用户名: 密码: 验证码:
焊接结构疲劳强度研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在轨道车辆车体等工程结构上,焊接是最主要的连接方法,然而焊接结构经常发生断裂事故,其中90%为疲劳失效。影响焊接结构疲劳强度的主要因素有焊接缺陷、接头类型、焊缝形状和残余应力等,量化研究这些影响因素有助于提高焊接结构疲劳强度设计和疲劳寿命预测水平。
     本论文在铁道部科技开发计划项目“大秦线重载列车基础理论研究一列车载荷谱的试验研究”支持下,着重研究了T型接头焊接根部残余应力和裂纹应力强度因子问题,并将研究成果应用在C70型敞车车体枕梁下盖板与C80型敞车端部支撑梁连接处的疲劳强度研究中。主要工作如下:
     1、建立了用于残余应力分析的T型焊接接头精细有限元模型,仿真试验研究了焊缝长度、腹板厚度、底板厚度、焊脚长度和焊接角度这五种几何因素对T型焊接接头焊接根部残余应力的影响规律。
     2、采用奇异单元法建了T型焊接接头焊接根部裂纹的有限元模型,并对模型进行了收敛性检验和有效性验证。研究了裂纹深度比、裂纹形状比、焊脚比和焊接角度这四种几何参数对T型焊接接头焊接根部裂纹应力强度因子修正系数的影响,并建立这四种几何参数与应力强度因子修正系数之间关系的数学模型。
     3、从统计分析、材料分析、组装分析、断口分析四个方面对C70型敞车枕梁下盖板裂纹进行了分析,实测了枕梁下盖板残余应力、静应力及动应力。将装配间隙分为组装间隙与接触间隙,采用有限元方法,研究了残余应力与组装间隙之间的关系以及静应力、动应力与接触间隙之间的关系。
     4、基于实测载荷谱,研究了C70型敞车枕梁下盖板裂纹萌生寿命与组装间隙、接触间隙、疲劳强度降低系数之间的关系以及裂纹扩展剩余寿命与组装间隙、接触间隙之间的关系。建立了受残余应力影响的裂纹扩展模型,随着裂纹扩展,研究了裂纹形状比的变化规律,以及不同初始裂纹形状比条件下,裂纹前缘无量纲裂纹扩展速率的变化规律。
     5、考虑焊接根部存在未焊透缺陷,建立了C80型敞车端部连接处焊接根部裂纹疲劳扩展的仿真模型,研究了实际运行条件下,裂纹扩展剩余寿命与裂纹深度、裂纹形状比、焊脚比、焊接角度之间的关系。
Welding is the most important connection method for wagon body structures. However, fracture accidents often occur at welded structure, where90%of accidents are the fatigue failure. The Main factors influences fatigue strength of welded structures, such as weld defects, weld joint types, weld shapes and residual stress. Quantitative study on these factors is benefit for fatigue strength and fatigue life prediction of welded structures.
     This thesis is supported by the railways development technology develop project "study on basic theory of Daqin line heavy train-experiment study for load spectrum of train". The intensity factors, Residual stress and welding root crack stress, are focused. The research findings are applied in fatigue strength study of C70gondola car body's sleeper beam cover and also in C80gondola end-supported beam connecting region. The main work involves:
     1. The refined finite element model of T-butt joint is built for residual stress analysis. The effects of geometry factors on welding residual stress of T-butt joint's root region are studied. Geometry includes five types, which are weld seam length, web plate thickness, base plate thickness, weld leg length, weld angle.
     2. The finite element models of T-butt joint's weld root crack is built by singular element method. The convergence and availability of finite model are tested in this thesis. The effects of crack depth ratio, crack shape ratio, weld leg ratio and weld angle on magnification factors of stress intensity factor is studied, and the mathematical models of relationship between four geometric parameters and stress intensity magnification factors is built.
     3. C70gondola car body's sleeper beam cover crack is analyzed by statistic analysis, material analysis, assembly analysis and fracture analysis. The residual stress, static stress and dynamic stress of cover crack are measured. Assembly clearance is divided into composing and contact clearance. The relationship between residual stress and composing clearance and also the relationship among stress, dynamic stress and contact clearance is studied with finite element method.
     4. The relationship between C70gondola car body's sleeper beam cover crack initiation life and composing clearance, contact clearance, fatigue strength reducing coefficient and also the relationship between crack growth life and composing clearance, contact clearance are studied with actual load spectrum. The crack propagation model is built under the influence of residual stress. Crack shape ratio and non-dimensional crack growth rate are studied as crack propagation.
     5. Simulation model of C80gondola end-supported beam connecting region weld root crack is built with the incomplete penetration defect ate welding root. The relationship between crack growth life and crack depth, crack shape ratio, weld leg ratio, weld angle is studied with actual operating condition.
引文
[1]拉达伊著.郑朝云、张式程译.焊接结构疲劳强度[M].北京.机械工1工业出版社.1994.
    [2]管德清.焊接结构疲劳强度与寿命预测理论研究[D].湖南大学博士学位论文,2003.
