,提出了考虑圈梁、构造柱影响的砌体墙片层间等效抗侧刚度计算公式,并通过4组12片砌体墙片的拟静力试验验证了公式的合理性。
Most of the death toll in an earthquake comes from buildings collapse.Multi-story masonry buildings with first story used as shops were very popular inareas affected by Wenchuan earthquake. In down town of Beichuan county,morethan80%of this kind of buildings ruined. Multi-story building with first storyused as shops is also very common in the small and middle towns in south half ofChina. According to statistics, there are about twenty million such buildings,which hosting one hundred million people. It is very necessary to study thedesign method of this kind building and improve the capability of structuralcollapse resistance.
     Staff apartment block of Beichuan Telecommunication Bureau is a typicalmulti-story building with first story used as shops, which just suffered from amoderate damage in the earthquake. According to analysis of this building, theaseismic structural measures were proposed, and they were proved effective toimprove the capability of structural collapse resistance based on shaking tablecollapse tests. In order to use the measures proposed in seismic strengthening ofexisting building, the lateral stiffness of masonry wall and the calculation methodof ductility need to be built. The pseudo static tests of masonry walls were carriedout for this purpose. The conclusions can be summarized as:
     1) According to fieldwork, the damage state of staff apartment block wascollected, modal test to the building was carried out based on ambient vibrationsurvey and the natural frequencies of it were gotten. The most prominent designfeatures of the structure are the set up of wing wall and enhanced structuralcolumn through layers beside the door in the longitudinal wall of bottom floor.The structural measures effectively increase the lateral stiffness of longitudinalwall facing street in the first floor, reduce the stiffness difference between thefront and back wall in the bottom floor, make seismic shear force distributinguniformly in each wall. Thereby it reduces the torsional effect of structure, andimproves the capability of structural collapse resistance.
     2) Based on the first strength theory, the formula is proposed to calculate thestory drift limits when masonry structure cracks. It is known by the formula thatthe stiffness of the masonry wall is larger, the ductility of it is worse. Based oncompare of many constitutive relations of masonry materials, one model isrecommended to simulate the masonry of clay bricks, and it is used to do thenonlinear seismic response analysis of staff apartment block. Based oncalculation results, the elastic-plastic story drift limit of masonry structure isproposed as1/160, which is equal to the pseudo static test results of masonrywalls.
     3) According to the device for prestress loading, the shaking table test wascarried out in which the compression ratio of model was equal to that ofprototype structure. Test results show that the prestress load device is feasible andeffective to shaking table test, and the device provides a new way for shaking table test to load artificial quality of model.
     4) The failure mode of masonry structure was obtained according tocomparative shaking table collapse tests of four single-layer masonry structures,The shaking table tests prove that the main factor leading to masonry structuredamaging or collapsing is the great disharmony among the lateral stiffness ofeach longitudinal (or transverse) wall. Seismic shear force walls bear is disparitybecause of the different stiffness, so that walls are damaged one by one whenearthquake occurs, and finally the building collapses. Test results show that wingwall and enhanced structural column can improve the collapse resistancecapability of masonry structure significantly.
     5) In order to provide theory to stiffness design method of masonry structure,the defects of existing methods for lateral stiffness of masonry wall were pointedout according to analysis, and the formula considering the ring beam andstructural column for calculating lateral stiffness of wall was proposed, and it isproved reasonable by the pseudo static tests of12masonry walls.
引文
[1]宝志雯,陈志鹏.从建筑物的脉动响应确定其动力特性[J].深圳大学学报(理工版),1986,(1):36-49.
    [2]宝志雯,来晋炎,陈志鹏.建筑物的脉动试验及其数据处理的方法[J].振动与冲击,1987,(2):57-63.
    [3]蔡勇,施楚贤,易思甜.配筋混凝土砌块砌体剪力墙位移延性设计方法[J].湖南大学学报,2005,32(3):52-55.
    [4]戴君武,张敏政,黄玉龍.偏心结构扭转振动研究中几个基本参量的讨论[J].地震工程与工程振动,2002,22(6):38-43.
    [5]丁大钧.砌体结构学[M].北京:中国建筑工业出版社,1997.
