用户名: 密码: 验证码:
猪场沼液农用生态环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国畜禽养殖业沼气工程建设事业快速发展,沼气工程运行过程产生的大量沼液,其出路问题备受关注。由于沼液中含有丰富的营养元素,在我国农田灌溉缺水的背景下,沼液农田利用是比较理想的出路,但目前沼液在北方冬小麦-夏玉米轮作农田利用对环境的长期影响尚缺乏研究。本文以北京大兴麦玉轮作农田为例,设“化肥基肥+沼液”和“沼液基肥+沼液”两种沼液施用方式处理,每处理分别设低、中、高三个施用水平,分别对应小麦季施用沼液1次、2次和3次,同时设常规化肥施用处理作为对照,系统研究了连续三年沼液施用对土壤特性变化的影响,以及农田排出水和温室气体的排放情况,结合沼液利用对作物产量和品质的影响,探索沼液在北京地区进行大田利用的长期环境影响,研究结果表明:
     以“化肥基肥+沼液”和“沼液基肥+沼液”方式进行沼液施用的处理,土壤铜、锌、铅、镉含量均符合农业行业标准《小麦产地环境技术条件》(NY/T851-2004)规定。土壤全铜有累积趋势,但从第二年度开始,积累速度明显减小,以“化肥基肥+沼液”方式进行沼液施用的处理,第一、二、三年度土壤全铜含量分别为18.8、22.5和22.8mg/kg;以“沼液基肥+沼液”方式进行沼液施用的处理,第一、二、三年度土壤全铜含量分别为19.5、22.0和24.1mg/kg。两种方式施用沼液的处理,通过径流途径流失氮量小于7%,对地表水环境造成富营养化的风险较小。
     以“化肥基肥+沼液”和“沼液基肥+沼液”两种方式施用沼液,可提高土壤有机质及全量和速效态的氮、磷含量,显著改善土壤的氮、磷供应状况,同时降低土壤pH值。以“化肥基肥+沼液”和“沼液基肥+沼液”方式施用沼液的处理,土壤有机质分别为13.5和12.6g/kg,比化肥对照(11.6g/kg)分别提高1.9和1.0g/kg,同时较试验前的本底值(10.3g/kg)提高3.2g/kg和2.3g/kg。以“化肥基肥+沼液”和“沼液基肥+沼液”方式施用沼液的处理,土壤全氮分别为0.98和0.97g/kg,比化肥对照(0.76g/kg)分别高0.22和0.21g/kg,同时高于试验前的本底值(0.75g/kg),两沼液施用处理组中,最高施用水平处理T3和T6,土壤全氮均超过1.0g/kg,分别为1.04g/kg和1.12g/kg。施用沼液的两处理,土壤碱解氮含量均约为140mg/kg,化肥对照约为85mg/kg,施用沼液处理碱解氮含量较本底值(76mg/kg)提高约85%。以“化肥基肥+沼液”和“沼液基肥+沼液”方式施用沼液的处理,土壤全磷分别为0.92和0.95g/kg,化肥对照为0.72g/kg,两处理分别较对照提高0.20和0.23g/kg,沼液处理组中,最高施用水平处理T3和T6,土壤全磷分别为1.01g/kg和1.07g/kg。施用沼液的两处理,土壤速效磷含量分别为97和111mg/kg,显著高于化肥对照(31mg/kg)。以“化肥基肥+沼液”和“沼液基肥+沼液”方式施用沼液的处理,土壤pH值分别为7.9和7.8,显著低于本底值(8.3)和化肥对照(8.2)。
     施用沼液处理对冬小麦、夏玉米产量无显著影响。以“化肥基肥+沼液”和“沼液基肥+沼液”两种方式施用沼液,在前两年度提高了小麦籽粒的氮磷含量,但随着处理年限的加长,到第三年度,影响减小到不显著;处理对小麦籽粒含碳量无显著影响。“化肥基肥+沼液”处理组中,前茬施用水平为高时,玉米籽粒碳、氮含量较化肥对照显著提高(p<0.05),该处理组中,前茬施用水平为低和中时,在处理的第二年度,玉米籽粒含磷量有较化肥对照提高的趋势,但至处理第三年度,差异减小到不显著。
     T5为最佳沼液施用方式,以该方式进行沼液农田利用,年消纳沼液量为3000吨。
With the rapid development of biogas construction in China, large amount of biogas slurry hasbeen produced. At the meantime, the problem of lacking irrigation water is serious, thus using thebiogas slurry for farmland irrigation should be an appropriate way to reuse the slurry. However,baseline data are limited related to the environmental impact of biogas slurry application on farmlands,especially for the condition of the wheat/maize rotation system in North China.
