用户名: 密码: 验证码:
叶轮机械叶片全三维反问题优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以工程应用为背景,基于数值求解N-S(Navier-Stokes)方程,对叶轮机械叶片全三维反问题优化设计方法进行研究,开发了相应的流场正问题计算和叶片反问题设计程序,并针对轴流风扇/压气机中的跨音速转子开展了优化研究。
     在叶片内部流场计算方面,采用圆柱坐标系下的N-S方程和Spalart-Allmaras湍流模型、MUSCL差分格式、LU-SGS隐式方法进行求解;计算域网格选用H型,便于反问题优化设计过程中改变叶片的几何形状后,网格进行自动更新。
     在程序调试和验证部分,将跨音速叶片Rotor67和Rotor37的流场数值模拟结果与各自的试验数据进行对比,考察了5种常用差分格式限制器以及入口边界条件中湍流粘性的选取对计算效果的影响,结果表明:程序能够较准确地捕捉流场中的激波、附面层分离等主要特征,满足工程应用的精度要求。
     反问题设计方法通过给定叶片表面的静压分布以反求叶型。假设叶表的网格点存在虚拟移动速度,迭代过程中由原叶片、过渡叶片表面的实际静压与目标静压之差来驱动叶型修改。详细介绍定解条件给定方法、叶片表面型线的修改和光滑方法、计算域网格更新等内容,并采用对静叶减薄和动叶加厚的返回试验来验证该方法的可行性,收敛结果能很好地满足给定的目标静压分布。
     在对典型跨音速转子内部流动机理认识的基础上,根据流道内不同叶高截面的流场结构、损失和稳定性特点,提出分区优化的原则和具体实施步骤,即调整流向负荷分配和叶表局部静压梯度,以减弱亚音速流动区域中吸力面附近的附面层分离和超音速区激波的强度、位置及其与附面层的干涉。
     以Rotor67转子为研究对象,将分区优化原则应用到叶片的部分及整体叶展优化中,分析亚音速和超音速流动各自的静压、负荷分布控制规律及其对总性能、流场细节和出口参数的影响;反问题优化设计耗费约2倍的正问题计算时间即达到收敛,效果良好,可减少流场的分离和激波损失,使新叶片在近设计点级间匹配参数基本不变的情况下,绝热效率提升约0.6%,设计转速下的堵塞流量增加约0.5%,体现该方法的有效性。
This paper investigated turbomachinery problems regarding the engineering applications. Full-3D inverse optimization design method for turbomachinary blade was studied based on numerical solver of N-S (Navier-Stokes) equations. Computer programs of direct problem for flowfield and inverse problem for blade design were developed, and investigation on optimization of transonic rotor in axial fan/compressor was carried out.
     In terms of flowfield calculation within blade passage, it adopted N-S equations and Sparlart-Allmaras turbulence model in cylindrical coordinate, MUSCL scheme and LU-SGS implicit solver. The H-type grid was used for the computational domain, which was convenient for re-generating new grid of modified blade in inverse optimization design process.
     During debugging and validation of the direct program, the flowfield simulation results were compared with the experimental data of Rotor67and Rotor37respectively. Five kinds of discretization form limiters and inlet turbulence viscosity of boundary condition were discussed to evaluate their effects on numerical calculation. The results indicated:the program of direct problem could capture major characteristics such as shock wave and boundary layer separation well. The computer program could satisfy accuracy requirements of engineering applications.
     In the inverse problem, static pressure on blade surface was specified for obtaining the corresponding blade profile. It was assumed there was a virtual velocity of grid node on blade surface. Then, the blade geometry was modified by the difference between surface pressure and target pressure of the Original balde and temporary blades during iterative procedure. Methodologies of the inverse problem were introduced in detail, which included the set of inverse problem, blade profile modifying and smoothing method, grid re-generating method etc. The inverse design program was validated by the returning tests, in which the stator blade was made thinner and the rotor blade was thickened initially. The convergence solutions of new blade profiles were in good agreement with the target pressure well.
     Based on the research of typical internal flow mechanism of transonic rotor, the principle of partitional optimization and specific implement steps were proposed according to the flow constructure, losses, and stability of flowfield at different blade span sections. It was to adjust the loading distribution at flow direction and part static pressure gradient on blade surface to weaken separation in boundary layer near suction surface of subsonic area, and intensity and position of shock and interference with boundary layer of supersonic aera.
