用户名: 密码: 验证码:
奥氏体不锈钢海洋大气环境下应力腐蚀开裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国家“十二五”规划开局之年,发展蓝色经济正式上升为国家战略。海洋资源的开发和利用,离不开海上基础设施的建设。造船业、海水淡化、石油平台和港口码头等都是当前发展最快的不锈钢应用领域。由于海洋苛刻的腐蚀环境,不锈钢构筑物的腐蚀不可避免,在自身所受作用力及腐蚀的共同影响下,不锈钢材料除了发生均匀腐蚀外,还会发生严重的局部腐蚀——应力腐蚀破裂(SCC),具有极大的破坏性。因此研究不锈钢在海洋环境下应力腐蚀开裂问题十分迫切且必要。
     本文模拟了在应力腐蚀开裂发展过程中,不锈钢表面腐蚀液膜的变化过程并采用Devanathan-Stachurski氢渗透技术研究了321不锈钢在此过程中的氢渗透行为。结果表明,在不锈钢表面液膜变化过程中,321不锈钢存在明显的氢渗透现象,且随着腐蚀产物浓度的增大,可检测到的氢渗透电流也是增大的,而且,氢渗透的量受不锈钢表面液膜量的影响。
     论文采用慢应变速率拉伸实验法(SSRT)研究了321不锈钢在模拟海洋大气环境下的应力腐蚀开裂敏感性,采用扫描电镜(SEM)观察了试样断口形貌。结果表明,随着不锈钢表面腐蚀液膜浓度的增大,不锈钢材料的应力腐蚀开裂敏感性也随之增大。而且不锈钢的应力腐蚀开裂敏感性还受所施加电位和温度的影响,阴极极化在一定极化电位内能够抑制不锈钢的应力腐蚀开裂敏感性;在常用温度范围内,温度达到55℃时,不锈钢的应力腐蚀开裂敏感性尤为明显。
     本文还研究了应力腐蚀开裂裂纹扩展过程中裂纹尖端和裂纹侧壁的氢渗透行为,结果表明,电化学反应产生的氢首先主要在裂纹侧壁吸附并渗透进不锈钢内部,在应力作用下向裂纹尖端迁移,导致裂纹尖端金属以氢脆的方式发生断裂。据此在申请了一项裂纹尖端和裂纹侧壁氢渗透电流检测实验法的专利。
     在模拟海洋大气环境表面腐蚀薄液膜下,腐蚀电位比在腐蚀溶液中要低得多且腐蚀电流密度较大。这是因为不锈钢表面有薄液膜存在的条件下,大气中的氧溶解并且扩散至电化学反应界面更加容易。随着反应的进行,阴极极化曲线出现了氧的扩散控制过程。由于薄液膜中氧的供应充足,因此可能是大量生成的腐蚀产物充满了薄液膜,阻碍了氧向反应界面扩散。
At the beginning of the12thFive-Year Program(2011-2015)on NationalEconomic and Social Development, Shandong Peninsula blue economic zonedevelopment plan was adopted to be the national development strategy. A lot ofinfrastructure construction along the seashore will be built for the exploitation andutilization of marine resources. More and more stainless steel products haveapplication in shipbuilding, seawater desalination, off-shore oil platform, port and pierand so on. Stainless steel will corrode inevitably as the result of severe corrosionenvironment and stress. Besides the uniform corrosion, stress corrosion cracking(SCC) is apt to occur and brings extensive damage. So it is urgent and necessary toinvestigate the SCC of stainless steel under marine environment.
     The changing process of corrosion liquid film on the surface of stainless steelwas simulated in this work. The hydrogen permeation behaviors were researched byusing Devanathan-Stachurski’s hydrogen permeation technique the results showedthat obvious hydrogen permeation behaviors can be observed as the development ofcorrosion liquid film. The hydrogen permeation current observed in the experimentsincreased with the rising of concentration of corrosion products.