     This study was carried out on a typical wheat/maize rotation cropland, focusing on the impact ofswine farm biogas slurry application on the soil properties, water runoff and gas emissions, as well ason crop yield and quality, to explore the long-term environmental impact of biogas slurry application oncroplands, providing data for reference when utilizing biogas slurry from large-and-medium scalebiogas plants for irrigating. Two treatments were set concerning the ways of application of the slurry,namely the treatments of synthetic fertilizer plus slurry (referred to as F+S), and the slurry plus slurry(S+S). Within each of the treatment, three levels were set, the low, mediem and high levels representingapplying the slurry for once, twice and three times in the wheat growing season. The following findingswere obtained.
     The contents of copper, zinc, lead and cadmium of the soils of the treatments of F+S and S+S bothmet the standard requirements of NY/T851-2004, which requires that Cu≤100mg/kg,Zn≤300mg/kg,Pb≤350mg/kg,and Cd≤0.60mg/kg. Copper accumulation was found in the soil of thetreatmetns, although from the second year of treatment, accumulation rate had been low. The soilcopper contents of the F+S were18.8、22.5and22.8mg/kg for the first, the second and the third years,respectively, and those for the S+S were19.5、22.0and24.1mg/kg. The nitrogen loss through run-offwas less than seven percent, which posed little risk of eutrophication of the surface water.
     Application of biogas slurry enhanced the contents of soil organic matter, total and availablenitrogen and phosphorus, while lowering soil pH. After three years of slurry irrigation, soil organicmatter contents of F+S and S+S were13.5g/kg and12.6g/kg, increased for1.9g/kg and1.0g/kgcompared with the control (CK), and increased for3.2g/kg and2.3g/kg compared with the baselinevalue. Total nitrogen contents of the soils of F+S and S+S were0.98g/kg and0.97g/kg, increased for0.22g/kg and0.21g/kg compared with the CK, and higher than the baseline value, which was0.75g/kg.The highest level of the two treatments, T3and T6, reached soil nitrogen contents of1.04g/kg and1.14g/kg. The available nitrogen content of the soils of both F+S and S+S reached140mg/kg, higher thanthe baseline valee of76mg/kg, while that of the CK was about85mg/kg. Total phosphorus contents ofthe soils of F+S and S+S were0.92g/kg and0.95g/kg, increased for0.20g/kg and0.23g/kg comparedwith the CK. The highest level of the two treatments, T3and T6, reached soil phosphorus contents of1.01g/kg and1.07g/kg. The available phosphorus content of the soils of both F+S and S+S were97 mg/kg and111mg/kg, significantly higher than the CK, which was31mg/kg. The soil pH values ofF+S and S+S were7.9and7.8, significantly lower than the baseline value, which was8.3, and that ofthe CK (8.2).
     Application of biogas slurry did not affect winter wheat and summer maize production. Thenitrogen and phosphorus contents of the wheat grains of the F+S and S+S were significantly higher thanthose of the CK for the first two years, but were not for the third year. Carbon content of the wheat grainwas not affected by treatments. The carbon and nitrogen contents of the high level of the treatment ofF+S was significantly higher than that of the CK, and the phosphorus contents of the corns of the lowand medium levels of F+S treatment were significantly higher than that of CK for the second year, butwere not for the third year of treatment.
     The optimum application method of biogas slurry is T5, and3000tons of biogas slurry could beused if T5is employed..
引文
1. Batten G. B..小麦磷素利用率[J].国外农学-麦类作物,1994,2:29-31.
    2.柴世伟,温琰茂,张亚雷,等.地积累指数法在土壤重金属污染评价中的应用[J].同济大学学报(自然科学版),2006,34(12):1657-1661.
    3.柴仲平,王雪梅,孙霞,等.施用沼肥对枣园土壤养分含量的影响[J].西南农业学报,2010,23(3):782-785.
    4.陈丽琼.沼气发酵液对烟草赤星菌的抑制及其机理研究[D].昆明:云南师范大学,2006.
    5.陈楠,高同国,姜峰,等.高效稳定沼液营养液对冬小麦产量及土壤养分的影响[J].中国沼气,2011,29(4):47-50.
    6.陈同斌,郑袁明,陈煌,等.北京市土壤重金属背景值的系统研究[J].环境科学,2004,25(1):117-122.
    7.陈永杏,尚斌,董红敏,等.猪粪发酵沼液对油菜(Brassica chinensis L.)品质的影响[J].中国农业科技导报,2011,13(3):117-121.
    8.陈永杏,尚斌,陶秀萍,等.猪粪发酵沼液对无土栽培番茄品质影响的试验研究[J].中国农学通报,2011,27(19):172-175.
    9.陈志宇,苏继影,栾冬梅,等.畜禽粪便堆肥技术研究进展[J].当代畜牧,2004,10:41-43.
    10.陈钟佃,唐龙飞,冯德庆,等.不同氮素肥料对黑麦草生产性能的影响[J].家畜生态学报,2007,28(2):98-101.
