用户名: 密码: 验证码:
贵州省薄—中厚煤层群煤层气开发地质理论与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层群条件下的煤层气开发技术具有其特殊性,煤层群的发育特征及其赋存的开发地质环境条件深刻地影响了煤层气开发技术的可选择性。为此,本文选择煤层群发育的典型地区—贵州省西部六盘水煤田和织纳煤田为研究对象,在煤储层地质背景、煤储层基础参数和开发探索试验研究的基础上,以地质分析方法为主要手段,研究了煤层气开发地质特征和储层特征,建立了煤层气开发地质模型,阐明了煤层群条件下煤层气开发地质条件与开发工程的适配性,提出了分别基于开发地质基础和工程技术原理的煤层气资源开发类型和开发技术模式划分方案,形成了内含三项可选择关键模式的开发技术模式地质选择方法,优选了研究区煤层气开发模式与技术,强化了开发技术关键工艺,形成了本地化的开发工程技术体系。本次研究取得的主要研究成果如下:
     1)探索了薄—中厚煤层群开发地质特征及其控制机理,建立了薄—中厚煤层群煤层气开发地质模型。分析了研究区地应力场特征、重划了煤储层渗透率类型,分别从煤层厚度、煤层间距、煤层层数三个参数及其组合识别了研究区煤层群的不同类型;发现多层、薄层发育的煤层群,较高含气性、正常—超压的储层压力状态,中—高地应力值,相对较低的渗透率是研究区煤层气开发地质环境的典型表现。开发地质模型以煤层群发育模式、煤储层参数非均质性模式、煤储层结构发育模式、煤层气排采效应与流体运移为主体,实现了煤层群条件下从储层平面展布非均质性、层间非均质性和储层内部非均质性三个尺度,对煤层气开发地质条件的区域至局部、多层至单层、宏观至微观的连续性描述,可以直观反映储层特征,有利于分层次逐步认识煤储层。
     2)阐明了煤层群条件下煤层气开发关键技术的地质选择性,认为中近距离薄煤层发育、原生结构煤层不完整、弱富水地层特征是制约煤层气井开发工艺的三大关键地质要素,提出了分别基于开发地质基础和工程技术原理的煤层气资源类型和开发技术模式划分方案。煤层气资源开发类型至少可以划分为28种,并进一步归纳为中低渗难改造资源类型、中低渗易改造资源类型、中低渗较难改造资源类型和特低—低渗难改造资源类型四大类;煤层气开发技术模式被重新厘定为五种类型,但实际更具经济/技术可行性的是压裂改造疏水降压模式和应力释放增透降压模式。
     3)形成了内含三项可选择关键方法的煤层气开发技术/模式的地质选择体系。三项可选择关键方法包括:煤层气开发技术模式的资源开发类型选择、煤层气开发常规井型的地质选择和卸压煤层气开发技术的地质选择。每项选择方法可以单独或组合应用,从而实现对煤层气开发技术的有效选择。不同的煤层气开发地质模型决定了煤层气资源开发类型,进一步决定了不同开发技术系列的地质适配性。六盘水煤田的煤层气资源开发类型决定了压裂改造疏水降压模式的局限性,仅支持应力释放增透降压模式中的采动区卸压煤层气地面井抽采技术或井下抽采技术,煤层气井型地质选择进一步明确了这种局限性;但煤层气资源开发类型选择和井型地质选择均支持织纳煤田利于优先采用压裂改造疏水降压模式中的多种开发技术,不同地区的采用技术受两类模式的叠加选择结果不同而具有差异性。
     4)实现了开发工程技术体系的本地化。以煤层气开发技术的地质选择方法和煤层气开发试验的工程启示为依据,实现了开发工艺技术的本地化改进及其与研究区不同地质条件的良好匹配。通过改良井身结构、井眼入靶控制、多层合采等关键工艺,极大强化了煤层气直井和水平井开发技术的适配性;将多分支水平井和对接井嫁接,能够适应Ⅰ1、Ⅱ1、Ⅲ1类型和B、C、E、F、G类型组合的多种资源开发类型,提供了中低渗难改造资源类型的可选择技术类型;从井下安全和井孔安全两个角度,提出多煤层地面井下协同抽采方法和井孔失稳的地质机制、高危位置识别方法及预防措施,使卸压煤层气地面井开发工艺技术得以本地化。从而形成了一套以地质模型构建、地质制约条件筛选、煤层气资源开发类型判别、开发技术模式选择和关键工程技术实施为主体的薄—中厚煤层群煤层气开发地质理论与技术。
Coalbed methane (CBM) development technology has particularity under condition ofcoalbed groups, and the developing characteristic of coalbed groups lies in definite geologicsurrounding, that influenced the choice of CBM technology. Taking coalfields of Liupanshui andZhina in western Guizhou as the study objects, the paper was mainly depended on geologicalstatistics analysis, the development geological characteristic and reservoir characteristic of CBMwere studied based on characteristics of geological setting, coal reservoir parameters andexploration testing, the developmental geology model was built, the adaptability of geology andengineering processes was also clarified. Furthermore, CBM Resource type and technology wereclassed and explained again based on geology and technology principle. Eventually, this papershowed a selected choice for technology mode, and a localized system of developmenttechnologies. The following major innovations were achieved.
     1) Based on analysis of coal geology and tested data of CBM well, developmental geologycharacteristic and its controlling mechanism were discussed, and developmental geology modelwas established. The geostress field was analyzed, and the type of reservoir permeability wasredrawn. Different types of coalbed groups were distinguished from coal seam thickness, coalseam space, coal seam number and their combination. There were some specific and typicalcharacteristics for developmental geological environment, such as several thin coal seams,coexisting normal pressure and abnormal pressure, medium-high geostress, especially lowpermeability of reservoir, and so on. The developmental geology model was comprised ofcoalbed group development, anisotropy of reservoir parameters, macro structure of coal,drainage effect and fluid migration, and this model gave a continuous description of multi-scalefrom plane distribution anisotropy of reservoir, and hierarchical of internal/interlayer. This modecould be used for cognition of coal reservoir at different levels step by step.