    [3]Henning Agerskov. Fatigue in steel structures under random loading [J]. Journal of constructional steel research.2000.53:283-305.
    [4]徐灏.疲劳强度[M].高等教育出版社,1988.
    [5]杨月高速列车SiCp/A356复合材料制动盘热疲劳评价方法研究[D].北京交通大学博士学位论文,2008.
    [6]邬华芝 钛合金焊接接头疲劳损伤模型研究[D].南京航空航天大学博士学位论文,2003.
    [7]杨广里,断裂力学及其应用[M].北京:中国铁道出版社,1990.
    [8]Wolfgang Fricke. Fatigue analysis of welded joints:state of development [J]. Marine Structures.2003.16:185-200.
    [9]赵少汴.抗疲劳设计一方法与数据[M].北京:机械工业出版社,1997.
    [10]Suresh S著.王中光译.材料的疲劳[M].北京:国防工业出版社,1993.
    [11]Gurney TR, Maddox SJ. A re-analysis of fatigue data for welded joints in steel [J]. Welding Research Int 1973;3(4):1-54.
    [12]Hobbacher A. Recommendations for fatigue strength of welded components. Cambridge: Abington Publishers [M],1996.
    [13]Yagi J, Machida S, Matoba M, Tomita Y, Soya I. Thickness effect criterion for the fatigue strength evaluation of welded steel structures [J]. J Offsh Mech Arct Eng 1993; 115:58-65.
    [14]高镇同,蒋欣桐,熊峻江.疲劳性能试验设计和数据处理[M].北京:北京航空航天大学出版社,1999.
    [15]熊峻江,高镇同.极大似然法测定P-S-N曲线的置信度[J].北京航空航天大学学报,1996,22(6):687-691.
    [16]陈俊梅局部法在焊接接头疲劳强度评定中的应用研究[D].大津大学博十学位论文,2001.
    [17]Radaj D. Design and analysis of fatigue resistant welded structures [M]. Cambridge: Abington Publishers,1990.
    [18]Neuber H. Theory of notch stresses [M]. Publ Springer Verlag, Berlin,1958(2nd ed) and 1985(3nd ed).
    [19]Radaj D. Notch effect of welded joints with regard to fatigue [J]. Konstr 1984 36(8)285-292.
    [20]姜翠香裂纹损伤舰船结构的断裂及止裂研究[D].华中科技大学博十学位论文,2004.
    [21]Brenna FP, Dover WD, Kare RF, Hellier AK. Parametric equations for T-butt weld toe stress intensity factors [J]. Int J Fatigue 1999; 21:1051-1062.
    [22]Fu B Haswell JV, Bettess P. Weld magnification factors for semi-elliptical surface cracks in fillet welded T-butt joint models [J]. Int J Fract 1993;63:155-171.
    [23]Niu X, Glinka G. The weld Profile effect on stress intensity factors in weldments [J]. Int J Fract 1987;35:3-20.
    [24]Wang X, Lambert SB. Weight functions and stress intensity factor for semi-elliptical cracks in T-plate welded joints [J]. Fatigue Fract Eng Mater Struct.1998;21:99-117.
    [25]BS 7608:Code of practice for fatigue design an assessment of steel structures [S]. BSI(1993).
    [26]BS 7910:Guide to methods for assessing the acceptability of flaws in metallic structures [S]. BSI(2005).
    [27]Glinka G Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude load[J]. Frac Mech ASTM STP 677; 1979.p.198-214.
    [28]Terada H. Analysis of the stress intensity factor of a crack perpendicular to the welding bead[J]. Engng Frac Mech 1976;8:441-444.
    [29]Bussu G, Irving PE. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints[J]. Int J Fatigue. 2003;25:77-88.
    [30]Ghidini T, Dalle Donne C. Fatigue crack propagation assessment based on residual stresses obtained through cut-compliance technique[J]. Fatigue Fract Eng Mater Struct 2006;30:214-222.
    [31]Fratini L, Pasta S. Reynolds AP. Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects[J]. int J Fatigue. 2009;31:495-500.
    [32]Edwards L, Fitzpatrick ME, Irving PE, Sinclair I, Zhang X, Yapp D. An integrated approach to the determination and consequences of residual stress on the fatigue performance of welded aircraft structures, vol.3. ASTM International; February 2006.
    [33]Brouard J, Lin J, Irving PE. Effects of residual stress and fatigue crack closure during fatigue crack growth in welded 2024 aluminium. Proceedings of Fatigue 2006, Atlanta, USA; June 2006.
    [34]Servetti G, Zhang X. Predicting fatigue crack growth rate in a welded butt joint:the role of effective R ratio in accounting for residual stress effect. Engng Frac Mech 2009;76:1589-1602.
    [35]Rui Bao, Xiang Zhang. An inverse method for evaluating weld residual stress via fatigue crack growth test data[J]. Engineering Fracture Mechanics.2010;77:3143-3156.