    11.戴万宏,王益权,黄耀,等.农田生态系统土壤CO2释放研究[J].西北农林科技大学学报(自然科学版),2004,32(12):1-7.
    12.戴小阳,蔡斯,彭琼,等.沼液对玉米种子的发芽及生理特性的影响[J].安徽农业科学,2007,(6):13-14.
    13.董红敏,朱志平,黄宏坤,等.畜禽养殖业产污系数和排污系数计算方法[J].农业工程学报,2011,27(1):303-308.
    14.杜社妮,梁银丽,张成娥.施肥对西红柿土壤微生物和土壤呼吸的影响[J].干旱地区农业研究,2011,29(5):178-181.
    15.樊文华,刘晋峰,王志伟,等.施用沼肥对温室土壤养分和重金属含量的影响[J].山西农业大学学报,2011,31(1):1-4.
    16.冯定远.通过营养调控减少养猪生产的环境污染[J].饲料工业,2005,26(13):1-4.
    17.冯伟,管涛,王晓宇,等.沼液与化肥配施对冬小麦根际土壤微生物数量和酶活性影响[J].应用生态学报,2011,22(4):1007-1012.
    18.冯伟,管涛,王晓宇,等.沼液追施量对小麦叶绿素荧光动力学参数及产量的影响[J].华北农学报,2011,26(2):157-162.
    19.冯伟,管涛,王永华,等.沼液与尿素配施对冬小麦光合特性及籽粒产量的影响[J].作物学报,2010,36(8):1401-1408.
    20.冯伟,邱记东,管涛,等.沼液追施对小麦蛋白组分、面团流变学和淀粉糊化特性的影响[J].麦类作物学报,2011,31(2):276-280.
    21.甘福丁,魏世清,覃文能,等.施用沼液对玉豆品质及土壤肥效的影响[J].中国沼气,2011,29(1):59-60.
    22.高同国,陈楠,李伟群,等.新型高效沼液营养液在蔬菜产量及品质上的效果[J].安徽农业科学,2011,39(21):12684-12686.
    23.管涛,冯伟,王化芩,等.追施沼液对冬小麦根际土壤生物活性的影响[J].麦类作物学报,2010,30(4):721-726.
    24.管涛.沼液与化肥配施对冬小麦根际生物活性、生理特征及产量品质的调控效应[D].杭州:河南农业大学,2010.
    25.国家环境保护部.第一次全国污染源普查公报[R].北京:2010.
    26.韩金玲,杨晴,张敏,等.施氮方式对冬小麦品种京冬11籽粒灌浆特性及产量的影响[J].麦类作物学报,2011,31(6):1107-1110.
    27.郝红,周怀东,王剑影,等.漳卫南运河沉积物重金属污染及其潜在生态风险评价[J].中国水力水电科学研究院学报,2005,3(2):109-115.
    28.贺国强,邓志平,刘展志,等.菌剂、沼液及其复配对玉米经济性状和产量的影响[J].中国农业大学学报,2011,16(4):24-29.
    29.胡建平,舒夙辉,李福明.利用沼肥栽培杂交水稻的试验研究[J].中国沼气,2011,29(4):51-53.
    30.黄红英,曹金留,靳红梅,等.猪粪沼液施用对稻麦轮作系统土壤氧化亚氮排放的影响[J].农业环境科学学报,2011,30(11):2353-2361.
    31.黄坚雄,陈源泉,隋鹏,等.农田温室气体净排放研究进展[J].中国人口·资源与环境,2011,21(8):87-94.
    32.黄涛,荣湘民,刘强,等.不同施肥模式对春玉米产量、品质与氮肥利用及玉米地氮流失的影响[J].土壤,2010,42(6):915-919.
    33.黄治平.规模化猪场区域农田土壤重金属污染研究[D].北京:中国农业科学院研究生院,
    2007.
    34.霍翠英,吴树彪,郭建斌,等.猪粪发酵沼液中植物激素及喹啉酮类成份分析[J].中国沼气,2011,29(5):7-10.
    35.姜丽娜,王强,陈丁江,等.沼液稻田消解对水稻生产、土壤与环境安全影响研究[J].农业环境科学学报,2011,30(7):1328-1336.
    36.康凌云,赵永志,曲明山,等.施用沼渣沼液对设施果类蔬菜生长及土壤养分积累的影响[J].中国蔬菜,2011,(22/24):57-62.
    37.孔德杰,杨改河,任广鑫,等.沼肥不同用量对小麦光合特性和产量的影响[J].西北农业学报,2008,17(2):64-69.
    38.李丙智,王桂芳,秦晓飞,等.沼液配施钾肥对果园土壤理化特性和微生物及果实品质影响[J].中国农业科学,2010,43(22):4671-4677.