     SCC sensibility of stainless steel was studied by using slow strain rate test (SSRT)and SEM. The results showed with the increasing of corrosion film concentration,SCC sensibility also increased. SCC sensibility of stainless steel was also affected byapplied potential and temperature. SCC sensibility could be repressed when cathodicpolarization potential was applied. Meanwhile SCC sensibility was obviously increased when the temperature reached to55℃.
     The hydrogen permeation behaviors in crack tip and crack side of stainless steelwas also studied at the process of crack propagation. The results showed thathydrogen produced by electrochemical reaction absorbed at crack side and thenmoved to crack tip under load. At last, the metal in crack tip ruptured in the style ofhydrogen embrittlement. A patent named empirical approach of detecting hydrogenpermeation current in crack tip and crack side was applied.
     The corrsive reactions are easy to occur in thin film than in the solution. That isbecause the oxygen in the atmosphere dissolves into the film and diffuses to thereaction interface easily. With the proceeding of the reaction, diffusion controllingprocess appears in the cathodic polarization curves. It may be the result of mass ofcorrosive production blocking the oxygen diffusing to the reaction interface.
引文
[1]刘秀晨,安成强.金属腐蚀学.北京:国防工业出版社,2002,9
    [2]莱格拉夫,格雷德尔.大气腐蚀.北京:化学工业出版社,2005,2
    [3]Feliu S, Morcillo M, Chico B. Effect of distance from sea on atmosphericcorrosion rate.Corrosion,1999,55(9):883-891
    [4]王光雍,王海江,李兴濂等.自然环境的腐蚀与防护—大气·海水·土壤.北京:化学工业出版社,1997
    [5]李兴濂.我国大气腐蚀网站试验研究回顾及发展建议.材料保护,2000,33(1):20-22
    [6]叶康民.金属腐蚀与防护概论.北京:高等教育出版社,1993
    [7]U R Evans. Electrochemical mechanism of atmospheric rusting. Nature,206(1965),980-982
    [8]U.R.Evens,华保定译.《金属的腐蚀与氧化》.北京:机械工业出版社,1976:401-430
    [9]U.R.Evens.An Introduction to Metallic Corrosion(Third Edition),EdwardArnoldLtd.,1982:13-24
    [10]Yanliang Huang,Yongyan Zhu.Hydrogen ion reduction in the process of ironrusting.Corrosion Science,2005,47(6):1545-1554
    [11]F Mansfeld, J V Kenkel.Electrochemical monitoring of atmospheric corrosionphenomena.Corrosion Science,16(3)(1976)111-112
    [12]F Mansfeld, S Tsai.Laboratory studies of atmospheric corrosion—(I) Weight lossand electrochemical measurements.Corrosion Science,1980,20(7):853-872
    [13]F Mansfeld,M W Kandig,S Tsai.Corrosion kinetics in low conductivitymedia—(I)Iron in natural waters.Corrosion Science,1982,22(5)455-471
    [14]M Stratmann.The investigation of the corrosion properties of metals,coveredwith adsorbed electrolyte layers—A new experimental technique.CorrosionScience,1987,127(8):869-872
    [15]M Stratmann,H Streckel.On the atmospheric corrosion of metals which arecovered with thin electrolyte layers—(I)Verification of the experimental technique.Corrosion Science,1990,30(6/7):681-696
    [16]M Stratmann,H Streckel. On the atmospheric corrosion of metals which arecovered with thin electrolyte layers—(II)Experimental results. CorrosionScience,1990,30(6/7):697-714