     2) Geological selectivity for some key technologies was also discussed under condition ofcoalbed group, three geological features were revealed for their restriction to developmenttechnology. The features were multiple coal seams, reformation of coal structure, and weakabundant water for formation. Based on geological condition and technique principle, newdevelopment type of CBM resource and technology mode of CBM development were proposed.Geological selection of development technology was built, and it included three alternative keymodes. The CBM resource included28types, and could be summarized four kinds of resource.They were CBM resource type of medium-low and difficult renovation, medium-low and easy renovation, medium-low and more difficult renovation as well as unusual lower-low and difficult.The technology mode of CBM development was divided into five types. In fact, two modes wereused frequently, and they were the mode of release of pressure due to fracturing and waterdischarge and mode of release of pressure due to relieved stress and increasing permeability.
     3) Geological selection of development technology was built, including development modeselection, well selection and relieved CBM technology selection. Every mode could be appliedwith technology selection or combined.
     The Liupanshui coalfield had inherent disadvantages of applying some technologies of themode of water discharge by fracturing, but the technology of relieved CBM drainage by surfacewell or underground extraction technology were adapted. The mode of well selection supportedthis conclusion. However, the two selection modes had a similar conclusion to Zhina coalfieldby using the mode of water discharge by fracturing. However, the technology must be differentbecause of different CBM resource and well selection.
     4) The technology system of CBM development was localized. Based on inspiration ofdevelopment engineering and geological selection of development technology, this paperachieved a good matching of different improving technologies and geological setting. Firstly, theadaptability of vertical well and horizontal well was intensified by well construction, accuracy oftarget-entering and commingled production. Secondly, multi-lateral horizontal well and buttedwell were interrelated, and a new well type was obtained. The well adapted a variety of CBMresource type consisting of Ⅰ1, Ⅱ1, Ⅲ1and B, C, E, F, G, and provided technology type forCBM resource type of medium-low permeability and hard renovation. At last, considering themining safety and well stability, a series of ways were proposed. According to the coal and gassimultaneous extraction, geological mechanism of instability for surface well, identificationmethod of risk position and preventive measures, the relieved drainage technology was localized.Finally, geological theory and technology of CBM development for zones comprising thin andmedium-thickness coal seams was obtained, covering geological model building, limitedgeological condition screening, CBM resource type distinguishing, technology mode selectingand key technology process applying.
引文
[1]秦勇,熊孟辉,易同生等.论多层叠置独立含煤层气系统—以贵州织金—纳雍煤田水公河向斜为例[J].地质论评,2008,54(1):65-70.
    [2]杨兆彪,秦勇,高弟.黔西比德-三塘盆地煤层群含气系统类型及其形成机理[J].中国矿业大学学报,2011,40(02):215-220+226.
    [3]杨兆彪,秦勇,高弟.黔西比德-三塘盆地煤层群发育特征及其控气特殊性[J].煤炭学报,2011,36(04):593-597.
    [4]周世宁,林柏泉,李增华.高瓦斯煤层开采的新思路及待研究的主要问题[J].中国矿业大学学报,2001,30(2):111-113.
    [5]李树刚,李生彩,林海飞等.卸压瓦斯抽取及煤与瓦斯共采技术研究[J].西安科技学院学报,2002,22(03):247-249+263.
    [6]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [7]袁亮.高瓦斯矿区复杂地质条件安全高效开采关键技术[J].煤炭学报,2006,31(02):174-178.
    [8]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(01):78-81.
    [9]胡千庭.我国煤矿区煤层气开发潜力与开发模式探讨[J].中国煤层气,2004,1(01):29-31+25.
    [10]程远平,俞启香,袁亮等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [11]黄华州,桑树勋,方良才等.采动区远程卸压煤层气抽采地面井产能影响因素[J].煤田地质与勘探,2010,38(02):18-22+31.
    [12] SANG S, XU H, FANG L et al. Stress relief coalbed methane drainage by surface vertical wells in China[J]. International Journal of Coal Geology,2010,82(3-4):196-203.
    [13] HONGJIE X, SHUXUN S, LIANGCAI F et al. Production Characteristics and the Control Factors ofSurface Wells for Relieved Methane Drainage in the Huainan Mining Area [J]. Acta GeologicaSinica(English Edition),2011,85(04):932-941.
    [14] SCOTT S, ANDERSON B, CROSDALE P et al. Coal petrology and coal seam gas contents of theWalloon Subgroup--Surat Basin, Queensland, Australia [J]. International Journal of Coal Geology,2007,70(1-3):209-222.
    [15] PASHIN J C. Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin:Implications for exploration and production [J]. International Journal of Coal Geology,2010,82(3-4):135-146.
    [16] MILICI R C, HATCH J R, PAWLEWICZ M J. Coalbed methane resources of the Appalachian basin,eastern USA [J]. International Journal of Coal Geology,2010,82(3-4):160-174.
    [17]王定武,王运泉.煤田地质与勘探方法[M].徐州:中国矿业大学出版社1995.
    [18]候汝楫.缓倾斜煤层群上行开采的探讨[J].煤矿设计,1983,01):6-9.
    [19] BEATON A, LANGENBERG W, PANA C. Coalbed methane resources and reservoir characteristicsfrom the Alberta Plains, Canada [J]. International Journal of Coal Geology,2006,65(1-2):93-113.
    [20]吕志强,刘建军,郭敏江.近距离煤层群开采下巷道稳定性研究[J].煤炭科技,2009,01):11-14.
    [21]汪东生.近距离煤层群立体抽采瓦斯流动规律的模拟[J].煤炭学报,2011,36(01):86-90.
    [22] SHENG-RONG X I E, YAO-JIANG Z, HONG-ZENG Y et al. Study on Scientific ExploitationTechnology for Coal-and-gas Double-energy in High Gassy Coal Seam Group [J]. Procedia Engineering,2011,26(0):524-530.
    [23]尹中山.川南煤田古叙矿区煤层气勘探选层的探讨[J].中国煤炭地质,2009,21(2):24-27.