    39.李东坡,武志杰.化学肥料的土壤生态环境效应[J].应用生态学报,2008,19(5):1158-1165.
    40.李会合,叶学见,王正银.沼液对基质培木耳菜硝酸盐和营养品质的影响[J].中国沼气,2003,21(1):37-39.
    41.李健,郑时选.沼肥中重金属含量初步研究[J].可再生能源,2009,27(1):62-64.
    42.李松林,吕军,张峰,等.高浓度沼液淹灌水土系统中氮、磷和有机物的动态变化[J].水土保持学报,2011,25(2):125-129.
    43.李松林.大量施灌沼液稻田氮素动态特征及其对环境的影响[D].杭州:浙江大学,2011.
    44.李侠,黄灵丹,廖允成,等.沼肥对麦套棉中小麦产量构成因素及水分利用效率的影响[J].西北农业学报,2010,19(6):64-68
    45.李彦超,廖新俤,林东教,等.不同沼液灌溉强度对土壤和渗滤液的影响[J].家畜生态学报,2009,30(4):52-56.
    46.李彦超,廖新俤,吴银宝,等.施用沼液对杂交狼尾草产量和土壤养分含量的影响[J].农业环境科学学报,2007,26(4):1527-1531.
    47.刘东,王方浩,马林,等.中国猪粪尿NH3排放因子的估算[J].农业工程学报,2008,24(4):218-224.
    48.刘丰玲,马东辉,刘天宏.喷施沼液对小麦产量、品质和病虫害防治的影响[J].中国沼气,2009,27(6):39-41.
    49.刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报,1999,19(2):206-211.
    50.马成玲,王火焰,周健民,等.长江三角洲典型县级市农田土壤重金属污染状况调查与评价[J].农业环境科学学报,2006,25(3):751-755.
    51.马传鑫,汪志荣,高琼,等.天津市典型污灌区冬小麦各生育期的重金属分析[J].环境化学,2010,29(1):44-47.
    52.马怀良,许修宏,等.畜禽粪便高温堆肥化处理技术[J].东北农业大学学报,2005,36(4):536-540.
    53.农田土壤环境质量监测技术规范NY/T395-2000.
    54.桑得福,雍山玉.沼液沼渣防治黄芪根腐病田间试验报告[J].中国沼气,2011,29(4):55-56.
    55.史一鸣,稻田生态系统消解沼液的潜力及风险评估[D].杭州:浙江大学,2010
    56.谭德水,江丽华,张骞,等.不同施肥模式调控沿湖农田无机氮流失的原位研究——以南四湖过水粮田为例[J].生态学报,2011,31(12):3488-3496.
    57.唐华,郭彦军,李智燕.沼液灌溉对黑麦草生长及土壤性质的影响[J].草地学报,2011,19(6):939-942.
    58.陶秀萍,董红敏.畜禽养殖废弃物资源的环境风险及其处理利用技术现状[J].现代畜牧兽医,2009(11):34-38.
    59.田凤娇,汪金舫,陈军平.长期施肥对小麦体内各形态磷含量的影响[J].中国生态农业学报,2009,17(2):273-276.
    60.田秀英,石孝均.定位施肥对小麦产量和品质的影响研究[J].西南师范大学学报,2003,28(2):283-287.
    61.屠云璋,吴兆流.沼气行业2010年发展报告[R].沼气发展战略和对策研讨会文集,2010:1-14.
    62.王明星,廖昌建.高浓度有机废水生物处理技术[J].当代化工,2011,40(8):820-823.
    63.王卫平,陈新苗,魏章焕,等.施用沼液对柑桔产量和品质以及土壤环境的影响[J].农业环境科学学报,2011,30(11):2300-2305.
    64.王永翠,曹社会,初雷,等.沼液与氮肥不同配比对青贮玉米干物质积累量和土壤肥力指标的影响[J].西北农业学报,2010,19(9):163-167.
    65.王远远,刘荣厚,黄彩霞,等.施用沼液防治青菜虫的试验研究[J].上海交通大学学报(农业科学版),2007,25(4):399-401,418.
    66.王月霞,符建荣,王强,等.沼液农田消解利用对辣椒产量、品质及土壤肥力的影响[J].浙江农业学报,2010,22(6):859-863.
    67.王月霞.沼液农田消解利用技术及其土壤环境效应研究[D].杭州:浙江师范大学,2010.
    68.王植,刘世荣,张昱,等.农田施用沼肥对降低辽东水源基地环境污染的作用[J].沈阳农业大学学报,2008,39(5):569-572.
    69.王植,周连第,刘世荣,等.施用沼肥对改善农田径流水质和减轻水源地环境污染的影响[J].安徽农业科学,2009,37(10):4604-4606,4618.
    70.魏泉源,魏晓明,梁康强,等.浓缩沼液在油菜上的应用效果研究[J].中国沼气,2011,29(5):51-54.
