用户名: 密码: 验证码:
CFRP-木材复合材界面力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在木材表面粘结复合碳纤维布(Carbon Fibre Reinforced Polymer/Plastic,缩写CFRP)是改善木材力学性能的一种有效技术手段,CFRP-木材界面的有效粘结是保证CFRP与木材共同工作的关键。本文在借鉴国内外相关研究成果上,采用国产碳纤维布并结合国产速生材落叶松和杉木木材的特性,对CFRP-木材复合材关键界面从复合工艺、剥离承载性能、湿热效应、断裂特性及耐久性能等方面展开了系统研究,主要研究成果如下:
     1)界面压力和施胶量是CFRP-木材界面复合工艺的主要因素,在一定压力范围内界面压力越高,界面层厚度越薄,胶黏剂越易渗入木材,界面胶合强度亦越高。复合材界面胶合性能在两树种间存在明显差异,落叶松材性较好,其胶合性能优于杉木。复合材结构对胶合性能影响显著。施胶量的增加可促进界面胶合,但过多的胶液易导致界面层增厚,孔隙率加大,导致胶合强度下降。CFRP-木材界面结合强度取决于木材的材性和胶合性。对复合材而言,界面层的增加不利于复合材的抗剪。
     2)考察界面的应变分布情况时界面的粘结剪应力位置曲线可以再现剥离的产生过程。当CFRP粘结长度较长时,界面从开始加载到受力破坏,界面应变的发展情况可以分为三个阶段即界面处于较低荷载水平时弹性状态阶段、较高荷载水平时应变发展阶段和界面剥离阶段。CFRP与落叶松及杉木木材间存在有效粘结长度,当粘结长度超过该有效粘结长度时,CFRP与木材间的极限粘结承载能力将不再增加,但长度的增加可延缓粘结面的破坏过程。本文提出的模型公式具有较高精度,可用于计算CFRP-落叶松界面和CFRP-杉木界面有效粘结长度和剥离承载力。
     3)通过对落叶松和CFRP的湿应变的测试及对落叶松和CFRP湿膨胀系数的求解,结果表明,CFRP纵横向湿膨胀系数均不足落叶松的1/8。落叶松和CFRP的横向湿膨胀系数远大于其纵向湿膨胀系数,CFRP在吸湿应变响应时,比落叶松的滞后明显,CFRP吸湿过程缓慢。在湿度为35-60%的范围内时,两者的湿膨胀系数最小。落叶松和CFRP在相对湿度95%恒湿升温和降温处理表明,落叶松和CFRP的热膨胀系数是由热湿共同作用的结果。CFRP的热膨胀系数较小,不足落叶松的1/5。
     4)CFRP-落叶松对称复合材同向复合时其界面受环境湿效应影响较小,正交复合时其界面受环境湿度影响较大,温度在对称复合材界面产生的热胀冷缩作用不明显,湿胀率低的碳纤维可有效抑制落叶松木材横纹及顺纹方向的膨胀。对称复合材中CFRP可改善落叶松木材的耐湿热性能。CFRP-落叶松非对称复合材湿热处理后抗弯强度和弹性模量随处理时间呈现指数函数衰减趋势,抗弯性能下降幅度较大。CFRP-木材界面端是抗弯性能衰减的关键部位。CFRP-木材复合材在应用中应避免湿热环境或采取保护措施减少湿效应的影响。CFRP-落叶松非对称复合材干热处理后抗弯性能削弱较小。
     5)CFRP-木材界面断裂韧性优于木材间界面,界面两侧材料的差异性有助于改善裂纹的失稳扩展。界面裂纹尖端主要受界面应力场和位移场影响,界面面内裂纹尖端应力巨大,扩展主要发生界面层内。复合材试件状态对断裂韧性影响较大,干状态时复合材断裂韧性较小,水分增加有利于抵抗裂纹扩展。断裂韧性可作为界面强度评价参数。复合材界面断裂韧性可通过基于断裂力学能量释放率理论的双悬臂梁(DCB)试验方法进行评估。
     6)CFRP-木材界面短期蠕变过程可分为两个阶段:第一级蠕变,蠕变以非线性方式增长;第二级蠕变,蠕变以低速率持续线性增长。温度及相对湿度是影响蠕变的重要因素,高温高湿环境下界面蠕变量显著大于低湿环境,高湿环境下高应力水平易使界面层较早出现断裂。蠕变变形随应力水平的增大而增大。各应力水平蠕变曲线都表现出了同样蠕变规律,蠕变变形在早期较大,后期逐渐减缓。
Carbon Fibre Reinforced Polymer/Plastic (CFRP) bonded to wood is an effective technicalmeans to the improvement of its mechanical properties. Effective bonding of interface betweenCFRP and wood is the key to ensuring the co-work of CFRP and wood in composite material.Based on the related research results of reinforced building structure of CFRP, systematic studyhas been done on the key interface’s Composite technology, stripping bearing properties,hygrothermal effects, fracture toughness as well as endurance performance. By combining thecharacteristics of domestic fast-growing wood (Larix olgensis and Cunninghamia lanceolata),CFRP made in China is applied for this research. Main research results are as follows:
     1)Interface pressure and resin content are the main factors for interface’s Compositetechnology between CFRP and wood. In certain pressure range, the higher the interfacepressure, the thinner the thickness of interface layer. Accordingly epoxy resin is liable topenetrate into wood and interface gains in strength. There are significant differences in bondperformance of composite wood’s interface between two species. Larch’s wood property isbetter, bond performance superior to China fir. The structure of composite wood has asignificant influence on bonding performance. The increased resin content promotes thebonding strength, but too much resin easily leads to thickening of interface layer, increase ofporosity and reduction in bonding strength. CFRP-wood interface’s bonding strength dependson the wood property and bonding properties. For composite wood, the increase of interfacelayer is disadvantageous to shearing strength.