     The principle of partitional optimization was applied to optimize part and all span of Rotor67. The thesis analyzed the influences of controlling discipline of static pressure, loading distribution and their effects to performance, flowfield details, and outlet parameters in respect of subsonic and supersonic area. The calculation time of inverse optimization design was2times of that of direct problem. The optimized blade reduced flow separation and shock wave losses. The adiabatic efficiency was increased by0.6%at near design point in the case of the same row interface parameters of. The block massflow was increased by0.5%at design speed. The above results revealed the effectiveness of the inverse optimization design method.
引文
[1]陈懋章,刘宝杰.大涵道比涡扇发动机风扇/压气机气动设计技术分析[J].航空学报,2008,29(3):513-526.
    [2]程荣辉.轴流压气机设计技术发展[J].燃气涡轮试验与研究,2004,17(2):1-8.
    [3]Wu Chung-Hua. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed-Flow Types [R]. NACA TN 2604,1952.
    [4]Mark G. Turner, Andrew Norris, Joseph P. Veres. High-Fidelity three-dimensional simulation of the GE90 [R]. NASA/TM-2004-212981,2004.
    [5]李雪松.基于可压缩流方法的大涡模拟及其工程化应用[D].中国科学院工程热物理研究所博士论文,2006年.
    [6]周正贵.压气机/风扇叶片自动优化设计的研究现状和关键技术[J].航空学报,2008,29(2):257-266.
    [7]王正明.跨音叶栅多种命题的流函数解法[J].工程热物理学报,1986,7(1):14-20.
    [8]邹正平,赵令德,陈懋章,徐力平.叶轮机叶片的三维造型及其对叶片气动负荷的影响[J].航空动力学报,1998,13(3):235-240.
    [9]G. Volpe, R. E. Melnik. Role of constraints in inverse design for transonic airfoils [J]. AIAA Journal,1984,22(12):1770-1778.
    [10]G. S. Dulikravich. Shape inverse design and optimization for three-dimensional aerodynamics [R]. AIAA-95-0695,1995.
    [11]T.D. Beatty, J.C. Narramore. Inverse method for the design of multielement high-lift systems [J]. J. Aircraft,1976,13(6):393-398.
    [12]P.A. Henne. Inverse transonic wing design method [J]. J. Aricraft,1981,18(2):121-127.
    [13]S.Tatsumi, S.Takanashi. Experimental Verification of Three-Dimensional Transonic Inverse Method [R]. AIAA-85-4077,1985.
    [14]Leland A. Carlson, Richard A. Weed. Direct-inverse transonic wing analysis-design method with viscous interaction [J]. J.Aircraft,1986,23(9):711-718.
    [15]Takeshi Fujita, Kisa Matsushima, Kazuhiro Nakahashi. Aerodynamic wing design of NEXST-2 using unstructured-mesh and supersonic inverse problem [J]. Journal of aircraft, 2004,41 (5):1146-1152.
    [16]Shoji Sakashita, Takumi Matsuzawa, Kisa Matsushima, Kazuhiro Nakahashi. Supersonic Wing Design Method using an Inverse Problem for Practical Application [R]. AIAA 2009-1465,2009.
    [17]Tan, C. S., W. R. Hawthorne, et al. Theory of Blade Design for Large Deflections:part II------Annular Cascades [J]. J. Eng for Gas Turbines and Power,1984, Vol.106/354-365.
    [18]杨琳,陈乃祥.水力机械转轮三维反问题研究及其新进展[J].水力发电学报,2004,23(1):97-101.
    [19]J. E. Borges. A three-dimensional inverse method for turbomachinery:part I—theory [J]. Journal of Turbomachinery,1990, Vol.112:346-354.
    [20]S. Damle, T. Dang, J. Stringham, E. Razinsky. Practical Use of Three-Dimensional Inverse Method for Compressor Blade Design [J]. Journal of turbomachinery,1999,121:321-325.
    [21]Kosuke ASHIHARA, Akira GOTO. Turbomachinery Blade Design Using 3-D Inverse Design Method, CFD Optimization Algorithm [R]. ASME,2001-GT-0358,2001.