    71.吴飞龙,叶美锋,林代炎,等.沼液施用量对象草N、P吸收利用效率和土壤N、P养分含量的影响[J].福建农业学报,2011,26(1):103-107.
    72.小麦产地环境技术条件NY/T851-2004.
    73.谢小立,王卫东,上官行健,等.施肥对稻田甲烷排放的影响[J].农村生态环境(学报),1995,11(1):10-14.
    74.徐庆贤,官雪芳,林碧芬,等.不同施肥种类对土壤及脐橙中的重金属含量的影响[J].浙江农业学报,2011,23(5):977-982.
    75.徐庆贤,沈恒胜,林斌,等.以猪粪为原料的沼气发酵系统中镉、铜、锌分析[J].台湾农业探索,2011(5):75-78.
    76.杨军芳,周晓芬.小麦田追施沼肥的应用效果[J].河北农业科学,2005,9(3):58-60.
    77.姚雍静,牟春林,赵志清,等.施肥技术对两种主要茶梢害虫发生量影响的初步观察[J].山地农业生物学报,2011,30(3):263-266.
    78.姚雍静,牟春林,赵志清,等.施用沼液对茶饼病和炭疽病田间发生的影响[J].中国茶业,2011,(6):14-15.
    79.高红莉,郝民杰,赵风兰.沼肥对土壤和作物的影响研究现状[J].安徽农业科学,2009,37(30):14813-14815.
    80.叶旭君,王兆骞,李全胜.以沼气工程为纽带的生态农业工程模式及其效益分析[J].农业工程学报,2000,16(2):93-96.
    81.余东波,胡向军,谢建,等.沼气发酵残留物减少蔬菜硝酸盐积累的研究与应用[J].云南师范大学学报,2005,25(1):11-13.
    82.蔡阿兴,蒋其鳌,常运诚,等.沼气肥改良碱土及其增产效果研究[J].土壤通报,1999,30(1):4-6.
    83.张昌爱,刘英,曹曼,等.沼液的定价方法及其应用效果生态学报[J],2011,31(6):1735-1741.
    84.张红,王桂良.沼液和氮肥配施对菜田土壤微生物生物量和活性的影响[J].安徽农业科学,2011,39(27):16601-16603,16723.
    85.张全国,李鹏鹏,倪慎军,等.沼液复合型杀虫剂研究[J].农业工程学报,2006,22(6):157-160.
    86.张全国,刘振波,李改莲,等.沼液复合型杀虫剂的田间应用试验研究.安全与环境学报,2007,7(2):18-21.
    87.张全国,周雪花,李鹏鹏,等.沼液复合型杀虫剂的有效期和生态环保性能[J].农业工程学报,2008,24(8):219-222.
    88.张亚莉,刘桂芹,尹立红,等.沼液浸种对蔬菜生长发育的影响[J].北方园艺,2011a,(06):41-42.
    89.张亚莉,王俊杰,曹北,等.沼液对胡萝卜生长发育的影响研究[J].北方园艺,2011b,(01):29-31.
    90.张玉凤,董亮,李彦,等.沼肥对大豆产量、品质和土壤化学性质的影响[J].水土保持学报,2011,25(4):135-138,143.
    91.张岳芳,陈留根,王子臣,等.耕作方式对太湖地区冬小麦生长季N2O排放的影响[J].生态环境学报,2011,20(8-9):1326-1331.
    92.肖波,刘雁雁,刘文涛.小麦籽粒淀粉的合成及其关键酶[J].食品与药品,2007,9(5):64-67.
    93.郑杰炳,王子芳,周春蓉,等.土地利用方式对紫色土丘陵区土壤剖面碳、氮影响[J].生态环境,2008,17(5):2041-2045.
    94.中国畜牧业年鉴编辑委员会.2011中国畜牧业年鉴[R].北京:中国农业出版社,2011.
    95.中华人民共和国气候变化初始国家信息通报[R].北京:中国计划出版社,2004.
    96.中华人民共和国统计局.2011中国统计年鉴[R].北京:中国统计出版社,2012.
    97.朱宇恩,赵烨,李强,等.北京城郊污灌土壤-小麦(Triticum aestivum)体系重金属潜在健康风险评价[J].农业环境科学学报,2011,30(2):263-270.
    98. Alburquerque J. A., C. Fuente, M. P. Bernal. Chemical properties of anaerobic digestatesaffecting C and N dynamics in amended soils [J]. Agriculture, Ecosystems and Environment,2011(in press).
    99. Amar C, S. McGrath, P. Gibbs, et al. Cadmium availablilty to wheat grain in soils treated withsewage sludge or metal salts [J]. Chemosphere,2007,66:1415-1423.