    [24]杨兆彪,秦勇,高弟等.煤层群条件下的煤层气成藏特征[J].煤田地质与勘探,2011,39(5):22-26.
    [25]张洪,何爱国,覃成锦.煤层气储层类型及配套钻井方案概述[J].中外能源,2010,15(11):50-52.
    [26]王生维,段连秀,陈钟惠等.煤层气勘探开发中的煤储层评价[J].天然气工业,2004,24(5):82-84.
    [27]刘大锰,姚艳斌,蔡益栋等.煤层气储层地质与动态评价研究进展[J].煤炭科学技术,2010,38(11):10-16.
    [28]秦勇.中国煤层气地质研究进展与述评[J].高校地质学报,2003,9(03):339-358.
    [29] MAVOR M, CLOSE J, MCBANE R. Formation Evaluation of Exploration Coalbed-Methane Wells [J].SPE Formation Evaluation,1994,9(4):285-294.
    [30] PALMER I, VAZIRI H, KHODAVERDIAN M et al. Completions and Stimulations for CoalbedMethane Wells: proceedings of the International Meeting on Petroleum Engineering, Beijing, China,01/01/1995[C].1995Copyright1995, Society of Petroleum Engineers, Inc.,1995.
    [31]王利,蔡云飞,侯鸿斌.煤层气储层描述技术及其应用[J].天然气工业,1997,17(6):28-31.
    [32]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(02):8-12.
    [33]姚艳斌,刘大锰,汤达祯等.沁水盆地煤储层微裂隙发育的煤岩学控制机理[J].中国矿业大学学报,2010,39(01):6-13.
    [34]胡耀青,赵阳升,杨栋等.煤体的渗透性与裂隙分维的关系[J].岩石力学与工程学报,2002,21(10):1452-1456.
    [35]傅雪海,秦勇,薛秀谦等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001,30(03):11-14.
    [36]闫宝珍,王延斌,丰庆泰等.基于地质主控因素的沁水盆地煤层气富集划分[J].煤炭学报,2008,33(10):1102-1106.
    [37]王勃,孙粉锦,李贵中等.基于模糊物元的煤层气高产富集区预测——以沁水盆地为例[J].天然气工业,2010,30(11):22-25+115-116.
    [38]张泓,王绳祖,郑玉柱等.古构造应力场与低渗煤储层的相对高渗区预测[J].煤炭学报,2004,29(06):708-711.
    [39]马财林,李延祥,权海奇等.煤层气高渗区综合预测技术——以大宁、韩城地区为例[J].天然气工业,2004,24(05):85-87+153.
    [40]李志强,鲜学福,徐龙君等.地应力、地温场中煤层气相对高渗区定量预测方法[J].煤炭学报,2009,34(06):766-770.
    [41]晋香兰,张泓.基于多元回归分析的煤储层高渗区预测——以沁水盆地为例[J].煤田地质与勘探,2006,34(02):22-25.
    [42]裘怿楠,贾爱林.储层地质模型10年[J].石油学报,2000,21(04):101-104+125.
    [43] HALDORSEN H H. Simulator parameter assignment and the problem of scale in reservoir engineering[J]. Reservoir Characterization,1986,293-340.
    [44]张一伟.陆相油藏描述[M].北京:石油工业出版社,1997.
    [45] DOWD P. A review of recent developments in geostatistics [J]. Computers&Geosciences,1991,17(10):1481-1500.
    [46] HEWETT T A. Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transportt: proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana,01/01/1986[C]. Copyright1986, Society of Petroleum Engineers Inc.,1986.
    [47] WONG P, TAMHANE D, WANG L. A NEURAL‐NETWORK APPROACH TO KNOWLEDGE‐BASED WELL INTERPOLATION: A CASE STUDY OF A FLUVIAL SANDSTONE RESERVOIR [J].Journal of Petroleum Geology,1997,20(3):363-372.
    [48] TAMHANE D, WONG P M, AMINZADEH F et al. Soft Computing for Intelligent ReservoirCharacterization: proceedings of the SPE Asia Pacific Conference on Integrated Modelling for AssetManagement, Yokohama, Japan,01/01/2000[C]. Copyright2000, Society of Petroleum Engineers Inc.,2000.
    [49]王生维,陈钟惠,张明等.煤储层岩石物理研究与煤层气勘探选区及开发[J].石油实验地质,1997,19(02):133-134+1356-1138.
    [50] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs [J]. Old SPE Journal,1963,3(3):245-255.
    [51]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [52]韩月旺,苏现波.煤层气储层几何模型及其应用[J].焦作工学院学报(自然科学版),2004,23(4):251-254.
    [53]汤达祯,王生维.煤储层物性控制机理及有利储层预测方法[M].北京:科学出版社,2010.
    [54]张有生,秦勇,陈家良.煤储层渗透率的非均质性模型[J].中国矿业大学学报,1998,27(01):45-48.
    [55]金大伟,赵永军.煤储层渗透率复合因素数值模型研究[J].西安科技大学学报,2006,26(4):460-464.
    [56]郑启明,崔洪庆.煤层气储层模型的建立及其应用[J].辽宁工程技术大学学报,2007,26(S1):140-142.
    [57]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(05):994-1001.
    [58]郭立波,李治平,王新海.煤层气定向羽状水平井开采数学模型的建立[J].油气田地面工程,2010,29(02):6-7.
    [59]易俊,姜永东,鲜学福.煤层微孔中甲烷的简化双扩散数学模型[J].煤炭学报,2009,34(03):355-360.
    [60]刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报,2002,02):91-94.
    [61]林柏泉,张建国.矿井瓦斯抽放理论与技术[M].徐州:中国矿业大学出版社,1996.
    [62] CREEDY D P, GARNER K, HOLLOWAY S. A review of the worldwide status of coalbed methaneextraction and utilisation [M]. Great Britain, Department of Trade and Industry, Cleaner CoalTechnology Programme,2001.
    [63] GATENS M. Coalbed methane development: Practices and progress in Canada [J]. J Can Petrol Technol,2005,44(8):16-21.