    [6]冯学刚.砌体结构地震破坏模式研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [7]傅剑平,皮天祥,韦锋等.钢筋混凝土连肢墙小跨高比复合斜筋连梁抗震性能试验研究[J].土木工程学报,2011,44(2):57-64.
    [8]傅剑平,张川,陈滔等.钢筋混凝土抗震框架节点受力机理及轴压比影响的试验研究[J].建筑结构学报,2006,27(3):67-77.
    [9] GB50003-2001,砌体结构设计规范[S].北京:中国建筑工业出版社,2009.
    [10] GB/T50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2009.
    [11] GB/T50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2008.
    [12] GB/T50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [13] GB/T50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2006.
    [14] GB50203-2002,砌体工程施工质量验收规范[S].北京:中国建筑工业出版社,2002.
    [15] GB50204-2003,混凝土工程施工质量验收规范[S].北京:中国建筑工业出版社,2003.
    [16] GBJ129-90,砌体基本力学性能试验方法标准[S].北京:中国建筑工业出版社,1990.
    [17] GBJ11-89,建筑抗震设计规范[S].北京:中国建筑工业出版社,1989.
    [18] GB/T4111-1997,混凝土小型空心砌块试验方法[S].北京:中国建筑工业出版社,1997.
    [19]韩林海,冯九斌.混凝土的本构关系模型及其在钢管混凝土数值分析中的应用[J].哈尔滨建筑大学学报,1995,28(5):26-32.
    [20]胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述[J].建筑结构,2006,36(增刊):79-83.
    [21]黄襄云,周福霖,曹京源.纤维橡胶隔震结构模拟地震振动台试验研究及仿真分析[J].广州大学学报(自然科学版),2010,9(5):21-26.
    [22]黄维平,邬瑞峰,张前国.配重不足时的动力试验模型与原型关系问题的探讨[J].地震工程与工程振动,1994,14(4):64-71.
    [23] JDJ/T13-94,设置钢筋混凝土构造柱多层砖房抗震技术规程[S].北京:中国建筑工业出版社,1994.
    [24] JGJ/T70-90,建筑砂浆基本性能试验方法[S].北京:中国建筑工业出版社,1991.
    [25]《建筑施工手册》(第四版)编写组.建筑施工手册(第四版)[M].北京:中国建筑工业出版社,2008.
    [26]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.
    [27]金国芳,周德源,朱伯龙.混凝土中型空心砌块墙片的地震模拟振动台试验研究[J].工程抗震,1992,(4):7-10.
    [28]李碧雄,谢和平,邓建辉等.汶川地震中房屋建筑震害特征及抗震设计思考[J].防灾减灾工程学报,2009,29(2):224-236.
    [29]李碧雄,谢和平,邓建辉等.汶川地震中房屋建筑震害特征及抗震设计思考[J].防灾减灾工程学报,2009,29(2):224-236.
    [30]李小军,于爱勤,甘朋霞等.汶川8.0级地震北川县城区灾害调查与分析[J].震灾防御技术,2008,3(4):352-362.
    [31]李英民,韩军,刘立平等.5.12汶川地震砌体结构房屋震害调查与分析[J].西安建筑科技大学学报(自然科学版),2009,41(5):606-611.
    [32]林旭川,陆新征,叶列平.砌体结构的地震倒塌模拟与分析,汶川地震建筑震害调查与灾后重建分析报告[R].北京:中国建筑工业出版社,2008:285-292.
    [33]刘红彪,郭迅,梁永朵等.9度设防区房屋结构自振周期测试[J].建筑结构,2011,41(5),60-62.
    [34]刘桂秋.砌体结构基本受力性能的研究[D].长沙:湖南大学,2005.
    [35]刘锡荟,张鸿熙,刘经伟等.用钢筋混凝土构造柱加强砖房抗震性能的研究[J].建筑结构学报,1981,39(8):47-55.
    [36]陆新征,李易,叶列平等.钢筋混凝土框架结构抗连续倒塌设计方法的研究[J].工程力学,2008,25(Sup.2):150-157.
    [37]吕西林,张国军,陈绍林.高轴压比高强混凝土足尺框架柱抗震性能研究[J].建筑结构学报,2009,30(3):20-26.
    [38]苗吉军,顾祥林,张伟平等.地震作用下砌体结构倒塌反应的数值模拟计算分析[J].土木工程学报,2005,38(9):45-52.