    [36]Peng-Hsiang C, Tso-Liang T. Numberical and experimental investigations on the residual stresses of the butt-welded joint[J]. Computational Materials Science.2004;29:511-522.
    [37]Tso-Liang T, Chih-Cheng L. Effect of welding conditions on residual stresses due to butt welds[J]. International Journal of Pressure Vessels and Piping.1998;75:857-864.
    [38]Sattari Far, Farahani MR. Effect of the weld groove shape and pass number on residual stress in butt-welded pipes[J]. International Journal of Pressure Vessels and Piping. 2009;86:723-731.
    [39]David Tawfik, Peter John Mutton, Wing kong chiu. Experimental and numerical investigations Alleviating tensile residual stresses in flash.butt welds by localised rapid post.weld heat treatment[J]. Journal of materials processing technology.2008;196:279-291.
    [40]Akbari D, Sattari-Far I. Effect of the welding heat input on residual stresses in butt-welds of dissimilar piape joints[J]. International Journal of Pressure Vessels and Piping. 2009;86:769-776.
    [41]Withers PJ, Bhadeshia HKDH. Overview-residual stress part 1-measurement techniques[J]. Mat Sci Tech.2001;17(4):355-365.
    [42]Withers PJ, Holden T, Lorentzen T, Hutchings MT. Introduction to characterization of residual stress by neutron diffraction. Taylor and Francis; 2005.
    [43]Ficquet X, Smith DJ, Truman CE, Kingston EJ, Dennis RJ. Measurement and prediction of residua] stress in a bead on plate weld benchmark specimen[J]. international Journal of Pressure Vessels and Piping.2009;:86:20-30.
    [44]Nitschke-Pagel T, Dilger K. Eigenspannungen in Schweipverbindungen. Teil 1:Ursachen der Eigenspannungsentstehung beim Schwei(3en. In: Schweiβen und Schneiden. 2006;58:466-479.
    [45]Nitschke-Pagel T, Dilger K. Eigenspannungen in Schweiβverbindungen. Teil 2: Bewertung von Eigenspannungen. In: Schweiβen und Schneiden.2007;59:23-32.
    [46]Nitschke-Pagel T, Dilger K. Eigenspannungen in Schweiβverbindungen. Teil 3: Verringerung von Eigenspannungen. In:Schweiβen und Schneiden.2007;59:387-395.
    [47]Gabzdyl J, Johnson A, Williams S, Price D. Laser weld distortion control by cryogenic cooling. In:High-power Laser macroprocessing (Proceedings of the SPIE-The International Society for Optical Engineering),2003;4831:269-274.
    [48]Florian Tolle, Andrey Gumenyuk, Moritz Oliver Gebhardt, Michael Rethmeier. Post-weld residual stress mitigation by scanning of a defocused laser beam[J]. Physics Procedia. 2011:12:410-418.
    [49]V.Balasubramanian, B.Guha. Analysing the influences of weld size on fatigue life prediction of FCAW cruciform joints by strain energy concept [J]. International Journal of Pressure Vessels and Piping.1999:76:759-768.
    [50]V.Balasubramanian, B.Guha. Effect of weld size on fatigue crack growth behaviour of cruciform joints by strain energy density factor approach [J]. Theoretical and Applied Fracture Mechanics.1999:31:141-148.
    [51]Nadkarni SV. Modern arc welding technology [M], New Delhi, India: Oxford and IBH, 1996.p.720-721.
    [52]Gurney TR. An analysis of some fatigue crack propagation data for steels, subjected to pulsating tension loading [J]. Weld Res Int.1979:9:45-52.
    [53]Wylde JG. Application of fatigue design rules for welded steel joints [C].1989:IIW Doc.X11-1345-89.
    [54]Maddox SJ. Recent Advances in the fatigue assessment of weld imperfections [J]. Weld J 1993:10:42-51.
    [55]李栋才,曹历杰.对接接头应力集中系数的有限元分析[J].西安石油学院报,1997,12(11):30-34.
    [56]李栋才,刘宏亮.焊趾倾角和焊脚长度对十字接头应力集中系数的影响[J].机械工程学报,1992,28(1):49-53.
    [57]侯涛,朱平,史春元.焊趾TIG重熔层激冷处理后残余应力场有限元分析[J].机车车辆工艺,2008.1:14-16
    [58]胡兵,薛景川,杨玉恭.对接接头几何形状参数统计分布及焊趾处Kt计算[J].航空学报,1994,15(11):1408-10.
    [59]韩芸,黄小平,崔维成,胡勇.T型接头焊趾表面裂纹应力强度因子的简化计算方法[J].中国造船,2006,47(1):1-11.
    [60]M.M.K. Lee. Estimation of stress concentrations in single-sided welds in offshore tubular joints [J]. International Journal of Fatigue.1999;21:895-908.
    [61]Miki T, Mori T, Masuhara Y. Influence of undercut on fatigue strength of transverse fillet welded joints [R]. Reports on remaining life and evaluation of steel bridges. Supported by Japanese Ministry of education.1990.