    [17]M Stratmann,J Miller. The mechanism of the oxygen reduction on rust-coveredmetal substrates. Corrosion Science,1994,36(2):327-359
    [18]王佳,水流彻.使用Kelvin探头参比电极技术进行薄液层下电化学测量.中国腐蚀与防腐学报,1995,15(3):173-179
    [19]王佳,水流彻.使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响.中国腐蚀与防腐学报,1995,15(3):180-188
    [20]屈庆,严川伟,白玮,张蕾,万晔,曹楚南.NaCl在A3碳钢大气腐蚀中的作用.中国腐蚀与防腐学报,2003,23(3):160-163
    [21]J E Svensson, L G Johansson. A laboratory study of the initial stages of theatmospheric corrosion of zinc in the presence of NaCl influence of SO2and NO2.Corrosion Science,1993,34(5):721-740
    [22]王佳.无机盐微粒沉积和大气腐蚀的发生和发展.中国腐蚀与防腐学报,2004,24(3):155-158
    [23]M Morcillo,B Chico,L Mariaca, E.Otero. Salinity in marine atmosphericcorrosion: its dependence on the wind regime existing in the site. CorrosionScience,2000,42(1):91-104
    [24]R Lindstrom,J E Svensson,L G Johansson. The atmospheric corrosion of zinc inthe presence of NaCl: the influence of carbon dioxide and temperature. Journalof The Electrochemical Society,2000,147(5):1751-1757
    [25]Z Y Chen,S Zakipour,D Person, C Leygraf. Effect of sodium chloride particleson the atmospheric corrosion of pure copper. Corrosion,2004,60(5):479-491
    [26]G O Ilevbare,O Schneider,R G Kelly, J R Scully. In situ confocal laser scanningmicroscopy of AA2024-T3corrosion metrology—(I)Localized corrosion ofparticles. Journal of The Electrochemical Society,2004,151(8):B453-B464
    [27]G O Ilevbare,O Schneider,R G Kelly, J R Scully. In situ confocal laser scanningmicroscopy of AA2024-T3corrosion metrology—(II)Trench formation aroundparticles. Journal of The Electrochemical Society,2004,151(8):B465-B472
    [28]T Ohtsuka,M Matsuda.In situ Raman spectroscopy for corrosion products of zincin humidified atmosphere in the presence of sodium chlorideprecipitate.Corrosion,2003,59(5):407-413
    [29]H Masuda. Effect of magnesium chloride liquid thickness on atmosphericcorrosion of pure iron.Corrosion,2001,57(2):99-109
    [30]T Nishimura,K Noda,T Kodama. Corrosion behavior of tungsten-bearing steel ina wet-dry environment containing chloride ions. Corrosion,2001,57(9):753-758
    [31]Zhao M C,Liu M,Song G L,Andrej Atrens. Influence of pH and chloride ionconcentration on the corrosion of Mg alloy ZE41. Corrosion Science,2008,50:3168-3178
    [32]E Almeida,M Morcillo, B Rosales. Atmospheric corrosion of zinc—PartⅡ:Marine atmospheres.British Corrosion Journal,2000,35(4):289-296
    [33]廖国栋,吴国华,苏少燕.金属材料暴露试验与人工加速试验腐蚀速率的研究.环境试验,2005,12:13
    [34]F Corvo, C Haces, et al. Atmospheric corrosivity in the caribbean area.Corrosionscience,1997,39(5):823-833
    [35]E Almeida, M Morcillo, B Rosales. Atmospheric corrosion of mildsteel:PartⅡ-Marine atmospheres.Materials and Corrosion,2000,51:865-874
    [36]朱惠斌,黄燕萍.海洋大气环境中钢铁表面的防腐蚀.全面腐蚀控制,2003,17(4):26
    [37]K P Trethewey, J Chamberlain. Corrosion for science engineering. Secondedition,England:Associated Companies throughout the world.1995
    [38]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护.北京:冶金工业出版社,2003,3