    [39]清华大学等.汶川地震建筑震害分析及设计对策[M].北京:中国建筑工业出版社,2009.
    [40]清华大学土木工程系,香港理工学院土木与结构工程系.香港几幢高层建筑的脉动实验[M].清华大学出版社,1985.
    [41]全学友,米伟,张智强.汶川地震中楼梯结构的破环现象及对策[J].建筑结构,2009,39(11):75-77.
    [42]盛志刚,赵英夫.小砌块墙体抗震延性性能的试验研究[J].中国矿业大学学报,2002,31(6):583-587.
    [43]施楚贤.采用扁式液压顶试验方法确定砖墙中砌体抗压强度[J].建筑结构学报,1990,11(4):37-45.
    [44]施楚贤.对砌体结构类型的分析与抗震设计建议[J].建筑结构,2010,40(1):74-76.
    [45]施楚贤.砌体结构理论与设计(第二版)[M].北京:中国建筑工业出版社,2003.
    [46]施楚贤.砖砌体和钢筋混凝土构造柱组合墙的承载力计算[J].建筑结构,2003,33(7):67-69.
    [47]石根华著,裴觉民译.数值流行方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [48]孙景江,唐玉红,孙忠贤等.汶川地震Ⅷ度和Ⅶ度区城市房屋震害及若干典型震害讨论[J].地震工程与工程振动,2008,29(6):65-73.
    [49]孙雪梅,刘伟庆.大开间约束砖砌体开窗洞墙片的拟静力试验研究[J].工程抗震,2004,(2):31-34.
    [50] TJ11-78,工业与民用建筑抗震设计规范[S].北京:中国建筑工业出版社,1978.
    [51]唐岱新.砌体结构设计规范理解与应用[M].中国建筑工业出版社,2002.
    [52]王述红,唐春安,朱浮声等.砌体结构开裂过程细观损伤数值模型及其分析方法[J].建筑结构学报,2003,24(2):64-69.
    [53]王亚勇.汶川地震建筑震害启示-抗震概念设计[J].建筑结构学报,2008,29(4):20-25.
    [54]王亚勇,戴国莹.建筑抗震设计规范算例[M].中国建筑工业出版社,2008.
    [55]王亚勇,王言诃.汶川大地震建筑震害启示[J].建筑结构,2008,38(7):1-6.
    [56]吴建营,李杰.混凝土各向异性损伤模型的数学和热力学表述[J].工程力学(增刊),2009,26:133-147.
    [57]夏云霞.砌体结构窗下墙的震害机理研究[D].哈尔滨:中国地震局工程力学研究所,2011.
    [58]熊立红,高连军,熊朝晖等.底框剪-砌体房屋抗震性能研究[J].沈阳建筑大学学报(自然科学版),2008,24(4):586-591:
    [59]徐珂.对汶川地震中几种震害的认识[J].工程抗震与加固改造,2008,30(6):19-23.
    [60]许士斌,蔡贤辉,李桂华等.确定建筑物刚心的一种动测方法[J].振动与冲击,2002,21(1):43-45.
    [61]徐正忠,雷宝乾.考察美国混凝土砌块建筑情况简介[J].建筑科学,1998,14(6):56-59.
    [62]薛彦涛,黄世敏,姚秋来等.汶川地震钢筋混凝土框架结构震害及对策[J].工程抗震与加固改造,2009,31(5):93-100.
    [63]闫维明,周宏宇,周锡元等.带构造柱双排孔混凝土空心砌块墙抗震性能试验研究[J].建筑结构学报,2005,26(4):64-69.
    [64]杨翠如,钟锡根,遛达海.集中配筋砌体楼房[J].建筑结构,1997,(2):9-13.
    [65]叶列平,程光煜,陆新征等.论结构抗震的鲁棒性[J].建筑结构,2008,38(6):11-15.
    [66]叶列平,陆新征,赵世春等.框架结构抗地震倒塌能力的研究-汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(6):67-76.
    [67]叶列平,曲哲,陆新征.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50.
    [68]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构,2007,28(5):104-109.
    [69]于洋.配筋混凝土砌块结构抗震性能研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [70]苑振芳.对汶川地震灾后重建的思考及对砌体结构的建议[J].建筑结构,2008,38(7):28-29.