    [62]Petershagen H. Influence of undercuts on the fatigue strength of welded joints-a review [J]. Welding and Cutting 1985:6:E90-1.
    [63]Smith IFC, Hirt MA. Fatigue crack growth in a fillet welded joint [J]. Engineering Fracture Mechanics 1983:18:861-9.
    [64]F.R.Mashiri. X.L.Zhao. P.Grundy. Effects of weld profile and undercut on fatigue crack propagation life of thin-walled cruciform joint [J]. Thin-walled structures.2001:39:261-285.
    [65]Mashiri FR, Zhao XL, Grundy P. Fatigue strength of thin-walled tube-to-tube T-joints under in plane bending [C]. In: Chan SL, Teng GJ, editors. Advances in Steel Structures. Elsevier Science Ltd,1999:983-990.
    [66]Mashiri FR, Zhao XL, Grundy P. Fatigue design of welded very thin-walled tube-to-plate joints using the classification method [C]. In:The 7th International Symposium on Structural Failure and Plasticity, IMPLAST 2000,4-6 October 2000, Melbourne, Australia.
    [67]Puthli RS, de Koning CHM, van wingerde AM, Wardenier J, Dutta D. Fatigue strength of welded unstiffened RHS Joints in latticed structures and vierendeel girders [R]. Final Report-Part III, Evaluation for design rules. Stevin Report No.25-6-89-36/A1, Stevin Laboratory, Delft University of Technology Delft, The Netherlands,1989.
    [68]Zhao XL, Sedlacek G, Schafers M, Mori T. Fatigue resistance of welded tubular joints using fracture mechanics approach [C]. In: ACAM99, February 10-12, Canberra, Australia,1999.
    [69]F.R. Mashiri, X.L. Zhao, P. Grundy. Effects of weld profile and undercut on fatigue crack propagation life of thin-walled cruciform joint [J]. Thin-Walled Structures 2001:39:261-285.
    [70]丁颖,王春青,田艳红.通孔元件焊点的抗热疲劳性能预测[J].金属学报,2003,39(8):885-891.
    [71]Sih GC, Barthelemy BM. Mixed mode crack growth predictions [J]. Engng Fracture Mech1980:13:439-451.
    [72]Sih GC, Macdonald B. Fracture mechanics applied to engineering problems-strain energy density fracture criterion [J]. Engng Fracture Mech 1974;6:493-507.
    [73]Sih GC. Strain energy density factor applied to mixed mode crack problems [J]. Int J Fracture 1974; 10:305-321.
    [74]A.Khodadad Motarjemi, A.H.Kokabi, F.M.Burdekin. Comparison of fatigue life for T and cruciform welded joints with different combinations of geometrical parameters [J]. Engineering Fracture Mechanics.2000:67:313-328.
    [75]黄小平,崔维成,石德新.压弯载荷下焊趾表面裂纹工程萌生寿命预测[J].海洋工程,2002,20(3):49-53.
    [76]Ferreira JM, Branco CM. Influence of fillet weld joint geometry on fatigue crack growth [J]. Theor Appl Fracture Mech 1991;15:131-142.
    [77]Usami S, Kusumoto S. Fatigue strength at roots of cruciform Tee and Lap joints [J]. Trans Japan Weld Soc 1979:9:1-10.
    [78]Frank KH, Fisher JW. Fatigue strength of fillet welded cruciform joints [J]. J Struct Div 1979:105:1727-1739.
    [79]V.Balasubramanian, B.Guha. Effect of L/Tp ratio on fatigue life prediction of SMAW cruciform joints of ASRM 517'F' grade steels [J]. Int J Pressure Vessel Piping 1998:13:907-918.
    [80]Bhuyan G, Vosikovsky O. Prediction of fatigue crack initiation lives for welded plate T joints based on the local stress-strain approach [J]. Int J Fatig 1989:11 (3):153-9.
    [81]Hou CY, Charng JJ. Models for the estimation of weldment fatigue crack initiation life [J]. Int J Fatig 1997:19(7):537-41.
    [82]Grover JL. Thickness, weld profile and initial flaw considerations for tubular joints [C]. In: Proceedings of the Eighth International Conference on Offshore Mechanics and Arctic Engineering, The Hague, March 19-23,1989:39-47.
    [83]Yamada K, Kainuma S. Practical aspects of fracture mechanics applied to fatigue [C]. Key note paper. In:The Fourth International Symposium on Structural Engineering for Young Experts, Tsinghua University, Beijing, China.
    [84]Zhao XL, Herion S, Packer JA, Puthli R, Sedlacek G, Weynand K, Van Wingerde A, Yeomans N. Design Guide for Circular and Rectangular Hollow Sections under Fatigue Loading [C]. Cologne, Germany: CIDECT and Verlag TUV Rheinland,1999.
    [85]Guha B. A new fracture mechanics method to predict the fatigue life of MIG welded cruciform joints [J]. Engng Fractuure Mech 1995;2:215-229.
    [86]Brennan FP, Dover WD, Kare RF, Hellier AK. Parametric equations for T-butt weld toe stress intensity factors [J]. International Journal of Fatigue.1999;21:1051-62.