    [22]M. P. C. van Rooij, T. Q. Dang, L. M. Larosiliere. Improving aerodynamic matching of axial compressor blading using a three-dimensional multistage inverse design method [J]. Journal of Turbomachinery,2007, Vol.129/108-118.
    [23]Jose C. Pascoa, Antonio C. mendes. Turbine blade duty re-design by controlling lean and sweep using an innovative iterative inverse design method [R]. ASME, GT-2006-90266, 2006.
    [24]T. Dang, S. Damle, X. Qiu. Euler-based inverse method for turbomachine blades, part 2: three-dimensinal flows [J]. AIAA Journal,2000, Vol.38/112007-2013.
    [25]T.Q.Dang. A Fully Three-Dimensional Inverse Method for Turbomachinery Blading in Transonic Flows [J]. Journal of turbomachinery,1993, Vol.115/354-361.
    [26]J. Jiang, T. Dang. Design Method for Turbomachine Blades with Finite Thickness by the Circulation Method [J]. Journal of turbomachinery,1997, Vol.119/539-543.
    [27]T. Dang, V. Isgro. Euler-Based Inverse Method for Turbomachine Blades Part 1: Two-Dimensional Cascades [J]. AIAA Journal,1995,22(12):2309-2315.
    [28]T. Dang. Inverse Method for Trubomachine Blades Using Shock-Capturing Techniques [R]. AIAA-95-2465,1995.
    [29]Benjamin M.F. Choo, Mehrdad Zangeheh. Development of an (adaptive) unstructured 2-D inverse design method for turbomachinery blades [R]. ASME, GT-2002-30620,2002.
    [30]X. Qiu, T. Dang. 3D Inverse Method for Turbomachine Blading with Splitter Blades [R]. ASME,2000-GT-0526,2000.
    [31]M. Zangeneh, M. Schleer. Investigation of an inversely designed centrifugal compressor stage part 1:design and numerical verification [R]. ASME, GT2003-38531,2003.
    [32]Mehrdad Zangeneh, Damian Vogt, Christian Roduner. Improving a vaned diffuser for a given centrifugal impeller by 3D inverse design [R]. ASME, GT-2002-30621,2002.
    [33]W.T. Tiow, M. Zangeneh. A Three-Dimensional Viscous Transonic Inverse Design Method [R]. ASME,2000-GT-0525,2000.
    [34]Peixin Hu, Mehrdad Zangeneh. On Design of Transonic Fan Rotors by 3D Inverse Design Method [R]. ASME, GT2006-91173,2006.
    [35]T.Q. Dang, M.P.C. van Rooij, L.M. Larosiliere. Design of Aspirated Compressor Blades Using Three-Dimensional Inverse Method [R]. ASME, GT-2003-38492,2003.
    [36]H Watanabe, M. Zangeheh. Design of the blade geometry of swept transonic fans by 3D inverse design [R]. ASME, GT2003-38770,2003.
    [37]Paul Hield. Semi-inverse design applied to an eight stage transonic axial flow compressor [R]. ASME, GT-2008-50430,2008.
    [38]W. T. Thompkins, Siu Shing Tong. Inverse or design calculations for nonpotential flow in turbomachinery blade passages [J]. Journal of Turbomachinery,1982, Vol.104/281-285.
    [39]Siu Shing Tong, W.T. Thompkins. A Design Calculation Procedure for Shock-Free or Strong Passage Shock Turbomachinery Cascades [J]. Journal of Engineering for Power,1983, Vol.105/369-376.
    [40]A. Demeulenaere, R. Van den Braembussche. Three-dimensional inverse method for turbomachinery blading design [J]. Journal of Turbomachinery,1998, Vol.120/247-255.
    [41]Victor I. Mileshin, Igor K. OREKHOV, Sergey K. SHCHIPIN.3D inverse design of transonic fan rotors efficient for a wide range of RPM [R]. ASME, GT2007-27817,2007.
    [42]Victor I. Mileshin, Michael A. Nyukhtikov, Igor K. Orekhov. Open Counter-Rotation Fan Blades Optimization Based On 3D Inverse Problem Navier-Stokes Solution Method with the Aim of Tonal Noise Reduction [R]. ASME, GT2008-51173,2008.
    [43]Kasra Daneshkhah, Wahid Ghaly. Aerodynamic inverse design for viscous flow in turbomachinery blading [J]. Journal of propulsion and power,2007, Vol.23(4):814-820.