    [39]Larrabee C P, Coburn S K. Proc.1st Int. Cong., Met.Corros. London:1962
    [40]T Nishimura. Rust formation and corrosion performance of Si-and Al-bearingultrafine grained weathering steel. Corrosion Science,2008,50(5):1306-1312
    [41]Martin J Johnsson, Dan Persson, Christofer Leygraf. Atmospheric corrosion offield-exposed magnesium alloy AZ91D. Corrosion Science,2008,50(5):1406-1413
    [42]Wang F P,Zhang X Y,Du Y L. There view of atmospheric corrosion research.Corros.Sci.,2000,12(2):104-108
    [43]Hou W,Liang C. Eight-year atmospheric corrosion exposure of steels inChina.Corrosion,1999,55(1):65-73
    [44]Odnell I,Leygraf C. Seasonal variations in corrosion rate and runoff rate ofcopper roofs in an urban and a rural atmospheric environment. Corros.Sci.,2001,432:379-396
    [45]Odnevall I. Atmospheric corrosion of field exposed zinc—A multianalyticalcharacterization of corrosion products from initial films to fully developed layers.Doctoral Thesis: Royal Institute of Technology,Sweden,1994
    [46]王光雍.环境腐蚀考察团出国考察报告.腐蚀科学与防护技术,1989,1(2):41-44
    [47]王光雍,舒启茂.材料在大气,海水,土壤环境中的腐蚀数据积累及腐蚀与防护研究的意义与进展.中国科学基金,1992,6(1):40-48
    [48]Chandler K A, Kilculen M B. Atmospheric corrosion of carbon steels.Corrs.,1974,5:24-28
    [49]Ailor W H. Atmospheric Corrosion. New York:John Wiley andSons,1982,86-92
    [50]王向农译.腐蚀控制手册.北京:石油工业出版社,1988,12
    [51]屈祖玉,王光雍.材料大气腐蚀数据库系统.中国腐蚀与防护学报,1991,11(4):373-377
    [52]孙成,黄春晓.辽宁城市污染大气腐蚀调查研究.全面腐蚀控制,2000,14(3):1-3
    [53]于国才,王振尧.沈阳地区碳钢及耐候钢的腐蚀规律研究.腐蚀与防护,2000,21(6):243-245
    [54]侯文泰,于敬敦.钢的大气腐蚀性4年调查及其机理研究.腐蚀科学与防护技术,1994,6(2):137-142
    [55]王振尧,陈鸿川等.海南省的大气腐蚀性调查.中国腐蚀与防护学报,1996,16(3):225-229
    [56]黄春晓,吴维等.辽宁省的大气腐蚀性调查.中国腐蚀与防护学报,1993,13(1):19-26
    [57]梁彩凤,侯文泰.环境因素对钢的大气腐蚀的影响.中国腐蚀与防护学报,1998,18(1):1-6
    [58]张学元,安百刚等.酸雨对材料腐蚀冲刷研究现状.腐蚀科学与防护技术,2002,14(3):157-160
    [59]孙志华,李金桂,李牧铮.金属材料大气腐蚀加速试验研究的发展趋势.材料工程,1995,(12):41-42
    [60]金蕾,唐其环,彭长灏等.大气腐蚀的模拟加速试验方法(摘要).腐蚀科学与防护技术,1995,7(3):214-215
    [61]Khobaib M,Chang F C,Kepple E E, et al. Accelerated atmospheric corrosiontesting. A Symposium Sponsored by ASTM Committee G1on Corrosion ofMetals. Denver Colo,1980
    [62]Damian L,Fako R. Weathering structural steels corrosion in atmosphere ofvarious degrees of pollution in Romania. Mater.Corros.,2000,51(8):574-578
    [63]Miranda L R M,Sathier L,Nogueira R,et al. Atmospheric corrosion tests inBrazilian legal Amazon-field and laboratory tests. Mater.Corros.,2000,51(3):182-185
    [64]Johansson L G,Vannerberg N G. The atmospheric corrosion of unprotectedcarbon steel-A comparison between field study and laboratory test.WerkstoffeUnd Korrosion,1981,32:265-268
    [65]Boelen B,Schmitz B,Defourny J,et al. Aliterature survey on the development ofan accelerated laboratory test method for atmospheric corrosion of precoatedsteel products. Corros.Sci.,1993,34(11):1923-1931
    [66]Kobus J. Long-term atmospheric corrosion monitoring. Mater.Corros.,2000,51(2):104-108
    [67]Johnson J B,Elliott P,Winterbottom M A,e tal. Short-term atmospheric corrosionof mild steel at two weather and pollution monitored sites. Corros.Sci.,1977,17:691-700