    [64] HAM Y S, KANTZAS A. Development of Coalbed Methane in Australia: Unique Approaches andTools: proceedings of the CIPC/SPE Gas Technology Symposium2008Joint Conference, Calgary,Alberta, Canada,01/01/2008[C].2008.
    [65] BEAMISH B B E, GAMSON P D E. Coalbed methane research and development in Australia:Symposium: Papers [M]. Townsville: James Cook University,1992.
    [66]秦勇,程爱国.中国煤层气勘探开发的进展与趋势[J].中国煤田地质,2007,19(01):26-29+32.
    [67]江山,王新海,张晓红等.定向羽状分支水平井开发煤层气现状及发展趋势[J].钻采工艺,2004,27(02):12-14+13.
    [68]黄勇,姜军. U型水平连通井在河东煤田柳林地区煤层气开发的适应性分析[J].中国煤炭地质,2009,21(S1):32-36+43.
    [69]张培河,张明山.羽状水平井煤层气勘探技术在我国的适应性[M]//董书宁,张群.中国地质学会、中国煤炭学会煤田地质专业委员会暨中国煤炭工业劳动保护科学技术学会水害防治专业委员会学术年会.北京;煤炭工业出版社.2007:131-135.
    [70]姜文利,叶建平,乔德武.煤层气多分支水平井的最新进展及发展趋势[J].中国矿业,2010,19(01):101-103.
    [71]张培河,张明山.煤层气不同开发方式的应用现状及适应条件分析[J].煤田地质与勘探,2010,38(2):9-13.
    [72] HOLLUB V A, SCHAFER P S. A guide to coalbed methane operations [M]. Chicago: Gas ResearchInstitute,1992.
    [73]杨胜来,郎兆新,张丽华.开采低渗透性煤层气的地面井一体化开采技术的探讨[J].中国煤层气,1997,1):35-37.
    [74]饶孟余,张遂安,商昌盛.提高我国煤层气采收率的主要技术分析[J].中国煤层气,2007,4(02):12-16.
    [75]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(04):343-348.
    [76]田文广,李五忠,赵庆波.先采气后采煤开发模式研究[M]//中国煤炭学会煤层气专业委员会/中国石油学会石油地质专业委员会.2008年煤层气学术研讨会.江西井冈山;地质出版社.2008:454-460.
    [77]吴建国,李伟.淮北矿区煤层气抽采利用技术探讨[J].中国煤层气,2005,2(04):16-19.
    [78]张遂安.煤层气资源特点与开发模式[J].煤田地质与勘探,2007,35(4):27-30.
    [79]倪小明,王延斌,接铭训等.煤层气开采模式探讨[J].煤矿安全,2007,3):45-48.
    [80]王凤林.矿区煤层气综合开采模式判识系统的研究[D].北京:中国矿业大学(北京),2009.
    [81]冯立杰,翟雪琪,王金凤等.采煤采气一体化开发模式的价值分析[J].天然气工业,2011,31(02):110-113+133-134.
    [82]李玺,尹淮新.新疆煤层气勘探开发模式探讨[J].中国西部科技,2009,8(10):15-16+14.
    [83]李日富,李保东,张军.松藻矿区煤层气开发技术优选[J].煤矿安全,2011,42(04):31-34.
    [84]陈飞,程军,姚光华等.重庆地区煤层气资源开发模式研究[J].煤矿开采,2011,16(01):28-31.
    [85]王连刚,李俊乾.我国煤层气开发模式与开发技术问题探讨[J].煤炭科学技术,2010,38(4):104-107.
    [86]李前贵,康毅力,徐兴华等.煤岩孔隙结构特征及其对储层损害的影响[J].西南石油学院学报,2002,24(03):1-4.
    [87] FALK K, MCDONALD C. An Overview of Underbalanced Drilling Applications in Canada:proceedings of the SPE European Formation Damage Conference, The Hague, Netherlands,01/01/1995[C].1995.
    [88] IWASHITA D, MORITA N, TOMINAGA M. Shear-Type Borehole Wall Shifts Induced During LostCirculations: proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, Texas,USA,01/01/2006[C].2006.
    [89] SALEHI S, HARELAND G, NYGAARD R. Numerical simulations of wellbore stability inunder-balanced-drilling wells [J]. Journal of Petroleum Science and Engineering,2010,72(3-4):229-235.
    [90]赖晓晴,楼一珊,屈沅治等.我国煤层气开发钻井液技术应用现状与发展思路[J].石油天然气学报,2009,31(05):326-328.
    [91]岳前升,邹来方,蒋光忠等.基于煤层气可降解的羽状水平井钻井液室内研究[J].煤炭学报,2010,35(10):1692-1695.
    [92]郑力会,孟尚志,曹园等.绒囊钻井液控制煤层气储层伤害室内研究[J].煤炭学报,2010,35(03):439-442.
    [93] BARR K L. A Guideline to Optimize Drilling Fluids for Coalbed Methane Reservoirs: proceedings ofthe SPE Rocky Mountain Petroleum Technology Conference, Denver, Colorado,04/14/2009[C]. Societyof Petroleum Engineers,2009.
    [94] ABRAMS A. Mud design to minimize rock impairment due to particle invasion [J]. J Petrol Technol,1977,29(5):586-592.
    [95]杜鹤,张遂安,徐代才等.煤层气多分支水平井防塌可降解屏蔽暂堵钻井液研究[J].中国煤层气,2010,7(01):30-33+41.
    [96] BALTOIU L V, WARREN B K, NATROS T. State-of-the-Art in Coalbed Methane Drilling Fluids:proceedings of the SPE/IADC Indian Drilling Technology Conference and Exhibition, Mumbai, India,01/01/2006[C].2006.
    [97] SYED H G M, SHAIKH S K. Coalbed Methane Cementing Best Practices-Indian Case History:proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing, China,06/08/2010[C]. Society of Petroleum Engineers,2010.
    [98]腰世哲,靳文博,刘强.煤层气固井过程中的储层伤害与保护[J].西部探矿工程,2011,03):43-46.
    [99]齐奉中,刘爱平.煤层气井固井技术研究与实践[J].天然气工业,2001,21(01):75-78+74.