    [71]苑振芳,刘斌.我国砌体结构的发展状况与展望[J].建筑结构,1999,(10):9-13.
    [72]张明,孟焕陵,沈蒲生.考虑轴压比影响时框架侧移计算的试验及理论研究[J].建筑结构学报,2007,28(6):191-197.
    [73]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动,1997,17(2):52-58.
    [74]张敏政.汶川地震中都江堰市的房屋震害[J].地震工程与工程振动,2008,28(3):1-6.
    [75]张敏政,孟庆利,刘晓明.建筑结构的地震模拟试验研究[J].工程抗震,2003,(4):31-35.
    [76]张盛东.混凝土本构理论研究进展与评述[J].南京建筑工程学院学报,2002,62(3):44-53.
    [77]张英.集中配筋砌体在抗震设防区多层砌体房屋设计中的应用[J].洛阳工学院学报,1999,20(4):73-75.
    [78]郑山锁,杨勇,赵鸿铁.底部框剪砌体房屋抗震性能的试验研究[J].土木工程学报,2004,37(5):23-31.
    [79]郑怡,张耀庭.汶川地震主要建筑物震害调查及思考[J].华中科技大学学报(城市科学版),2009,26(2):95-102.
    [80]周炳章.砌体结构抗震的新发展[J].建筑结构,2002,32(5):69-72.
    [81]周炳章.砌体结构抗震的出路在于发展配筋砌体[J].建筑结构,2009,39(12):159-162.
    [82]周炳章.唐山地震与钢筋混凝土构造柱[J].工程建设与设计,2006,8:8-15.
    [83]周炳章,郑伟,关启勋等.小型混凝土空心砌块六层模型房屋抗震性能试验研究[J].建筑结构学报,2000,21(4):2-12.
    [84]周锡元,李万举,闫维明等.构造柱约束的混凝土小砌块墙体抗震性能的试验研究[J].土木工程学报,2006,39(8):45-50.
    [85]周云,邹征敏,张超等.汶川地震砌体结构的震害与改进砌体结构抗震性能的途径和方法[J].防灾减灾工程学报,2009,29(1):109-113.
    [86]朱伯龙.混凝土结构设计理论(上册)[M].上海:同济大学出版社,1992.
    [87]朱伯龙.混凝土结构设计理论(下册)[M].上海:同济大学出版社,1992.
    [88]朱伯龙,金国芳.“混用体系”中型砌块墙片有限元弹塑性分析[J].同济大学学报,1994,22(1):1-6.
    [89]朱伯龙,吴明舜,蒋志贤.在周期荷载作用下砖砌体基本性能的试验研究[J].同济大学学报,1980,(2):1-14.
    [90]庄一舟等.模型砖砌体力学性能的试验研究[J].建筑结构,1997,27(2):22-25.
    [91] Abrams, D. P. Response of unreinforced buildings [J]. Journal of EarthquakeEngineering,1997,1(1):257-273.
    [92] ACI530-05/ASCE5-05/TMS402-05. Building Code Requirements for MasonryStructures[S]. Masonry Standards Joint Committee,2004.
    [93] Ahmad A. Hamid, Robert G. Drysdale. Concrete masonry under combined shear andcompression along the mortar joint. ACI Journal Proceedings,1980,77(5):314-320.
    [94] Augarde, C. Settlement Induced Damage to Masonry Building, in ComputationalModeling of Masonry, Brickwork and Blockwork Structures [M]. U.K.:Saxe-CoburgPublications,2001.
    [95] Augenti, N., Parisi, F. Constitutive Models for Tuff Masonry under UniaxialCompression [J]. Journal of Materials in Civil Engineering,2010,22(11):1102-1111.
    [96] Bicanic, N., Ponniah, D., Robinson, J. Discontinuous Deformation Analysis ofMasonry Bridges, in Computational Modeling of Masonry, Brickwork and BlockworkStructures [M]. U.K.:Saxe-Coburg Publications,2001.
    [97] Bocca, P., Carpinteri, A., Valente, S. Fracture Mechnics of Brick Masonry: SizeEffects and Snap-back Analysis [J]. Materials and Structurs,1989,22(6):364-373.
    [98] B. Powell, H.R. Hodgkinson. Determination of Stress-Strain Relationship ofBrickwork [J]. TN249, B.C.R.A Stoke on Trent,1976,136-149.