    [68]Bragard A A,Bonnarens H E. Prediction at long terms of the atmosphericcorrosion of structural steels from short-term experimental data. A SymposiumSponsored by ASTM Committee G1on Corrosion of Metals. Denver Colo,1980
    [69]牟献良,田月娥,汪学华.碳钢和低合金钢模拟加速试验与大气腐蚀试验的相关性.环境技术,2000,(4):14-17
    [70]Drazic D M. The correlation between accelerated laboratory corrosion Tests andatmospheric corrosion station tests on steels.Corros.Sci.,1989,29(10):1197-1204
    [71]Lyon S B,Thompson G E,Johnson J B,et al. Accelerated atmospheric DenverColo,1980
    [72]徐乃欣,张承典,丁翠红等.加速大气腐蚀试验的一个新方案.中国腐蚀与防护学报,1990,10(3):228-231
    [73]Zhu F,Persson D,Thierry D,et al. Formation of corrosion products on open andconfined zinc surface exposed to periodic wet/dry conditions. Corrosion,2000,56(12):1256-1265
    [74]Zhu F,Persson D,Thierry D,et al. Formation of corrosion products on open andconfined zinc surface exposed to periodic wet/dry conditions–A comparisonbetween zinc and electrogalvanized steel.Corrosion,2001,57(7):582-590
    [75]王振尧,郑逸萍,刘寿荣. A3钢在人造污染介质中的大气腐蚀行为.中国腐蚀与防护学报,1994,14(3):240-246
    [76]孙志华,李金桂,李牧铮.碳钢大气腐蚀加速试验研究.材料工程,1996,(7):26-27
    [77]Mattsson E. Corrosion: an electrochemical problem. ChemicalTechnology,1985,(4):234-243
    [78]林翠,王凤平,李晓刚.大气腐蚀研究方法进展.中国腐蚀与防护学报,2004,24(4),249-256
    [79]Pacheco A M G,Ferreira M G S. An investigation of the dependent ofatmospheric corrosion rate on temperature using printed-circuit iron cells.Corros.Sci.,1994,36(5):797-813
    [80]Tidblao J,Leygraf C.Atmospheric corrosion effects of SO2and NO2,Acomparationof laboratory and field-exposed copper. J.Electrochem.Soc.,1995,142(3):749-756
    [81]Mansfeld F, Kenkel J V. Electrochemical of time-of-wetness and atmosphericcorrosion rates. Corrosion,1977,33(1):13-16
    [82]Mansfeld F,Tsai S,Jeanjaque S,et al. Reproducibility of electrochemicalmeasurements of atmospheric corrosion phenomena. A Symposium sponsored byASTM Committee G1on Corrosion of Metals. Denver Colo,1980
    [83]Zakipour S,Tidblad J,Legraf C.Atmospheric corrosion of SO2and O3onlaboratory-exposed copper.J.Electrochem.Soc.,1995,142(3):757-760
    [84]王凤平,张学元,雷良才等.二氧化碳在A3钢大气腐蚀中的作用.金属学报,2000,36(1):55-58
    [85]Wang F P,Zhang X Y,Du Y L. Effect of CO2on atmospheric corrosion of UNSsteel under thin electrolyte film. Chemical Research in ChineseResearch,2000,16(1):36-41
    [86]王凤平.大气CO2浓度升高对金属大气腐蚀的影响.中国科学院博士学位研究生学位论文,2000
    [87]Walter G W. Laboratory simulation of atmospheric electrochemical techniquesexample results. Corros.Sci.,1991,32(12):1331-1352
    [88]Xu J L,Li M Z. The research on electrochemical monitor of atmosphericcorrosion testing using a cyclic wet/dry exposure test: aluminium, galvanizedsteel and steel.Corrosion,1987,43(12):719-726
    [89]孙志华,刘明辉,李家柱等.大气腐蚀电化学测定研究.航空材料学报,2000,20(3):120-125
    [90]Akira Tahara, Toshiaki Kodama. Potential distribution measurement in galvaniccorrosion of Zn/Fe couple by means of Kelvin probe. Corros.Sci.,2000,42(4):655-67