    [87]Booth GS. The effect of thickness on the fatigue strength of plate welded joints [C], Paper TS 2. In: Noordhoek C, De Back J, editors. Proceedings of the 3rd International Conference on Steel in Marine Structures, SIMS87, Delft, The Netherlands,15-18 June 1987. Elsevier Science Publishers,1987:259-68.
    [88]Baerheim M. Stress concentrations in tubular joints welded from one side [C]. In: Proceedings of ISOPE Conference,1996.
    [89]Baerheim M, Hansen K, Baerheim K, Gudmestad OT. Single sided welded tubular joints stress concentrations at the weld root [C]. In:Proceedings of 17th OMAE Conference,1998.
    [90]Morgan MR. Stress fields in tubular K-joints for fatigue analysis of offshore structures [D]. PhD thesis. University of Wales Swansea,1997.
    [91]Niu X, Glinka G. Theoretical and experimental analyses of surface fatigue cracks in weldments [C]. In: Proceedings-The Symposium on Surface Crack Growth:Model, Experiments and Structures, ASTM, Reno (Nevada, USA),25 April 1988.
    [92]Hall MS, Topp DA, Dover WD. Parametric equations for stress intensity factors [R]. Technical Software Consultants Report NO. TSC/MSH/0244 for Dept. of Energy, UK, March 1990.
    [93]张中平,霍立兴,王东坡,张玉凤.喷涂层对十字接头焊趾裂纹应力强度因子的影响[J].焊接学报,2006,27(2):85-88.
    [94]张毅,黄小平,崔维成,卞如冈.对接接头焊趾应力集中有限元分析[J].船舶力学,2004,8(5):9 1-99.
    [95]卢炎麟,张淑佳,俞志清.焊趾表面裂纹应力强度因子计算的基本模式法[J].应用力学学报,1998,15(4):73-81.
    [96]王元良.焊接及焊接结构[M].北京:中国铁道出版社.1963.
    [97]陈楚.数值分析在焊接中的应用[M]..上海:上海交通大学出版社,1990,12.
    [98]吴言高,李午中,邹宏军.焊接数值模拟技术发展现状[J].焊接学报.2002,23(3):89-92.
    [99]杨世铭.传热学基础[M].北京:高等教育出版社.2003.
    [100]赵镇南.传热学[M].北京:高等教育出版社.2005.
    [101]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社.1998.
    [102]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社.1999.
    [1031 李景涌.有限元法[M].北京:北京邮电大学出版社.1999.
    [104]李义.钢结构焊接残余应力分析[D].武汉理工大学.2007.
    [105]黄小叶.焊接构架侧梁残余应力数值模拟分析[D].西南交通大学.2008.
    [106]梁炜宇.焊接对多层钢结构承载力影响的研究[D]浙江工业大学.2007.
    [107]TsoLiang Teng, ChinPing Fung, PengHsiang Chang, WeiChun Yang. Analysis of residual stresses and distortions in T-joint fillet welds[J]. International journal of Pressure Vessels and Piping,2001,78:523-538.
    [108]Abid M, Siddique M. Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint[J]. International Journal of Pressure Vessels and Piping,2005,82:860-871.
    [109]Yaghi A, Hyde TH, Becker AA, Sun W, Williams JA. Residual stress simulation in thin and thick walled stainless steel pipe welds including pipe diameter effects[J]. International Journal of Pressure Vessels and Piping,2006,83:864-874.
    [110]L.Edwards, P.J. Bouchard, M. Dutta, D.Q. Wang, J.R. Santisteban, S.Hiller, M.E. Fitzpatrick. Direct measurement of the residual stresses near a'boat-shaped'repair in a 20 mm thick stainless steel tube butt weld[J]. Pressure Vessels and Piping.2005,82:288-298.
    [111]Gandy DW, Findlan SJ, Viswananathan R. Weld repair of steam turbine casings and piping-an industry survey[J]. ASME J Pres Ves Techn.2001,123:157-60.
    [112]Dunn J, MacGuigan J, McLean RJ, Miles L, Stevens RA. Investigation and repair of a leak at a high temperature stainless stell butt weld. In: Proceedings of the international conference integrity of high temperature welds. London: Prof Eng Publishing,1998:241-258.
    [113]Joseph A, Sanjai K.Rai, Jayakumar T, Murugan N. Evaluation of residual stresses in dissimilar weld joints[J]. International Journal of Pressure Vessels and Piping, 2005,82:700-705.
    [114]Ph.Mabelly, Ph.Bourges, GPont. Effect of metallurgical transformations on weld residual stresses-application to E690 steel grade[J]. Marine Structures,2001,14:553-567.
    [115]ChinHyung Lee, KyongHo Chang. Prediction of residual stresses in high strength carbon steel pipe weld considering solid-state phase transformation effects[J]. Computers and Structures,2011;89:256-265.
    [116]李春胜.黄德彬.机械工程材料手册[M].北京.电子工业出版社.2007.