    [99] Bruneau M. State-of-the-Art Report on Seismic Performance of Unreinforced MasonryBuilding [J]. Journal of Structural Engineering, ASCE,1994,120(1):230-551.
    [100] BS5628-2. Code of practice for the use of masonry, Part2: Structural use ofreinforced and prestressed masonry [S]. Building and Civil Engineering Sector Policyand Strategy Committee,2000.
    [101] C. Gentile, A. Saisi. Ambient vibration testing of historic masonry towers for structuralidentification and damage assessment [J]. Construction and Building Materials,2007,(21):1311-1321.
    [102] Chiostrini, S., Foraboschi, P., Sorace, S. Probloms Connected with the Arrangement ofa Non-Linear Finite Element Method to the Analysis of Masonry Structures[C]//Proceedings of the First International Conference on Structural Repair&Maintenanceof Historical Buildings, Florence, Italy,1989:525-534.
    [103] Chiostrini, S., Maestrelli, L., Vignoli, A. Numerical Simulation of Destructive Tests ona Full-Scale Brick-Masonry Prototype, in Experimental and Numerical Investigationon a Brick Masonry Building Prototype,Report3.0[R]. Gruppo Nazionale La DifesaDai Terremoti,1995.
    [104] Chiostrini, S., Vignoli, A. An Application of a Numerical Method to Study MasonryPanels with Various Geometry under Seismic Loads[C]//Proceedings of the FirstInternational Conference on Structural Repair&Maintenance of Historical Buildings,Florence, Italy,1989.
    [105] Clough, R. H., Mayes R. L., Gulkan. Shaking table study of single-story masonryhouses, Vol.3: Summary, Conclusions and Recommendations [R]//Report No.UCB/EEERC79/25, University of California, Berkley,1979.
    [106] Dorn, M. Computer Prediction of the Damage to and Collapse of Complex MasonryStructures from Explosions [J]. Structurs and Materials,2000,8(4):227-286.
    [107] Eurocode6. Design of masonry structures, Part1-1: General rules for reinforced andunreinforced masonry structures [S]. The European Committee for Standardization,2006.
    [108] Eurocode8. Design of structures for earthquake resistance, Part1: General rules,seismic actions and rules for building[S]. The European Committee for Standardization,2004.
    [109] Francesca da Porto, Giovanni Guidi, Enrico Garbin, et al. In-Plane Behavior of ClayMasonry Walls: Experimental Testing and Finite-Element Modeling [J]. Journal ofstructural engineering,2010,136(11):1379-1392.
    [110] Gambarotta, L., Lagomarsino, S. Damage Models for the Seismic Response of BrickMasonry Shear Wall, PartΙ: the Mortar Joint Model and Its Applications [J].Earthquake Engineering and Structure Dynamics,1997,26:423-439.
    [111] Gambarotta, L., Lagomarsino, S. Damage Models for the Seismic Response of BrickMasonry Shear Wall, PartⅡ: the Mortar Joint Model and Its Applications [J].Earthquake Engineering and Structure Dynamics,1997,26:441-462.
    [112] Gambarotta, L., Lagomarsino, S., Morbiducci, R. Two-Dimensional Finite ElementSimulation of a Large Scale Brick Masonry Wall through a Continuum Damage Model,in Experimental and Numerical Investigation on a Brick Masonry Building PrototypeReport3.0[R]. Gruppo Nazionale La Difesa Dai Terremoti,1995.
    [113] Goodman, R, E., Shi, G. Block Theory and Its Application to Rocking Engineering[M]. New Jersey: Prentice-Hall, Inc., Englewood Cliffs,1985.
    [114] Hongbiao Liu, Xun Guo, Yuanyuan Yu. Analysis of seismic resistance capability ofmasonry structure [C]. Advanced Materials Research,2011,(19):391-411.
    [115] Ian R. Stubbs, Vernon R. McLamore. The ambient vibration survey[C]//Proceedingsof fifth world conference on earthquake engineering. Rome, Itlay,1973:286-289.
    [116] Kachanov, L. M. Time Rupture Process under Creep Conditions [J]. Izvestia AkademiiNauk. SSSR, Otdelenie Tekhnicheskich Nauk,1958,8:26-31.