    100. Amon B., V. Kryvoruchko, G. Moitzi, et al. Greenhouse gas and ammonia emission abatement byslurry treatment [J], International Congress Series,2006,1293:295-298.
    101. Amon B., V. Kryvoruchko, T. Amon, et al. Methane, nitrous oxide and ammonia emissionsduring storage and after application of dairy cattle slurry and influence of slurry treatment [J],Agriculture, Ecosystems and Environment,2006,112:153-162.
    102. Bai L., X. Zeng, L. Li, et al. Effect of land use on heavy metal accumulation in soils and sourcesanalysis [J]. Agricultural Sciences in China,2010,9(11):1650-1658.
    103. Bennett D. H.,W. E. Kastenberg,T. E. Mckone.Amultimedia,multiple pathway risk assessmentof atrazine:The impact of fige differentiated exposure including joint uncertainty and variability[J].Reliability Engineering&System Safety,1999,63(2):185-198.
    104. Berenguer P, F. Santiveri, J. Boixadera, et al. Fertilisation of irrigated maize with pig slurrycombined with mineral nitrogen [J]. European Journal of Agronomy,2008,28:635-645.
    105. Bermudez G. M. A., R. Jasan, R. Pla, et al. Heavy metal and trace element concentrations inwheat grains: Assessment of potential non-carcinogenic health hazard through their consumption[J]. Journal of Hazardous Materials,2011,193:264-271.
    106. Bertora C., F. Alluvione, L. Zavattaro, et al.. Pig slurry treatment modifies slurry composition,N2O, and CO2emissions after soil incorporation [J]. Soil Biology&Biochemistry,2008,40:1999-2006.
    107. Bose S., A.K. Bhattacharyya. Heavy metal accumulation in wheat plant grown in soil amendedwith industrial sludge [J]. Chemosphere,2008,70:1264-1272.
    108. Cao X., L. Q. Ma, S. P. Singh, et al. Phosphate-induced lead immobilization from different leadminerals in soil under varying pH conditions [J]. Environmental Pollution,2008,152:184-192.
    109. Cela S., F. Santiveri, J. Lloveras. Residual effects of pig slurry and mineral nitrogen fertilizer onirrigated wheat [J]. European Journal of Agronomy,2011,34:257-262.
    110. Chiyoka W.L., X. Hao, F. Zvomuya, et al. Nitrous oxide emissions from Chernozemic soilsamended with anaerobically digested beef cattle feedlot manure: A laboratory studya [J]. AnimalFeed Science and Technology,2011,166-167:492-502.
    111. Chotpantarat S., S. K. Ong, C. Sutthirat, et al. Effect of pH on transport of Pb2+, Mn2+, Zn2+and Ni2+through lateritic soil: Column experiments and transport modeling [J].Journal ofEnvironmental Sciences,2011,23(4):640-648.
    112. Cordovil C.M.d.S., A. de Varennes, R. Pinto, et al. Changes in mineral nitrogen, soil organicmatter fractions and microbial community level physiological profiles after application ofdigested pig slurry and compost from municipal organic wastes to burned soils [J], Soil biology&biochemistry,2011,43:845-852.
    113. Doelsch, Emmanuel, Armand Masion, Geraud Moussard, et al. Impact of pig slurry and greenwaste compost application on heavy metal exchangeable fractions in tropical soils [J]. Geoderma,2010,155:390-400.
    114. Fangueiro D., J. Coutinho, F. Cabral, et al. Nitric oxide and greenhouse gases emissionsfollowing the application of different cattle slurry particle size fractions to soil [J]. AtmosphericEnvironment,2012,47:373-380.
    115. FAO/WHO. List of contaminants and their maximum levels in foods. CAC/Vol XVII (edn1)
    1984.
    116. Feng H., G. Qu, P., et al. The resource utilization of anaerobic fermentation residue [J]. ProcediaEnvironmental Sciences,2011,11:1092-1099.
    117. Fuente C., R. Clemente, J. Martinez, et al. Optimization of pig slurry application to heavy metalpolluted soils monitoring nitrification processesl [J]. Chemosphere,2010,81:603-610.
    118. Gao T., E. Bowlbyn, Y. Tong, et al. Evaluation of the matrix effect of thermophilic anaerobicdigestion on inactivation of infectious laryngotracheitis virus using real-time PCR and viral cell
    119. culture [J]. Bioresource Technology,2012,110:692-696.
    120. Grigatti M., G. D. Girolamo, R. Chincarini, et al. Potential nitrogen mineralization, plantutilization efficiency and soil CO2emissions following the addition of anaerobic digested slurries[J], Biomass and bioenergy,2011,35:4619-4629.
    121. Herroux L. L., S. L. Roux, P. Appriou, et al. Behaviour of metals following intensive pig slurryapplications to a natural field treatment process in Brittany (France)[J]. Environmental Pollution,1997,97:119-130.