    [100]王兆会,袁进平,刘硕琼等.同心管绕储层固井工具:同心管绕储层固井工具:中国,200920277569.7[P].2009-12-18.
    [101]陈天成.坍塌压力与井身结构设计和井壁稳定技术关系初探[J].钻采工艺,2006,29(1):21-23.
    [102]倪小明,苏现波,郭红玉. Ⅰ与Ⅱ类煤中地应力与多分支水平井壁稳定性的关系[J].煤田地质与勘探,2009,37(06):31-34.
    [103] Palmer I, Moschovidis I, Cameron J. Coal failure and consequences for coalbed methane wells[J]. SPE96872,2005.
    [104] QU P, SHEN R, FU L et al. Time delay effect due to pore pressure changes and existence of cleats onborehole stability in coal seam [J]. International Journal of Coal Geology,2011,85(2):212-218.
    [105]梁大川,蒲晓林,徐兴华.煤岩坍塌的特殊性及钻井液对策[J].西南石油学院学报,2002,24(06):28-31+23.
    [106] HAN J-Z, SANG S-X, CHENG Z-Z et al. Exploitation technology of pressure relief coalbed methane invertical surface wells in the Huainan coal mining area [J]. Mining Science and Technology (China),2009,19(1):25-30.
    [107] WHITTLES D, LOWNDES I, KINGMAN S et al. The stability of methane capture boreholes around along wall coal panel [J]. International Journal of Coal Geology,2007,71(2-3):313-328.
    [108] YU-ZHOU L, XIAO-HONG L. Safety analysis of stability of surface gas drainage boreholes above goafareas [J]. Journal of China Coal Society,2007,13(2):149-153.
    [109] SUN H, HU Q, HUANG S. Model on surface borehole squeezing deformation fracture [J]. Journal ofCoal Science and Engineering (China),2009,15(3):304-307.
    [110]焦先军.淮南潘谢矿区地面钻井卸压瓦斯抽采技术及应用研究[D].徐州:中国矿业大学,2009.
    [111]黄华州.远距离被保护层卸压煤层气地面井开发地质理论及其应用研究-以淮南矿区为例[D].徐州:中国矿业大学2010.
    [112] HONGJIE X, SHUXUN S, LIANGCAI F et al. Failure characteristics of surface vertical wells forrelieved coal gas and their influencing factors in Huainan mining area [J]. Mining Science andTechnology (China),2011,21(1):83-88.
    [113]赵国贞,马占国,朱发浩等.表土层厚度对地面瓦斯钻孔稳定性影响研究[J].中国科技论文在线,2011,1-8.
    [114] L.罗根T, F.克拉克W, A.马卡巴R.圣胡安盆地布兰科区块东北部煤层甲烷射孔完井压裂技术与裸眼洞穴完井下衬管技术比较[J].河南石油勘探开发情报,1992,4):24-30.
    [115] PALMER I D, MAVOR M J, SEIDLE J P et al. Openhole Cavity Completions in Coalbed MethaneWells in the San Juan Basin [J]. SPE Journal of Petroleum Technology,1993,45(11):1072-1080.
    [116] LOGAN T L, CLARK W F, MCBANE R A. Comparing Openhole Cavity and Cased Hole HydraulicFracture Completion Techniques, San Juan Basin, New Mexico: proceedings of the Low PermeabilityReservoirs Symposium, Denver, Colorado,01/01/1989[C].1989.
    [117]鲜保安,王玺.裸眼洞穴完井技术及作用机理分析[J].中国煤层气,1995,02):68-70.
    [118]王玺.煤层气井完井及保护煤层技术初探[J].中国煤层气,1995,1):61-63+23.
    [119]易俊,鲜学福,姜永东等.煤储层瓦斯激励开采技术及其适应性[J].中国矿业,2005,14(12):26-29.
    [120]修书志,江新民.煤层压裂工艺技术初探[J].油气井测试,1999,8(01):45-50+77.
    [121]周健,陈勉,金衍等.压裂中天然裂缝剪切破坏机制研究[J].岩石力学与工程学报,2008,27(S1):2637-2641.
    [122]温庆志,罗明良,李加娜等.压裂支撑剂在裂缝中的沉降规律[J].油气地质与采收率,2009,16(03):100-103+118.
    [123]乔明宏,程丽红,刘贵国.压裂效果的影响因素及改善措施[J].内蒙古石油化工,2009,10):135-136.
    [124]吴晋军,刘敬,王金安.煤层气开发新技术试验研究与探索[J].西安石油大学学报(自然科学版),2009,24(5):43-45+49.
    [125]岳之学,肖普朝,陈金玉等.新型煤层压裂法的实验研究[J].矿业安全与环保,1999,01):16-18.
    [126] HOLLABAUGH G S, DEES J M. Propellant Gas Fracture Stimulation of a Horizontal Austin ChalkWellbore [M]. SPE Annual Technical Conference and Exhibition. Houston, Texas.1993.
    [127]王建中.高能气体压裂技术在云南恩洪盆地煤层气开发中的试验应用[J].中国煤层气,2010,7(05):14-17.
    [128]王少力,郑子元.连续油管国产化技术研究新进展[J].石油矿场机械,2008,37(8):91-93.
    [129] RIEB B A, LESHCHYSHYN T T. Production Success of Proppant Stimulation on Horseshoe CanyonCoalbed Methane [M]. SPE Annual Technical Conference and Exhibition. Dallas, Texas.2005.
    [130] LESHCHYSHYN T T, RIEB B A, THOMSON J T. The Production Success of Proppant Stimulation onHorseshoe Canyon Coal Bed Methane and Sandstone Commingled Wells: proceedings of the CanadianInternational Petroleum Conference, Calgary, Alberta,01/01/2005[C].2005.
    [131] ASLAM J, ALSALAT T. High-Pressure Water Jetting: An Effective Method To Remove DrillingDamage: proceedings of the SPE International Symposium on Formation Damage Control, Lafayette,Louisiana,[C].2000.