    [91]Chung S C,Lin A S,Chang J R,et al. EXAFS study of atmospheric corrosionproducts on zinc at the initial stages. Corros.Sci.,2000,42(9):1599-1610
    [92]Stachle R W. Stress corrosion cracking of the Fe-Cr-Ni alloy system. The Theoryof Stress Corrosion Cracking in Alloys. Ericeira Portugal,1971,223
    [93]左景伊.应力腐蚀破裂.西安:西安交通大学出版社,1985
    [94]John W Oldfield, Brain Todd. Ambient Temperature Stress Corrosion Crackingof Austenitic Stainless Steel in Swimming Pools. Mater. Performance,1990,29(12):57-58
    [95]Robert M Kain. Marine Atmospheric Stress Corrosion Cracking of AusteniticStainless Steels. Mater. Performance,1990,29(12):60-62
    [96]J B Gnanamoorthy. Stress Corrosion Cracking of Unsensitized Stainless Steels inAmbient-Temperature Coastal Atmosphere. Mater. Performance,1990,29(12):63-65
    [97]C P Dillon. Imponderables in Chloride Stress Corrosion Cracking of Stainlesssteels. Mater. Performance,1990,29(12):66-67
    [98]S Torchio. Stress corrosion cracking of type AISI304stainless steel at roomtemperature; influence of chloride content and acidity. Corrs.Sci.,1980,25(4):555-561
    [99]Sunada Satoshi, Kariba Masanori, Majima Kazuhiko, et al. Influence ofConcentration of H2SO4and NaCl on Stress Corrosion Cracking in H2SO4-NaClSolutions. J. Jpn. Inst. Met.,2005,69(10):899-906
    [100]Rokuro Nishimura, Yasuaki Maeda. SCC evaluation of type304and316austenitic stainless steels in acidic chloride solutions using the slow strain ratetechnique. Corrs. Sci.,2004,46(3):769-785
    [101]Pan C, Chu W Y, Li Z B, et al. Hydrogen Embrittlement Induced by AtomicHydrogen and Hydrogen-induced Martensites in Type304L Stainless Steel.Materials Science and Engineering A—Structural Materials PropertiesMicrostructure and Processing,2003,351(1-2):293-298
    [102]R Nishimura, Y Maeda. Metal Dissolution and Maximum Stress during SCCProcess of Ferritic (type430) and Austenitic (type304and type316) StainlessSteels in Acidic Chloride Solutions under Constant Applied Stress. Corrs. Sci.,2004,46(3):755-768
    [103]Chu W Y, Qiao L J, Gao K W. Investigation of stress corrosion cracking underanodic dissolution control. Chin. Sci. Bull.,2001,46(9):717-722
    [104]Niu L, Cao C N, Lin H C, et al. Inhibitive effect of benzotriazole on the stresscorrosion cracking of18Cr-9Ni-Ti stainless steel in acidic chloride solution.Corrs. Sci.,1998,40(7):1109-1117
    [105]Fang Z, Wu Y, Zhu R, et al. Stress Corrosion Cracking of austenitic type-304stainless steel in solutions of hydrochloric-acid plus Sodium-chloride at ambientTemperature. Corrosion,1994,50(11):873-878
    [106]曹楚南,杨乾刚,吕明等.321不锈钢在酸性氯离子溶液中SCC缓蚀剂研究.中国腐蚀与防护学报,1992,12(2):109-115
    [107]曹楚南.新材料研究-第二届中国材料研讨会,武汉,1988,238-244
    [108] Chen H, Gao K W, Chu W Y, et al. Stress corrosion cracking enhancingmartensite transformation of type304stainless steel[J]. Acta Metall. Sinica,2002,38(8):857-860
    [109]乔利杰,肖纪美,褚武扬等.奥氏体不锈钢应力腐蚀和氢致开裂裂尖区的氢浓度分布.中国腐蚀与防护学报,1989,9(3):235-239
    [110]克舍.金属腐蚀.北京:化学工业出版社,1980
    [111]肖纪美.不锈钢的金属学问题.北京:冶金工业出版社,2006