    122. Huang M., S. Zhou, B. Sun, et al. Heavy metals in wheat grain: Assessment of potential healthrisk for inhabitants in Kunshan [J], China. Science of the total environment,2008,405:54-61.
    123. IPCC. Climate Change2007: Changes in atmospheric constituents and in radiativeforcing[R/OL].(2007-11-17)[2010-10-28]. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf.
    124. Jamali M. K.., T. G. Kazi, M. B. Arain, et al. Heavy metal accumulation in different varieties ofwheat (Triticum aestivum L.) grown in soil amended with sewage sludge [J]. Journal ofHazardous Materials,2009,164:1386-1391.
    125. Kai P., P. Pedersen, J. E. Jensen, et al. A whole-farm assessment of the efficacy of slurryacidification in reducing ammonia emissions [J]. European Journal of Agronomy,2008,28:148-154.
    126. L’Herroux L., S. L. Roux, P. Appriou, et al. Behaviour of metals following intensive pig slurryapplications to a natural field treatment process in Brittany (France)[J]. Environmental Pollution,1997,97:119-129.
    127. Leterme M. T., P., G.G. Arsene, et al. Nitrogen transformations after the spreading of pig slurry onbare soil and ryegrass using15N-labelled ammonium [J]. European Journal of Agronomy1997,383:181-188.
    128. Lu J., L. Jiang, D. Chen, et al. Decontamination of anaerobically digested slurry in a paddy fieldecosystem in Jiaxing region of China [J]. Agriculture, Ecosystems and Environment,2012,146:13-22.
    129. Marcato C. E., E. Pinelli, P. Pouech, et al. Particle size and metal distributions in anaerobicallydigested pig slurry [J]. Bioresource Technology,2008,99:2340-2348.
    130. Marcato C., E. Pinelli, M. Cecchi, et al. Bioavailability of Cu and Zn in raw and anaerobicallydigested pig slurry [J], Ecotoxicology and Environmental Safety,2009,72:1538-1544.
    131. Marcato C., R. Mohtar, J. Revel, et al. Impact of anaerobic digested on organic matter quality inpig slurry [J], International Biodeterioration&Biodegradation,2009,63:260-266.
    132. Marcato-Romain C.E., E. Pinelli, B. Pourrut, et al. Assessment of the genotoxicity of Cu and Znin raw and anaerobically digested slurry with the Vicia faba micronucleus test [J], Mutationresearch,2009,672:113-118.
    133. Matsunaka T., T. Sawamoto, H. Ishimura, et al. Efficient use of digested cattle slurry from biogasplant with respect to nitrogen cycling in grassland [J]. International Congress Series,2006,1293:242-252.
    134. Meade G., S. T. J. Lalor, T. Mc Cabe.An evaluation of the combined usage of separated liquid pigmanure and inorganic fertilizer in nutrient programmes for winter wheat production [J]. EuropeanJournal of Agronomy,2011,34:62-70.
    135. Meijide A, J. A. Diez, L. Sanchez-Martin, et al. Nitrogen oxide emission from an irrigated maizecrop amended with treated pig slurries and composts in a Mediterranean climate [J], Agriculture,Ecosystems and Environment,2007,121:383-394.
    136. Meijide A, L. Garcia-Torres, A. Arce, et al. Nitrogen oxide emissions affected by organicfertilization in a non-irrigated Mediterranean barley field [J], Agriculture, Ecosystems andEnvironment,2009,132:106-115.
    137. Moller K., W. Stinner. Effects of different manuring systems with and without biogas digestionon soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides)[J].European Journal of Agronomy,2009,30:1-16.
    138. Muller C., R. J. Laughlin, P. Christie, et al. Effects of repeated fertilizer and cattle slurryapplications over38years on N dynamics in a temperate grassland soil [J]. Soil Biology&Biochemistry,2011,43:1362-1371.
    139. Nadal M, Schuhmacher, J.L. Domingoa. Metal pollution of soils and vegetation in an area withpetrochemical industry [J]. Sci Total Environ2004;321:59-69.
    140. Nevens F., D. Reheul. Agronomical and environmental evaluation of a long-term experiment withcattle slurry and supplemental inorganic N applications in silage maize [J]. European Journal ofAgronomy,2005,22:349-361.
    141. Nyord T., M.N. Hansen, L.T.S. Birkmose, et al. Ammonia volatilization and crop yield followingland application of solid-liquid separated, anaerobically digested, and soil injected animal slurryto winter wheat [J]. Agriculture, Ecosystems and Environment,2012(ARTICLE IN PRess).
    142. Pain B.F., T.H. Misselbrook, C.R. Clarkson, et al. Odour and ammonia emissions following thespreading of anaerobically-digested pig slurry on grassland [J], Biological Wastes,1990,34,3:259-267.