    [132]倪红坚,王瑞和,葛洪魁.高压水射流破岩的数值模拟分析[J].岩石力学与工程学报,2004,23(04):550-554.
    [133]王瑞和,倪红坚.高压水射流破岩钻孔过程的理论研究[J].石油大学学报(自然科学版),2003,27(04):44-47+148-149.
    [134]白建梅.高压水射流技术用于煤层气开发的可行性分析[M]//中石油煤层气有限责任公司,中联煤层气国家工程研究中心有限责任公司.非常规天然气勘探开发技术研讨会.西安;石油工业出版社.2010.
    [135] ARRI L E, YEE D, MORGAN W D et al. Modeling Coalbed Methane Production With Binary GasSorption: proceedings of the SPE Rocky Mountain Regional Meeting, Casper, Wyoming,01/01/1992[C].1992.
    [136] HALL F E, ZHOU C, GASEM K A M et al. Adsorption of Pure Methane, Nitrogen, and Carbon Dioxideand Their Binary Mixtures on Wet Fruitland Coal: proceedings of the SPE Eastern Regional Meeting,Charleston, West Virginia,01/01/1994[C].1994.
    [137] BUSTIN R M, CLARKSON C R. Geological controls on coalbed methane reservoir capacity and gascontent [J]. International Journal of Coal Geology,1998,38(1-2):3-26.
    [138] CLARKSON C R, BUSTIN R M. Binary gas adsorption/desorption isotherms: effect of moisture andcoal composition upon carbon dioxide selectivity over methane [J]. International Journal of CoalGeology,2000,42(4):241-271.
    [139] STEVENSON M D, PINCZEWSKI W V, SOMERS M L et al. Adsorption/Desorption ofMulticomponent Gas Mixtures at In-Seam Conditions: proceedings of the SPE Asia-Pacific Conference,Perth. Australia,01/01/1991[C].1991.
    [140]吴世跃,郭勇义.注气开采煤层气增产机制的研究[J].煤炭学报,2001,26(2):199-203.
    [141]马志宏,郭勇义,吴世跃.注入二氧化碳及氮气驱替煤层气机理的实验研究[J].太原理工大学学报,2001,32(4):335-338.
    [142]吴建光,叶建平,唐书恒.注入CO2提高煤层气产能的可行性研究[J].高校地质学报,2004,10(03):463-467.
    [143]唐书恒,马彩霞,叶建平等.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(05):607-611+616.
    [144]周锋德,姚光庆,唐仲华.煤基质收缩和膨胀对甲烷开采和二氧化碳存储的影响[J].天然气地球科学,2010,21(01):150-156.
    [145]李明潮,梁生正,赵克镜.煤层气及其勘探开发[M].北京:地质出版社,1996.
    [146]钱凯,赵庆波,汪泽成.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996.
    [147]桑树勋,秦勇,傅雪海.陆相盆地煤层气地质[M].徐州:中国矿业大学出版社,2001.
    [148]宋岩,张新民,柳少波.中国煤层气基础研究和勘探开发技术新进展[J].天然气工业,2005,25(1):1-7.
    [149]张群,冯三利,杨锡禄.试论我国煤层气的基本储层特点及开发策略[J].煤炭学报,2001,26(03):230-235.
    [150]杨陆武.中国煤层气资源类型与递进开发战略[J].中国煤层气,2007,4(3):3-7.
    [151]刘敬谦,余开富.贵州的煤成气研究[J].海相沉积区油气地质,1989,3(2):77-81.
    [152]贵州省煤田地质局,贵州省煤层气资源评价[R].贵阳:贵州省煤田地质局,1996.
    [153]杨力生.全国煤矿瓦斯地质编图研究成果初步总结[J].焦作工学院学报,1997,16(2):6-11.
    [154]赵黔荣.贵州西部煤层气开发前景分析[J].贵州地质,2001,18(01):53-59.
    [155]孙万禄,陈召佑,陈霞等.中国煤层气盆地[M].北京:地质出版社,2005.
    [156]贵州省煤田地质局,贵州省煤层气资源潜力预测评价[R].贵阳:贵州省煤田地质局,中国矿业大学,2010.
    [157]秦秉让.试论贵州煤层气的勘探前景[J].天然气工业,1984,4(02):13-19+16.
    [158]赵黔荣,王旭,王国司.贵州西部水文地质特征与浅层天然气成藏关系初探[J].贵州地质,1999,16(02):28-32.
    [159]王国司,赵黔荣,邬炳剑等.贵州西部六盘水地区煤岩裂隙的初步研究[J].贵州地质,2000,17(03):166-169+175.
    [160]顾成亮.滇东—黔西地区晚二叠世煤岩及煤层气储层物性分析[J].贵州地质,2001,18(03):163-167+148.
    [161]陈贞龙,汤达祯,许浩等.黔西滇东地区煤层气储层孔隙系统与可采性[J].煤炭学报,2010,35(S1):158-163.
    [162]许浩,汤达祯,秦勇等.黔西地区煤储层压力发育特征及成因[J].中国矿业大学学报,2011,40(4):556-560.
    [163]王国司,刘诗荣,邬炳钊.贵州西部煤层气资源勘探前景[J].天然气工业,2001,21(06):23-26+113.
    [164]陈本金,温春齐,曹盛远等.贵州六盘水煤层气勘探开发有利目标区优选[J].西南石油大学学报(自然科学版),2010,32(3):57-60.
    [165]孙斌,邵龙义,卢霞等.盘关向斜煤层气成藏条件评价[J].天然气地球科学,2008,19(03):427-432.
    [166]易同生.贵州省煤层气赋存特征[J].贵州地质,1997,14(04):346-348.
    [167]赵黔荣.六盘水煤层气选区评价参数及勘探开发模式[J].贵州地质,2000,17(04):226-235.
    [168]陈本金.六盘水地区煤层气资源及有利目标勘探区优选[J].六盘水科技,2001,4):1-7.
    [169]邬云龙,王旭,韩永辉等.六盘水煤层气勘探开发前景分析[J].天然气工业,2003,23(03):4-7+12-11.