    [117]安继儒.中外常用金属材料手册[M].西安.西安交通大学出版社.1992.
    [118]张彦华.焊接力学与结构完整性原理[M].北京.北京航空航天大学出版社.2006.
    [119]J.Gloldak,et al. Computer modeling of heat flow in welding[J]. Metallurgical Transactions B, Sept,1986,17:299-305.
    [120]Josefson BL. Residual stresses and their redistribution during annealing of a girth butt welded thin walled pipe[J]. ASME Journal of Pressure Vessel Technology, 1982,104:245-250.
    [121]Lindgren RI, Karlsson L. Three Dimensional finite element analysis of temperatures and Stresses in a single pass butt welded pipes[J]. ASME Journal of Pressure Vessel Technology, 1990,112:72-84.
    [122]高庆工程断裂力学[M].重庆.重庆大学出版社.1992.
    [123]黄维扬.工1:程断裂力学[M].北京.航空工业出版社.1992.
    [124]程靳,赵树山.断裂力学[M].北京.科学出版社.2006.
    [125]丁遂栋,孙利民.断裂力学[M].北京.机械工业出版社.1997.
    [126]沈成康.断裂力学[M].上海.同济大学出版社.1996.
    [127]Wang X, Lambert SB. On the calculation of stress intensity factors for surface cracks in weld pipe-plate and tubular joints[J]. International Journal of Fatigue,2003;25:89-96.
    [128]Tracey DM. Finite elements for three-dimensional elastic crack analysis[J]. Nuclear Engineering and Design,1974;26:282-290.
    [129]Barsoum RS. On the use of isoparametric finite elements in linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering,1976; 10:25-37.
    [130]Raju IS, Newman Jr JC. Stress intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates[J]. Engineering Fracture Mechanics,1979;11:817-829.
    [131]Newman Jr JC, Raju IS. Stress-intensity factors equations for cracks in three-dimensional finite bodies subjected to tension and bending loads. In: Atluri S, editor. Computational methods in the mechanics of fracture. Computational methods in mechanics, Vol.2. Amsterdam:Elsevier Science Publishers,1986;p:311-334.
    [132]Atluri SN, Nishioka T. Computational methods for three-dimensional problems of fracture. In:Atluri S, editor. Computational methods in the mechanics of fracture. Computational methods in mechanics, Vol.2. Amsterdam:Elsevier Science Publishers,1986;p:2291-287.
    [133]Cruse TA. Numerical evaluation of elastic stress intensity factors by the boundary-integral equation method. In:Swedlow JL, editor. The surface rack: Physical problems and computational solutions. ASME Special Publication,1972;p:158-170.
    [134]Curse TA. Application of the boundary-integral equation method to three dimensional stress analysis[J]. Computers & Structures,1973;3:509-527.
    [135]Blackburn WS, Hellen TK. Calculation of stress intensity factores in three dimensions by finite element methods. International Journal for Numerical Methods in Engineering, 1972;11:211-229.
    [136]Newman JC, Raju IS. An experircial stress intensity factor equation for the surface crack[J]. Eng Fract Mech 1981;25:185-192.
    [137]Bowness D, Lee MMK. Weld toe magnification factors sei-elliptical cracks in T-butt joints comparison with existing solutions[J]. International Journal of Fatigue,2000;22:389-396.
    [138]Bowness D, Lee MMK. Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J]. International Journal of Fatigue,2000;22:369-387.
    [139]Bowness D, Lee MMK. Fracture mechanics assessment of fatigue cracks in offshore tubular structures[R]. Health and Safety Executive,1999.9.
    [140]BS 7910: Guide to methods for assessing the acceptability of flaws in metallic structures. BSI2005.
    [141]郑红霞.货车车轮辐板孔裂纹形成原因及疲劳扩展特性研究[D].北京交通大学博士学位论文,2007.
    [142]周素霞.高速列车空心车轴损伤容限理论与方法[D].北京交通大学博十学位论文,2007.
    [143]杨卫.宏观断裂力学[M].国防工业出版社,1995.
    [144]Henshell RD, Shaw KG. Crack tip finite elements are unnecessary[J]. Int J Numer Meth Engng 1975;9:495-507.
    [145]Barsoum RS. On the use of isoparametric finite elements in linear fracture mechanics [J]. Int J Numer Meth Engng 1976;10:25-37.
    [146]Maddox SJ, Andrews RM. Stress intensity factors for weld toe cracks. In:M.H. ALIABADI, C.A.BREBBIA and D.J. CARTWRIGHT, eds. Localized damage computer-aided assessment and control. Proc.1st international conference on computer-aided assessment and control of localized damage, Portsmouth, UK,26-28 June 1990. Vol.2 Southampton: Computational Mechanics Pubs.329-342. ISBN:1853120685.
    [147]Noblett JE, Andrews RM. A stress intensity factor solution for root defects in fillet and partial penetration welds. Abington, Cambs:TWI.TWI Research Report 1996/575.