    [112]刘国瑞,陆志兴.腐蚀与防护手册-理论基础,试验及检测.北京:化学工业出版社,1995:141
    [113]T P Hoar, J G Hines. J. Iron. Steel Res. Int.,1954,177,148
    [114]褚武扬,肖纪美,李世琼.钢中氢致裂纹机构研究.金属学报,1981,17(1):10-17
    [115]Smith G C, Bernstein I M, Thompson AW. Hydrogen in Metal. Metals Park[C].Ohio,1974:485
    [116]陈廉,徐永波,尹万全.钢中白点断口的显微空隙与台阶花样.金属学报,1978,14(3),253-256
    [117]H H Uhlig, J Sava. The Effect of Heat Treatment on Stress Corrosion Crackingof Iron and Mild Steel.Trans.ASM,1963,56:361-376
    [118]K Yoshino, C J McMahon. The Cooperative Relation Between TemperEmbrittlement and Hydrogen Embrittlement in a High Strength Steel.Metall.Trans.,1974,5:363
    [119]R A Oriani. Stress Corrosion Cracking and Hydrogen Embrittlement of IronBase Alloys. International Conference on Stress Corrosion Cracking andHydrogen Embrittlement of Iron Base Alloys. Houston,TX,1977,351
    [120]褚武扬,李世琼,肖纪美.高强度钢水介质应力腐蚀研究.金属学报,1980,16(2):179-189
    [121]Chu W Y, Hsiao C M, Li Z J. Mechanism of SCC of Steel in H2S.Corrosion,1980,36:475-480
    [122]Chu W Y, Liu T W, Hsiao C M. Mechanism of SCC of Low Alloy Steels.Corrosion,1981,37:320-322
    [123]褚武扬,王核力,马若涛等.奥氏体不锈钢应力腐蚀和氢致开裂的机理.金属学报,1985,21(1):86-94
    [124]A J Mcevily, A P Bond. On the Initiation and Growth of Stress CorrosionCracks in Tarnished Brass. J. Electrochem. Soc.,1965,112(2):131-138
    [125]Nielsen N A. the Role of Corrosion Products in Crack Propagation in AusteniticStainless Steel. Electron Microscopic Studies. Physical Metallurgy of StressCorrosion Fracture. New York,1959:341
    [126]M Pourbaix. Significance of Protection Potential in Pitting and IntergranularCorrosion. Corrosion,1970,26:431.
    [127]R N Parkins. Slow strain rate testing-25years experience. Slow strain ratetesting for the evaluation of environmentally induced cracking: research andengineering applications. Philadephia,1993:7-21
    [128]R N Parkins. Development of slow strain rate testing and its implications. Stresscorrosion cracking: slow strain rate technique. Philadephia,1979:5-25
    [129]J H Payer, W E Berry, W K Boyd. Evaluation of slow strain-rate stresscorrosion tests results. Stress corrosion cracking: slow strain rate technique.Philadephia,1979:61-77
    [130]Schofied Michael J, Bradshaw Roy, Cottis R A. Stress corrosion cracking ofduplex stainless steel weldments in sour conditions. Mater.Performance,1996,35(4):65-70
    [131]D AMeyn, P S Pao. Slow strain rate testing of precracked titanium alloys in saltwater and inert environment. Slow strain rate testing for the evaluation ofenvironmentally induced cracking: research and engineering applications.Philadephia,1993:158-169
    [132]Erilsson H, Berhandsson S. Applicability of duplex stainless steels in Sourenvironments. Corrosion,1991,47(9):719-727
    [133]J A Beavers, G H Koch. Limitations of slow strain rate testing technique. Slowstrain rate testing for the evaluation of environmentally induced cracking:research and engineering applications. Philadephia,1993:22-39