    [44]Kasra Daneshkhah, Wahid Ghaly. Redesign of a highly loaded transonic turbine nozzle blade using a new viscous inverse design method [R]. ASME, GT-2007-27430,2007.
    [45]Benedikt Roidl, Wahid Ghaly. Redesign of a low speed turbine stage using a new viscous inerse design method [R]. ASME, GT-2008-51468,2008.
    [46]Benedikt Roidl, Wahid Ghaly. Redesign of a low speed turbine stage using a new viscous inverse design method [J]. Journal of Turbomachinery,2011, Vol.133:011009-1-9.
    [47]Min Ji, T. Q. Dang, Michael J. Cave. Fully three-dimensional viscous semi-inverse method for subsonic mixed-flow and radial impeller design [R]. ASME, GT2009-59679,2009.
    [48]D. A. Naik, S. E. Krist, P. G. Buning, L. M. Gea. Inverse design of nacelles using multi-block Navier-Stokes codes [R]. AIAA-95-1820-CP,1995.
    [49]Shigeru Obayashi, Susumu Takanashi. Genetic optimization of target pressure distributions for inverse design methods [R]. AIAA-95-1649-CP,1995.
    [50]June Chung, Jeonghwan Shim, Ki D. Lee. Shape optimization of high-speed axial compressor blades using 3D Navier-Stokes flow physics [R]. ASME,2001-GT-0594,2001.
    [51]B. Allen Gardner, Michael S. Selig. Airfoil design using a genetic algorithm and an inverse method [R]. AIAA-2003-43,2003.
    [52]Duccio Bonaiuti, Mehrdad. Zangeneh. On the coupling of inverse design and optimization techniques for turbomachinery blade design [R]. ASME, GT-2006-90897,2006.
    [53]Duccio Bonaiuti, Abeetha Pitigala, Mehrdad Zangeneh, Yansheng Li. Redesign of a Transonic Compressor Rotor by means of a Three-Dimensional Inverse Design Method:a Parametric Study [R]. ASME, GT2007-27486,2007.
    [54]Duccio Bonaiuti, Mehrdad Zangeneh. Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses [J]. Journal of Fluids Engineering,2010, Vol.132/031104-1-15.
    [55]Hyoung-Jin Kim, Chongam Kim, Oh-Hyun Rho. Multipoint inverse design method for transonic wings [J]. Journal of aircraft,1999,36(6):941-947.
    [56]Taisul Ahn, Hyoung-Jin Kim, Chongam Kim, Oh-Hun Rho. Inverse design of transonic wing using wing planform and target pressure optimization [J]. Journal of aircraft,2001, Vol.38 (4):644-652.
    [57]G. M. Laskowshi, A. Vicharelli. G. Medic, C. J. Elkins, J. K. Eaton, P. A. Durbin. Inverse design of and experimental measurements in a double-passage transonic turbine cascade model [J]. Journal of turbomachinery,2005, Vol.127/619-626.
    [58]Alejandro C. Limache. Inverse method for airfoil design [J]. Journal of aircraft,1995, Vol.32 (5):1001-1011.
    [59]Ashok Gopalarathnam, Michael S. Selig. Low-speed natural-laminar-flow airfoils:case study in inverse airfoil design [J]. Journal of aircraft,2001, Vol.38 (1):57-63.
    [60]Jeffrey K. Jepson, Ashok Gopalarathnam. Inverse design of adaptive airfoils with aircraft performance considerations [J]. Journal of aircraft,2005,42(6):1622-1630.
    [61]P. Venkataraman. Inverse airfoil design using design optimization [R]. AIAA-96-2503-CP, 1996.
    [62]M. Ferlauto, A. Lollo, L. Zannetti. Coupling of optimization and inverse problem for aerodynamic shape design [R]. AIAA-2000-0668,2000.
    [63]Eleftherios I. Amoiralis, loannis K. Nikolos. Freform Deformation Versus B-Spline Representation in inverse airfoil design [J]. Journal of computing and information science in engineering,2008, Vol.8:024001-1-13.
    [64]Mahdi Nili-ahmadabadi, Ali Hajilouy-Benisi, Farhad Ghadak. A novel 2D incompressible viscous inverse design method for internal flows using flexible string algorithm [J]. Journal of fluids engineering,2010, Vol.132/031401-1-10.