    [170]赵黔荣.贵州六盘水地区煤层气选区及勘探部署[J].贵州地质,2003,20(02):92-98.
    [171]王旭,邬云龙,秦晓庆等.浅析六盘水亦资孔盆地煤层气勘探开发前景[J].石油与天然气地质,2004,25(03):309-313.
    [172]吴月先.亦资孔盆地上二叠统煤层气藏加砂压裂技术探讨[J].钻采工艺,2005,28(02):40-42+113.
    [173]易同生,张井,李新民.六盘水煤田盘关向斜煤层气开发地质评价[J].天然气工业,2007,27(05):29-31+148.
    [174]高弟,秦勇,易同生.论贵州煤层气地质特点与勘探开发战略[J].中国煤炭地质,2009,21(3):20-23.
    [175]朱炎铭,赵洪,闫庆磊等.贵州五轮山井田构造演化与煤层气成藏[J].中国煤炭地质,2008,20(10):38-41.
    [176]熊孟辉.五轮山矿区可采煤层地质特征及含气性[J].中国煤炭地质,2009,21(05):37-40.
    [177]熊孟辉,秦勇.五轮山矿区煤层含气性与煤层气理论抽采率[J].中国煤炭地质,2009,21(05):1-3.
    [178]窦新钊,波姜,勇秦等.黔西地区构造演化及其对晚二叠世煤层的控制[J].煤炭科学技术,2012,40(03):109-114.
    [179]常会珍,秦勇.黔西红梅勘探区主煤层含气性及其地质影响因素[J].煤炭科学技术,2012,40(02):107-108-109-110.
    [180]王聪,吴财芳,欧正等.黔西织纳煤田少普矿区16号煤煤层气富集的地质控制因素[J].煤炭学报,2011,36(9):1486-1489.
    [181]崔玉朝,滕子军,王怀洪等.贵州黔西龙场煤矿煤层气资源及开发利用价值[J].天然气地球科学,2011,22(2):367-372.
    [182]张志强,钟和清,徐琳.黔西格目底向斜煤层气地质特征研究[J].中国科技信息,2008,22):30-31.
    [183]康红普,姜铁明,张晓等.晋城矿区地应力场研究及应用[J].岩石力学与工程学报,2009,28(01):1-8.
    [184]孟召平,田永东,李国富.沁水盆地南部煤储层渗透性与地应力之间关系和控制机理[J].自然科学进展,2009,19(10):1142-1148.
    [185] BROWN E T, HOEK E. Trends in relationships between measured in-situ stresses and depth [J]. Int JRock Mech Min Sci Geomech Abstr,1978,15):211-215.
    [186]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2009.
    [187] ANDERSON E M. The dynamics of faulting and dyke formation with application to britain [M].London: Oliver and Boyd,1951.
    [188]于双忠,彭向峰,李文平.煤矿工程地质学[M].北京:煤炭工业出版社,1994.
    [189] ENEVER J R E, HENNIG A. The relationship between permeability and effective stress for Australiancoals and its implications with respect to coalbed methane exploration and reservoir modelling:proceedings of the International coalbed methane symposium, The university of Alabama, Tuscaloosa,AL, USA,[C].1997.
    [190] Yamaguchi T, Oikawa Y, Narita T, et al. Experimental study on the relation between in-situ stress andpermeability of coal[J]. Rock Stress,1997.
    [191] CLARKSON C R, BUSTIN R M. Variation in permeability with lithotype and maceral composition ofCretaceous coals of the Canadian Cordillera [J]. International Journal of Coal Geology,1997,33(2):135-151.
    [192] MAVOR M J, GUNTER W D. Secondary porosity and permeability of coal vs. gas composition andpressure [J]. Spe Reserv Eval Eng,2006,9(2):114-125.
    [193] JOHNSON R L, GLASSBOROW B, DATEY A et al. Utilizing Current Technologies to UnderstandPermeability, Stress Azimuths and Magnitudes and their Impact on Hydraulic Fracturing Success in aCoal Seam Gas Reservoir: proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition,Brisbane, Queensland, Australia,01/01/2010[C].2010.
    [194] PALMER I D. The Permeability Factor in Coalbed Methane Well Completions and Production:proceedings of the SPE Western Regional Meeting, Anaheim, California, USA,05/27/2010[C]. Societyof Petroleum Engineers,2010.
    [195]桂宝林.黔西滇东煤层气地质与勘探[M].昆明:云南科技出版社,2000.
    [196] ENEVER J R, PATTISON C I, MCWATTERS R H et al. The relationship between in-situ stress andreservoir permeability as a component in developing an exploration strategy for coalbed methane inAustralia’ SPE28048[C], in Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineeringconference, Delft, the Nethrelands.
    [197]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(06):20-22.
    [198]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1997.
    [199]赵庆波,刘兵,姚超.世界煤层气工业发展现状[M].北京:地质出版社,1998.
    [200] MOHIUDDIN M A, KHAN K, ABDULRAHEEM A et al. Analysis of wellbore instability in vertical,directional, and horizontal wells using field data [J]. Journal of Petroleum Science and Engineering,2007,55(1-2):83-92.
    [201] MOOS D, PESKA P, ZOBACK M D. Predicting the Stability of Horizontal Wells and Multi-Laterals-The Role of In Situ Stress and Rock Properties: proceedings of the SPE International Conference onHorizontal Well Technology, Calgary, Alberta, Canada,01/01/1998[C]. Copyright1998, Society ofPetroleum Engineers Inc.,1998.
    [202] LI S, PURDY C C. Maximum Horizontal Stress and Wellbore Stability While Drilling: Modeling andCase Study: proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference,Lima, Peru,01/01/2010[C]. Society of Petroleum Engineers,2010.
    [203]何继善,吕绍林.瓦斯突出地球物理研究[M].北京:煤炭工业出版社,1999.
    [204] GENTZIS T, DEISMAN N, CHALATURNYK R J. Effect of drilling fluids on coal permeability: Impacton horizontal wellbore stability [J]. International Journal of Coal Geology,2009,78(3):177-191.