    [134]R D Kane, S M Wilhelm. Status of standardization activities on slow strain ratetesting techniques. Slow strain rate testing for the evaluation ofEnvironmentally induced cracking: research and engineering applications.Philadephia,1993:40-47
    [135]Zhang X Y, Du Y L. Relationship between susceptibility to embrittlement andhydrogen permeation current for UNS G10190steel in5%NaCl solutioncontaining H2S. Br. Corros. J.,1998,33(4):292-296
    [136]Ahluwalia, Harklrat S. Problems associated with slow strain rate qualityassurance testing of nickel-base corrosion resistant alloy tubulars in hydrogensulfide environments. Slow strain rate testing for the evaluation ofenvironmentally induced cracking: research and engineering applications.Philadephia,1993:225-239
    [137]Ikeda Akio, Ueda Masakatsu, Okamoto Hiroshi. Role of slow strain rate testingon evaluation of corrosion resistant alloys for hostile hot sour gas production.Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications. Philadephia,1993:240-262
    [138]Muizhnek I A. Accelerated corrosion creaking tests of steels in Active-passiveloading. Soviet Materials Science,1990,26(2):168-171
    [139]J H Payer, W E Berry, R N Parkins. Application of slow strain-rate technique tostress corrosion cracking of piping steel. Stress corrosion cracking: slow strainrate technique. Philadephia,1979:222-234
    [140]Kushida T, Koichi Nose, H Asahi, et al. Effects of metallurgical factors and testconditions on near neutral pH SCC of pipeline steels. Corrosion/2001.Houston,TX,:NACE,2001
    [141]郑文龙,于青.钢的环境敏感断裂.北京:化学工业出版社,1988
    [142]M Devnathan, Z Stachurski. A technique for the Evalution of HydrogenEmbrittlement Characteristics of Electroplating Baths. J.Electrochem. Soc.,1963,110(8):886
    [143]T Kushida. Hydrogen Entry into Steel by Atmospheric Corrosion. ISIJ Int.,2003,43(4):470-474
    [144]Yoshiko Taniguchi, Atsushi Nishikata, Tooru Tsuru. Effect of Wet and DryCorrosion Cycles on Hydrogen Entry into Iron. Proceedings of Japan-ChinaJoint Seminar on Marine Corrosion. Tokyo, November13th~15th,2002:183-186
    [145]R Nishimura, D Shiraishi, Y Maeda. Hydrogen Permeation and CorrosionBehavior of High Strength Steel MCM430in Cyclic Wet-dry SO2Environment.Corros. Sci.,2004,46(1):225-243
    [146]Tooru Tsuru, Huang Y L, Md Rostom Ali, et al. Hydrogen entry into steelduring atmospheric corrosion process. Corros. Sci.,2005,47(10):2431-2440
    [147]Zheng C B, Huang Y L, Yu Q, et al. Hydrogen permeation behavior andcorrosion monitoring of steel in cyclic wet-dry atmospheric environment. Mater.Corros.,2007,58(9):716-720
    [148]H Kim,B N Popov,K S Chen. Comparison of corrosion-resistance and hydrogenpermeation properties of Zn–Ni,Zn–Ni–Cd and Cd coatings on low-carbonsteel,Corros.Sci.,2003,45:1505-1521
    [149]P G Marsh,W W Gerberich. Stress Corrosion Cracking,ASM International,Materials Park,Ohio,1992:63-90
    [150]郑三龙,陈冰冰等.0Cr18Ni9Ti钢在饱和H2S水溶液中应力腐蚀敏感性研究.化工装备技术,26(5):42-45
    [151]杨洲.硫化氢对石油管线钢应力腐蚀开裂和氢渗透行为的影响(硕士学位论文).2004
    [152]杨洲,霍春勇等.硫化氢对管线钢在氯化钠溶液中应力腐蚀开裂的影响.海洋科学,29(10):23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700