    [65]Wang Zhengming. Inverse design calculations for transonic cascades [J]. International Journal of Turbo and Jet Engines,1988,4(3-4).
    [66]刘景新.轴流式叶轮机械叶型反方法优化设计技术研究[D].西北工业大学硕士论文,2002年.
    [67]罗兴琦,陈乃祥,林汝长.混流式转轮内有旋流动的全三元反问题计算[J].力学学报,1995,27:30-36.
    [68]陈乃祥,叶失海,罗先武,林汝长.一种用涡代替叶片作用的反问题计算[J].工程热物理学报,1994,15(1):42-45.
    [69]刘秋生,张增产,沈孟育.叶轮机械中三维跨声速流动的正、反混合问题[J].空气动力学报,1995,13(3):248-257.
    [70]海灏,陈乃兴.求解跨音速粘性反问题的有限体积法[J].工程热物理学报,1998,19(6):702-705.
    [71]杨策,老大中,蒋滋康.求解跨声速压气机叶栅粘性流动反问题的数值解[J].推进技术,1999,20(4):57-60.
    [72]彭艳,吴国钏.有限体积法求解任意回转面叶栅叶型反问题设计的欧拉方程[J].南京航空航天大学学报,1999,31(1):43-47.
    [73]李军,丰镇平,沈祖达.透平跨音速叶栅正反混合问题优化设计的研究[J].动力工程,1998,18(1):19-23.
    [74]陈乃兴,徐燕骥,黄伟光,陈俊杰,陈晓东.单转子风扇的三维反问题气动设计[J].航空动力学报,2002,17(1):23-28.
    [75]杨爱玲,姚征,刘高联NACA-65-0012机翼的非定常反问题解[J].工程热物理学报,2006,27(11):947-949.
    [76]李颖晨,杨佃亮,高志朋,丰镇平.透平叶栅三维形状反问题研究[J].工程热物理学报,2007,28(1):33-36.
    [77]李颖晨,丰镇平.透平叶栅三维粘性气动反问题的控制理论方法[J].工程热物理学报,2007,28(4):580-582.
    [78]Yingchen Li, Dianliang Yang, Zhenping Feng. Inverse Problem in Aerodynamic Shape Design of Turbomachinery Blades [R]. ASME, GT2006-91135,2006.
    [79]王正明.叶栅粘性流动的反问题解[J].工程热物理学报,1989,10(4):390-392.
    [80]王正明,仲永兴,吴国藩,张武.无激波超临界叶栅的设计与试验[J].工程热物理学报,1992,13(4):375-378.
    [81]Z. Wang, G. S. Dulikravich. A numerical method for solving cascade inverse problems using Navier-Stokes equations [R]. AIAA-95-0304,1995.
    [82]王正明,George S. Dulikravich.使用Navier-Stokes方程叶栅粘性反问题的数值解[J].工程热物理学报,1995,16(4):409-413.
    [83]王正明,蔡睿贤,陈宏冀,张东.叶栅全三维粘性反问题的数值解[J].工程热物理学报,1998,19(5):571-575.
    [84]Zhengming Wang, Ruixian Cai. A three-dimensional inverse method using Navier-Stokes equation for turbomachinery blading [J]. Inverse Problems in Engineering,2000,8:529-551.
    [85]C. Hah, A. J. Wennerstrom. Three-dimensional flowfields inside a transonic compressor with swept blades [J]. Tournal of turbomachinery,1991, Vol.113:241-250.
    [86]季路成,陈江,林峰.轴流压气机设计中“掠”的另类认识.工程热物理学报,2005,26(4):567-571.
    [87]李绍斌,苏杰先,王仲奇.采用高负荷弯曲静叶的压气机改型研究[J].航空动力学报,2006,21(4):741-746.
    [88]王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势[J].中国工程科学,2000,2(6):40-48.
    [89]L. H. Smith, Jr.. NASA/GE fan and compressor reseatch accomplishments [J]. Journal of Turbomachinery,1994, Vol.116/555-569.
    [90]J. H. Horlock, J. D. Denton. A review of some early design practice using computational fluid dynamics and a current perspective [J]. Journal of Turbomachinery,2005, Vol.127/5-13.
    [91]姜健.多级轴流叶轮机械内流场的隐式高精度高分辨率数值模拟[D].西安:西北工业大学硕士学位论文,2006年.