    [117] K. C. Voon, J. M. Ingham. Experimental In-Plane Shear Strength Investigation ofReinforced Concrete Masonry Walls [J]. Journal of structural engineering,2006,132(3):400-408.
    [118] Lourenco, P.B. Computational Strategies for Masonry Structures [M]. The Netherlands:Delft University Press,1996.
    [119] Martini, K. Finite Element Studies in the Out-of-plane Failure of UnreinforcedMasonry[C]//Proceedings of the First International Conference on Computing in Civiland Building Engineering, Korea,1997,1:179-184.
    [120] Martini, K. Finite Element Studies in the Two-Way Out-of-plane Failure ofUnreinforced Masonry[C]//6thU.S. National Conference of Earthquake Engineering,Seattle, WA,1998:1-12.
    [121] Merguro, K., M. Hakuno. Fracture Analysis of Concrete Structures by ModifiedDistinct Element Method [J]. Structural Engineering and Earthquake Engineering,Japan Society of Civil Engineering,1989,6(2):283-284.
    [122] Morales, R., Delgado, A. Feasibility of Construction of Two-Story Adobe Buliding inPeru[C]//Proceedings of the Tenth World Conference on Earthquake Engineering,Madrid, Spain,1992,6:3545-3350.
    [123] Page, A.W. An Experimental Investigation of the Biaxial Stength of Brick Masonry
    [C]//Proceedings of the Sixth International Brick Masonry Conference, Rome, Italy,1982:3-15.
    [124] Page, A.W. The Strength of Brick Masonry under Biaxial Copression-Tension [J].International Journal of Masonry Construction,1983,3(1):26-31.
    [125] Pande, G.N., Middleton, J., Lee, J.S., et al. Numerical Simulation of Cracking andCollapse of Masonry Panels Subject to Lateral Loading [C]//Proceedings of10thInternational Block/Brick Masonry Conference, Calgary,1994,107-115.
    [126] P. B. Shing, M. Schuller, V. S. Hoskere. In-plane resistance of reinforced masonryshear walls[J]. Journal of Structural Engineering,1990,116(3):619-640.
    [127] R.L. Mayes, Y. Omote, R. W. Clough. Cyclic shear tests on masonry piers, Part1-Tests results[R]//EERC Report No.76-8, Earthquake Engineering Research Center,Uiversity of California, Berkley,1976.
    [128] R.L. Mayes, Y. Omote, R. W. Clough. Cyclic shear tests on masonry piers, Part2-Analysis of tests results[R]//EERC Report No.76-16, Earthquake EngineeringResearch Center, Uiversity of California, Berkley,1976.
    [129] Shi, G. Block System Modeling by Discontinuous Deformation Analysis [M].Southampton UK and Boston USA: Wit Press,1993.
    [130] S.S. Ivanovic, M.D. Trifunac, E.I. Novikova. Ambient vibration tests of a seven-storyreinforced concrete building in Van Nuys, California, damaged by the1994Northridgeearthquake [J]. Soil Dynamics and Earthquake Engineering,2000,(19):391-411.
    [131] S.S. Ivanovic, M.D. Trifunac, M.I. Todorovska. Ambient vibration tests of structures-areview [J]. ISET Journal of Earthquake Technology,2000,37(407):165-197.
    [132] Tomazevic, M., Lutman, M., Weiss, P. The seismic resistance of historical urbanbuildings and the interventions in their floor system: An experimental study [J]. TheMasonry Society Journal,1993,12(1):77-86.
    [133] Tomazevic, M., Modena, C., Velechovsky, T., et al. The influence of structural layoutand reinforcement on seismic behavior of masonry building: An experimental study [J].The Masonry Society Journal,1990,9(1):26-50.
    [134] Turn ek, V., a ovi, F. Some experimental results on the strength of brick masonrywalls [C]//Proc.,2nd Int. Brick and Block Masonry Conf., The British CeramicResearch Association, Stoke-on Trent, U.K.,1970,149–156.
    [135] U. Andreaus. Drysdale. Failure Criteria for Masonry Panels under In-Plane Loading [J].Journal of Structural Engineering, ASCE,1996,122(1):37-46.
    [136] Yokel. F. Y, Fattal. S. G. Failure hypothesis for masonry shear walls [J]. Journal ofStructural Division,1976,102(3):515-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700