    143. Payet N., A. Findelling, J. L. Chopart, et al. Modelling the fate of nitrogen following pig slurryapplication on a tropical cropped acid soil on the island of Reunion (France).[J] Agriculture,Ecosystems and Environment,2009,134:218-233.
    144. Peu P, F. Birgand, J. Martinez. Long term fate of slurry derived nitrogen in soil: Acase study witha macro-lysimeter experiment having received high loads of pig slurry (Solepur)[J]. BioresourceTechnology,2007,98:3228-3234.
    145. Pietri J.C. A., P. C. Brookes. Nitrogen mineralization along a pH gradient of a silty loam UK soil[J]. Soil Biology&Biochemistry,2008,40:797-802.
    146. Rooney C. P., R. G. McLaren, L. M. Condron. Control of lead solubility in soil contaminated withlead shot: Effect of soil pH [J]. Environmental Pollution,2007,149:149-157.
    147. Sanchez-Martin L., A. Meijide, L. Garcia-Torres, et al. Combination of drip irrigation andorganic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate [J], Agriculture,Ecosystems and Environment,2010,137:99-107.
    148. Schellberg J., R. Lock. A site-specific slurry application technique on grassland and on arablecrops [J]. Bioresource Technology,2009,100:280-286.
    149. Shen D.. Microbial diversity and application of microbial products for agricultural purposes inChina [J]. Agriculture, Ecosystems and Environment,1997,62:237-245.
    150. Simek M., L. Jisova, D. W. Hopkins. What is the so-called optimum pH for denitrification in soil?[J]. Soil Biology&Biochemistry,2002,34:1227-1234.
    151. Simpson L J, G C Edwards, G W Thurtell. Variations in methane and nitrous oxide mixing ratiosat the southern boundary of a Canadian boreal forest [J]. Atmospheric Environment,1999,33:1141-1150.
    152. Sipter E, E Rózsa, K Gruiz, et al. Site-specific risk assessment in contaminated vegetable gardens[J]. Chemosphere2008,71:1301-1307.
    153. Smith P, D Martino, Z Cai, et al. Greenhouse gas mitigation in agriculture [J]. PhilosophicalTransactions of the Royal Society B,2008,363:789-831.
    154. Sorensen P., M. Amato. Remineralisation and residual effects of N after application of pig slrry tosoil [J]. European Journal of Agronomy,2002,16:81-95.
    155. Tambone F., B. Scaglia, G. D’Imporzano, et al. Assessing amendment and fertilizing properties ofdigestates from anaerobic digestion through a comparative study with digested sludge andcompost [J], Chemosphere,2010,81:577-583.
    156. Tani M., N. Sakamoto, T. Kishimoto, et al. Utilization of anaerobically digested dairy slurrycombined with other wastes following application to agricultural land [J]. International CongressSeries,2006,1293:331-334.
    157. Thomsen I. K., A. R. Pedersen, T. Nyord, et al. Effects of slurry pre-treatment and applicationtechnique on short-term N2O emissions as determined by a new non-linear approach [J],Agriculture, Ecosystems and Environment,2010,136:227-235.
    158. Turner C., C. H. Burton. The inactivation of viruses in pig slurries: a review [J]. BioresourceTechnology1997,61:9-20.
    159. US EPA (United States Environmental Protection Agency). Risk assessment guidance forsuperfund. Human Health Evaluation Manual (Part A). Interim Final, vol. I.Washington (DC):United StatesEnvironmental ProtectionAgency;1989. EPA/540/1-89/002.
    160. USDA.Soil quality indicators: pH.http://soils.usda.gov.
    161. USEPA (United StatesEnvironmental ProtectionAgency).Guidelines for the health riskassessment of chemical mixtures. Federal Register1986,51(185):34014-34025.
    162. U.S. EPA (Environmental Protection Agency)1993The Standards for the Use or Disposal ofSewage Sludge, Title40of the Code of Federal Regulations, Part503; Federal Register58FR9248to9404.
    163. Vallejo A, U. M. Skiba, L. Garcia-Torres, et al. Nitrogen oxides emission from soils bearing apotato crop as influenced by fertilization with treated pig slurries and composts [J], Soil Biology&Biochemistry,2006,38:2782-2793.
    164. Zeng F., S. Ali, H. Zhang, et al. The influence of pH and organic matter content in paddy soil onheavy metal availability and their uptake by rice plants [J].Environmental Pollution,2011,159:84-91.
    165. Zhao J., Y. Dong, X. Xie, et al. Effect of annual variation in soil pH on available soil nutrients inpear orchards [J]. Acta Ecologica Sinica,2011,31:212-216.
    166. Zheng N, Q. Wang, D. Zheng. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants aroundHuludao zinc plant in China via consumption of vegetables [J]. Sci Total Environ,2007,383:81-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700