     2)While studying on the distribution of interface’s stress, the process of strippingre-appears through the position curve indication of interface’s shearing stress. When thebonding length is longer, the development of interface strain from loading to damage can bedivided into three stages: elastic stage when interface at a low loading level, strain developmentstage in higher loading level and stripping stage. There is effective bond length existingbetween CFRP and larch or China fir. Under the condition that actual bond length is longer thanthe effective bond length, ultimate bonding carrying capacity between CFRP and wood will nolonger increase but the extended length helps delay the interface’s damaging process. Themodel formula mentioned in this article has a high precision, suitable for calculating effectivebond length of CFRP-larch and CFRP-fir’s interfaces and carrying capacity in striping.
     3)After testing wet strain of larch and CFRP and solving their coefficients of moistureexpansion, CFRP’s coefficients of moisture expansion in the horizontal or vertical are no lessthan1/8of the larch’s. Their coefficients of moisture expansion in the vertical are far largerthan in the horizontal. When CFRP responses to moisture strain, its moisture absorption processis slow, obviously lagging than larch. When humidity is in the range of35-60%, coefficients of both are the minimum. After constant warming and cooling treatment on them in the relativehumidity95%, the result shows that CFRP’s coefficient of thermal expansion is the joint workof heat and humid. CFRP’s coefficient of thermal expansion is smaller, no less than1/5of thelarch.
     4)For symmetrical structure composite material, CFRP-larch interface is less affected bythe environment wet; while composited orthogonally, the result is the opposite. Thus,temperature has less obvious effect on the thermal expansion and contraction generated bysymmetrical composite material interface. CFRP with its low moisture expansion rate caneffectively restrain larch’s expansion in horizontal or vertical. For symmetric composite wood,CFRP improves larch’s hot and humid resistance performance. After hot and humid treatment,CFRP-larch composite wood’s bending strength and elastic modulus decrease exponentiallyalong with the increase of treatment time, they decline greatly. CFRP-wood interface’s end isthe key part for bending capacity attenuation. In application, CFRP-wood composite shouldavoid hot and humid environment or to be protected to reduce the effect of wet effect. As forCFRP-larch asymmetric structure composite wood, the bending capacity weakens less after heattreatment.
     5)CFRP-wood interface’s fracture toughness is superior to wood-wood’s for differentmaterials on both sides are helpful for improving instable propagation of cracks. Tip of crack ismainly influenced by stress and displacement field. Tip of interface’s crack bears so huge stressthat propagation of crack mostly happens in the interface layer. Composite wood has a greateffect on the fracture toughness. It is suggested that composite wood in practical use shouldavoid damp on account of its great fracture toughness in dry condition. DCB experiment basedon the method of flexibility is recommended for measuring the fracture toughness ofCFRP-wood interface.