    [148]Lin XB, Smith RA. Fatigue growth prediction of internal surface cracks in pressure vessels[J]. J Pres Ves Technol,1998;120:17-23.
    [149]Lin XB, Smith RA. Shape growth simulation of surface cracks in tension fatigue round bars[J]. International Journal of Fatigue,1997;19(6):461-469.
    [150]Lu YL. A practical procedure for evaluating SIFs along fronts of semi-elliptical surface cracks at weld toes in complex stress fields[J]. International Journal of Fatigue, 1996;18:127-135.
    [151]Lie ST, Zhao Z, Yan SH. Two-dimensional and three-dimensional magnification factors, Mk, for non-load-carrying fillet welds cruciform joints[J]. Eng Fract Mech 2000;65:435-453.
    [152]Fung YC. A first course in continuum mechanics[M]. Prentice-Hall, Englewood Cliffs, New Jersey, Second edition,1977.
    [153]陈传尧.疲劳与断裂[M].武汉.华中科技大学出版社.2001.147-152.
    [154]钱余海,李子刚.加速腐蚀环境下高强耐候钢Q450NQR1的耐蚀性能研究[J].宝钢技术,2007(2):5-8.
    [155]钟群鹏,赵子华.断口学.高等教育出版社.2006.6.
    [156]曾春华,邹十践.疲劳分析方法及应用.国防工业出版社.1991.
    [157]Reis L, Li B, Freitas MD. Crack initiation and growth path under multiaxial fatigue loading in structural steels. International Journal of Fatigue.2009;31:1660-1668.
    [158]Findley WN. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Ind.1959:301-306.
    [159]Brown MW, Miller KJ. A theory for fatigue under multiaxial stress-strain conditions. In: Proceedings of the institute of mechanical engineers, vol,187;1973.pp.745-756.
    [160]Wang CH, Brown MW. Life prediction techniques for variable amplitude multiaxial fatigue-part 1:theories. J Eng Mater Technol, Trans ASME 1996; 118(3):367-370.
    [161]Fatemi A, Socie D. A critical plane approach to multiaxial fatigue damage including out of phase loading. Fatigue Fract Eng Mater Struct 1988; 11(3):149-165.
    [162]Smith RN, Watson P, Topper TH. A stress strain function for the fatigue of metal. J Mater 1970:5(4):768-778.
    [163]Liu KC. A method based on virtual strain energy parameters for multiaxial fatigue life prediction. In:McDowell DL, Ellis R, editors. Advances in multiaxial Fatigue, ASTM STP 1191;1993.p.67-84.
    [164]Tanaka K, Mura T. Dislocation model for fatigue crack initiation. ASME Journal of Applied Mechanics 1981;48:97-103.
    [165]Zhou RS, Cheng HS, Mura T. Micropitting in rolling and sliding contact under mixed lubrication. ASME Journal of Tribology 1989;111:605-613.
    [166]姚卫星.结构疲劳寿命分析[M]..北京:国防工业出版社.2003.
    [167]周炜.应用局部应力、应变法估算机械疲劳寿命[J].同济大学学报.2001:29(8):928-931.
    [168]航空工业部科学技术委员会.应变疲劳分析手册[M].科学出版社.1987:6-73.
    [169]程育仁,缪龙秀.疲劳强度[M].中国铁道出版社.1990.
    [170]王正林,龚纯,何倩.精通MATLAB科学计算[M].电子工业出版社.2007.
    [171]Miner MA. Cumulative damage in fatigue[J].J Appl Mech,1945,12(3),159-164.
    [172]Christopher JL, Diana AL. Effects of residual stresses on fatigue crack growth behavior of structural materials Analytical corrections. International Journal of Fatigue 2011:33:858-867.
    [173]Glinka G Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude loads. ASTM STP 677; 1979.p.198-214.
    [174]Lam YC, Lian KS. The effects of residual stress and its redistribution on fatigue crack growth. Theoretical and APPlied Fracture Mechanics 1989; 12:59-66.
    [175]Daniewicz SR, Collins JA, Houser DR. An elastic-plastic analytical model for predicting fatigue crack growth in arbitrary edge-cracked two-dimensional geometries with residual stress. International Journal of Fatigue.1994.16:123-33.
    [176]Beghini M, Bertini L. Fatigue crack propagation through residual stress fields with closure phenomena. Engineering Fracture Mechanics 1990;36:379-387.
    [177]Sneddon LN. Crack problems in the classical theory of elasticity. Wiley, New York,1969.
    [178]Sih GC, Paris PC, Erdogan F. Crack tip stress intensity factors for plane extension and plate bending problem. J Appl Mech Trans ASME 1962;29.
    [179]Rooke DP, Baratta FI, Cartwright DJ. Simple methods of determining stress intensity factors. Engineering Fracture Mechanics 1981; 14:397-426.
    [180]Wu XR, Carlsson AJ. Weight functions and stress intensity factor solution.1st end. Oxford: Pergamon Press; 1991.
    [181]Prime MB. Residual stress measurement by successive extension of a slot:the crack compliance method. Appl Mech Rev 1999;52:75-96.