    [92]P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows [R]. AIAA-92-0439,1992.
    [93]Philippe R. Spalart. Trends in Turbulence Treatments [R]. AIAA 2000-2306,2000.
    [94]NUMECA International. User manual, FINETM/TURBO v7,2006.
    [95]Catris, S. and Aupoix, B. Density corrections for Turbulence Models [J]. Aerospace Science and Technnology,2000,4:1-11.
    [96]王保国,黄虹宾.叶轮机械跨声速及亚声速流场的计算方法[M].北京:国防工业出版社,2000年.
    [97]姚吉先,刘前智,周新海.压气机叶片排内三维紊流流动的隐式高分辨率数值分析[J].航空动力学报,1996,11(3):225-228.
    [98]王仲奇.透平机械三元流动计算及其数学和气动力学基础[M].北京,机械工业出版社,1983年.
    [99]Seokkwan Yoon, Antony Jameson. Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations [J]. AIAA Journal,1988,26(9).
    [100]G.H. Klpofer, S. Yoon. Multizonal Navier-Stokes code with the LU-SGS schme [R]. AIAA 93-2965,1993.
    [101]闻静,高正红.Burgers方程高精度差分格式分析[J].航空计算技术,2008,38(3):74-77.
    [102]Brett F. Sanders, Scott F. Bradford. Impact of limiters on accuracy of high-resolution flow and transport models [J]. Journal of engineering mechanics,2006,87-98.
    [103]Bram van Leer. Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes [J]. Communications in computational physics,2006, 1(2):192-206.
    [104]潘沙,冯定华,丁国昊等.CFD差分格式及限制器计算对比分析[J].计算机仿真,2009,26(8):355-364.
    [105]B. Van Leer. Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method [J]. J. Comp. Phys,1979,32:101-136.
    [106]闫超,陈靓.激波/边界层干扰数值模拟的格式效应[J].航空学报,1996,17(7):67-70.
    [107]Anthony J. Strazisar, Jerry R. Wood, Michael D. Hathaway, Kenneth L. Suder. Laser anemometer measurements in a transonic axial-flow fan rotor [R]. NASA TP-2879,1989.
    [108]Royce D. Moore, Lonnie Reid. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 2.05 [R]. NASA technical paper 1659,1980.
    [109]A. Arnone. Viscous analysis of three-dimensional rotor flow using a multigrid method [J]. Journal of Turbomachinery,1994, Vol.116/435-445.
    [110]Dr. Klaus Steffens. Advanced compressor technology-key success factor competitiveness in modern aero engines [R]. ISABE-2001-1009,2001.
    [111]W. M. Konig, D. K. Hennecke, L. Fottner. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings: Part 2------A model for supersonic flow [J]. Journal of Turbomachinery,1996, Vol.117/81-87.
    [112]项林,马继华,陶德平.超音速扩压叶栅激波结构与流动特征分析[J].燃气涡轮试验与研究,1999,12(1):1-6.
    [113]Matthew D. Langford, Andrew Breeze-stringfellow. Experimental investigation of the effects of a moving shock wave on compressor stator flow[R]. ASME, GT2005-68722,2005.
    [114]W. W. Copenhaver, E. R. Mayhew, C. Hah, A. R. Wadia. The effect of tip clearance on a swept transonic compressor rotor [J]. Journal of Turbomachinery,1996, Vol.118/230-239.
    [115]J. J. Adamczyk, M. L. Celestina, E. M. Greitzer. The role of tip clearance in high-speed fan stall [J]. Journal of Turbomachinery,1993, Vol.115/28-38.
    [116]Stephan Kablitz, Harald Passrucker. Experimental Analysis of the Influence of Sweep on Tip Leakage Vortex Structure of an Axial Transonic Compressor Stage [R]. ISABE-2003-1226,2003.
    [117]I. K. Jennions, M. G. Turner. Three-dimesional Navier-Stokes computations of transonic fan flow using an explicit flow solver and an implicit k-e slover [J]. Journal of Turbomachinery,1993, Vol.115/261-272.
    [118]Keith M. Boyer, Walter F. O'Brien. An improved streamline curvature approach for off-design analysis of transonic axial compression systems [J]. Journal of Turbomachinery, 2003,Vol.125/475-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700