    [205]汤友谊,张国成,孙四清.不同煤体结构煤的f值分布特征[J].焦作工学院学报(自然科学版),2004,23(2):81-84.
    [206]迟景砚,王喜恩,漆尔清等.矿区水文地质工程地质勘探规范[M].国家矿产储量管理局组织湖北;湖南;吉林;四川省储委办公室.1991.
    [207]李正根.水文地质学[M].北京:地质出版社,1980.
    [208]苏现波,潘结南,薛培刚.煤中裂隙——裸眼洞穴法完井的前提[J].焦作工学院学报,1998,17(03):2-7.
    [209] SHI J Q, DURUCAN S, SINKA I C. Key parameters controlling coalbed methane cavity wellperformance [J]. International Journal of Coal Geology,2002,49(1):19-31.
    [210]侯玉品,张永利,章梦涛.超短半径水平井开采煤层气的探讨[J].矿山机械,2005,24(06):10-11+14.
    [211]鲜保安,夏柏如,张义等.开发低煤阶煤层气的新型径向水平井技术[J].煤田地质与勘探,2010,38(04):25-29.
    [212]张义,鲜宝安,孙粉锦等.煤层气低产井低产原因及增产改造技术[J].天然气工业,2010,30(6):55-59.
    [213]李安启,姜海,陈彩虹.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J].天然气工业,2004,24(05):91-94+154.
    [214]傅雪海,彭金宁.铁法长焰煤储层煤层气三级渗流数值模拟[J].煤炭学报,2007,32(05):494-498.
    [215]陈树杰,赵薇,刘依强等.国外连续油管技术最新研究进展[J].国外油田工程,2010,26(11):44-50.
    [216] RODVELT G, TOOTHMAN R, WILLIS S et al. Multiseam Coal Stimulation Using Coiled-TubingFracturing and a Unique Bottomhole Packer Assembly: proceedings of the SPE Eastern RegionalMeeting, Canton, Ohio,01/01/2001[C].2001.
    [217] MOON R G, OVITZ R W, GUILD G J et al. Shallow Gas Well Drilling with Coiled Tubing in the SanJuan Basin: proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado,01/01/1996[C].1996.
    [218]林英松,蒋金宝,刘兆年等.连续油管压裂新技术[J].断块油气田,2008,15(2):118-121.
    [219]王一兵,田文广,李五忠等.中国煤层气选区评价标准探讨[J].地质通报,2006,25(9-10):1104-1107.
    [220] KIM A G. Estimating methane content of bituminous coalbeds from adsorption data [M]. U.S. Bur:Mines Rep. Invest.2845,22pp.
    [221] YANG R T, SAUNDERS J T. Adsorption of gases on coals and heattreated coals at elevated temperatureand pressure:1. Adsorption from hydrogen and methane as single gases [J]. Fuel,1985,64(5):616-620.
    [222] PASHIN J C, GEOLOGICAL SURVEY OF ALABAMA. ENERGY AND COASTAL GEOLOGYDIVISION. Regional analysis of the Black Creek-Cobb coalbed-methane target interval, Black Warriorbasin, Alabama [M]. Tuscaloosa, Ala.: Geological Survey of Alabama,1991.
    [223] SCOTT A R, KAISER W, AYERS JR W B. Thermogenic and secondary biogenic gases, San Juan basin,Colorado and New Mexico-implications for coalbed gas producibility [J]. AAPG Bulletin-AmericanAssociation of Petroleum Geologists,1994,78(8):1186-1209.
    [224] AYERS W B, KAISER W R, NEW MEXICO. BUREAU OF MINES AND MINERAL RESOURCES.et al. Coalbed methane in the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico andColorado [M]. Socorro: New Mexico Bureau of Mines and Mineral Resources,1994.
    [225] KROOSS B M, VAN BERGEN F, GENSTERBLUM Y et al. High-pressure methane and carbon dioxideadsorption on dry and moisture-equilibrated Pennsylvanian coals [J]. International Journal of CoalGeology,2002,51(2):69-92.
    [226]高振鲲.贵州高原现今应力场数值模拟及其工程地质意义[D].贵阳:贵州大学,2008.
    [227]王国强,吴建光.沁南潘河煤层气田稳控精细排采技术[J].天然气工业,2011,31(05):31-34.
    [228]陈曦.贵州煤层气系列报道[N].贵州政协报,2010-.
    [229]陈金华.地面钻井抽采上覆远距离煤层卸压瓦斯的试验研究[J].矿业安全与环保,2010,37(02):23-26+91.
    [230]袁亮,郭华,沈宝堂等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(03):357-365.
    [231]秦勇,叶建平,林大扬等.煤储层厚度与其渗透性及含气性关系初步探讨[J].煤田地质与勘探,2000,28(01):24-27.
    [232]张荣立,何国纬,李铎.采矿工程设计手册[M].北京:煤炭工业出版社,2003.
    [233]汪理全,李中颃.煤层(群)上行开采技术[M].北京:煤炭工业出版社,1995.
    [234]陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2002.
    [235]李诚铭.新编石油钻井工程实用技术手册[M].北京:中国知识出版社,2006.
    [236]王福元,刘学领.女MH─1水平井钻井工艺技术[J].石油钻采工艺,1994,16(2):30-35.
    [237]苏义脑.水平井井眼轨道控制[M].北京:石油工业出版社,2000.
    [238]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [239]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [240]胡湘炯,高德利.油气井工程[M].北京:中国石化出版社,2003.
    [241]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [242]郭志.岩体结构面抗剪特性[J].湖南冶金,1983,17-21.
    [243]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [244]孙万和,郑铁民,李明英.软弱夹层厚度的力学效应[J].利电力学院学报,1981,1):33-39.
    [245]孙广忠,周瑞光.岩体变形和破坏的结构效应[J].地质科学,1980,4):368-376.
    [246] JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics [M]. Malden:Blackwell Pub.,2007.
    [247]苏仲杰.采动覆岩离层变形机理研究[D].阜新:辽宁工程技术大学,2002.
    [248]李永树,王金庄,陈勇.开采沉陷地区地表水平移动机理[J].煤,1996,5(01):27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700