    [182]Gunguly S, Fitzpatrick ME, Edwards L. Use of neutron and synchrotron X-ray diffraction for evaluation of residual stresses in a 2024-T351 aluminium alloys variable-polarity plasma-arc weld. Metal Mater Trans A 2006;37:411-420.
    [183]Shah RC. Stress intensity factor for through and part-through cracks originating at fasterner holes. Mechanics of crack growth. ASTM STP 590. American Society for Testing & Materials; 1976.p.429-459.
    [184]Sih G. Handbook of stress intensity factors. Bethlehem(Pennsylvania):Institute of Fracture and Solid Mechanics, Lehigh University; 1973.
    [185]Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook.2nd ed. St. Louis (Missouri):Paris Publications Incorporated; 1985.
    [186]Bueckner HE A novel principle for computation of stress intensity factors. Z Angew Math Mech 1970:529-546.
    [187]Isida M. Stress-intensity factors for the tension of an eccentrically cracked strip. J Appl Mech.1966:674-675.
    [188]Fett T, Munz D. Stress intensity factors and weight functions. Southampton:Computational Mechanics publication; 1997.
    [189]Petroski HJ, Achenbach JD. Computation of weight function from a stress intensity factor. Engng Fract Mech 1978;10:257-266.
    [190]Tada H, Paris PC. Irwin GR. The stress analysis of cracks handbook.3rd en. New York:The American Society of Mechanical Engineers:2000.
    [191]Documentation for ANSYS Release 11.0. ANSYS Inc:2007.
    [192]ABAQUS user/technical manual version 6.5. Hibbit, Karlsson and Sorensen Inc:2005.
    [193]Lei Y. O'Dowd NP, Webster GA. Fracture mechanics analysis of a crack in a residual stress field. Int J Fract 2000:106:195-216.
    [194]Rui Bao, Xiang Zhang, Norvahida Ahmad Yahaya. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods. Engineering Fracture Mechanics.2010:77:2550-2566.
    [195]Anderson TL. Fracture mechanics, fundamentals and applications.3rd en. Norway:CRC Press, Taylor and Francis Group:2005.
    [196]Irwin GR. Plastic zone near a crack and fracture toughness. In: Proceedings 7th sagamore conference. Vol.4:1961.p.63-76.
    [197]Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids 1960:8:100-104.
    [198]Christopher JL. Diana AL. Effects of residual stresses on fatigue crack growth behavior of structural materials Analytical corrections. International Journal of Fatigue. 2011:33:858-867.
    [199]R Galdos. Finite element technique to simulate the stable shape evolution of planar cracks with an application to semi-elliptical surface crack in a biomaterial finite solid [J].Int. J. Num. Meth Rngng. (S0961-5539),1997,40:905-917.
    [200]Newman Jr J C, Raju I S. An empirical stress intensity factor equation for the surface crack[J]. Engng Fracture Mech,1981,15;185-192.
    [201]J Cervenka, V E Saouma. Numerical evaluation of 3-D SIF for arbitrary finite element meshes [J]. Engng. Fract. Mech. (S0013-7944),1997,57:541-563.
    [202]X. B Lin. Numerical simulation of fatigue crack growth [D]. PH.D Thesis, The University of Sheffield, UK,1994.99-102.
    [203]C.GHwang, P.A. Wawrzynek, A.R. Ingraffea. On the virtual crack extension method for calculating the derivatives of energy release rates for a 3D planar crack of arbitrary shape under model-I loading, Engineering Fracture Mechanics[J],68(2001),925-947.
    [204]Hellen TK. On the method of virtual crack extension[J].Int J Numer Meth Eng.1975,9(1):187-207.
    [205]Bacila AX. Decoopman, et al. Computer simulation of fatigue crack propagation under random loading conditions [J], International Journal of Fatigue 29 (2007) 1772-1780.
    [206]PARIS P, ERDOGAN F. A critical analysis of crack growth laws [J]. J. Basic Eng,1963, 85(3):528-534.
    [207]FORMAN R G, KEARNEY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structure[J]. J. Basic Eng,1967,89(3):459-464.
    [208]ELBER W. The significance of fatigue crack closure[C] Damage Tolerate in Aircraft Structures, ASTM STP 486. Philadophia: American Society for Testing and Material, 1971:230-242.
    [209]宋占勋,谢基龙,周素霞,杨月.参数估计的数值解析法[J].北京交通大学学报,2010:34(1):137-139.
    [210]Beevers CJ. Fatigue crack growth at low stress intensities, Metal Science, Aug./Sept, Vol. II.P.362-367.1997.
    [211]赵伟,丁传富.默写因素对30CrMnSiNi2A高强度钢门槛值影响因素的研究,第二届全国疲劳学术会议论文摘要会变.1984.
    [212]郑修麟,陈永茂,张建国,叶建级,张钢柱,陈彦15MnVN钢56毫米厚板的疲劳裂纹扩展速率与门槛值[J].机械强度.1987:3.
    [213]Elber W. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, Vol.2.37-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700