     6)CFRP-wood’s short-term creep process can be divided into two stages: the first creep,increasing in a nonlinear way; the second creep, low growth rate in a linear way. Temperatureand relative humidity are two important factors on creep. Creep amount in hot and humidenvironment is significantly larger than that in adverse environment. Interface layer is liable tocrack in high humid environment and high stress level. Creep deformation increases with thestress level. Creep curve of each stress level shows the same creep rule, that is, creepdeformation is obvious in the early stage but the creep rate gradually slows down.
引文
[1]孙友富,杨小军.论我国木结构建筑的发展前景[J].建筑建材装饰,2011,12(6):22-26.
    [2]周海宾,费本华,任海青.世界木结构房屋研究的最新进展[J].木材工业,2006,20(4):l-4.
    [3]江泽慧,姜笑梅等.木材结构与其品质特性的相关性[M].北京:科学出版社,2008:207-305.
    [4]符芳,张亚梅等.土木工程材料[M].南京:东南大学出版社,2006:230-236.
    [5]邹祖讳,主编.复合材料的结构与性能,材料科学与技术丛书(第13卷)科学出版社.1999
    [6]刘春城等. CFRP复合材料在土木工程中的应用现状[J]北华大学学报,2003,4(3):258-260.
    [7]储长流等.碳纤维的性能与应用[J].北京纺织,2001,27(6):39-41.
    [8]赵稼祥.世界高性能碳纤维的生产、市场与应用[J].新材料产业,2003,112(3):18-22.
    [9]周明英.碳纤维及其应用[J].山东纺织科技,2000,41(3):48-49.
    [10]贺福,杨永岗.碳纤维增强木材复合材料[J].化学新型材料,2003,31(10):45-49.
    [11]赵静,王鲲,牟晓成. CFRP材料加固木梁试验研究[J].山西建筑,2006,32(23):86-87.
    [12]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展[J].高科技纤维与应用,2010(1):43-52.
    [13]余黎明.我国碳纤维行业现状和发展趋势分析[J].新材料产业,2011(6):13-21.
    [14] Jonathan,Philip,Alexander. Evaluating the Durability of Wood FRP Bonds through Chemical KineticsUsing a Range of Test Methods[D]. B. Sc. University of Wales,Bangor,1998.
    [15] Habib J. Dagher. Advanced Engineered Wood Composites[C]. BarHarbor,ME,USA:The Proceedingsof3rd International Conference. July10,2005.
    [16] Wen HM. Penetration and perforation of Thick FRP Laminates[J]. Composites Science andTechnology,2001,61(8):1163-1172.
    [17] Luc R. Taerwe,Stijn Matthys. FRP for Construction:Activities in Europe[J]. Concrete International,1999,21(10):33-66.
    [18] Brent Stenphen Trimble. Durability and Mode-I Fracture of Fiber-Reinforced Plastic(FRP)/WoodInterface Bond[D]. West Virginia University. Morgantown.1999.
    [19]杜永峰,林厚秦等.矩形截面预应力木梁受力性能的试验研究[J].甘肃工业大学学报,1995,21(3):72-78.
    [20]狄生奎.均布荷载作用下预应力木梁强度与挠度的计算[J].结构工程师,2000,20(3):18-20.
    [21] Bohannan,B. Pretressed wood member[J]. Forest Product Journal,1962,12(12):596-602.
    [22] Triantafillou T. C.,Deskovic N. Prestressed FRP sheets as external reinforcement of wood members[J].Journal of Structural Engineering-ASCE,1992,118(5):1270-1284.
    [23]王增春,何艳丽等. FRP加固木结构的应用和研究[J].建筑技术开发,2004,3(3):13-15.
    [24]许金泉.界面力学[M].北京:科学出版社.2006:25-30.
    [25] Meier U., Deuring M., Meier H., Schwegler G. CFRP bonded sheets, A. Nanni(Ed.), Fiber ReinforcedPlastic Reinforcement for Concrete Structures: Properties and Applications Elsevier Science,1993.
    [26] Shaat A, Fam A. St rengthening of Short HSS Steel Columns Using FRP Sheet[C]. Alberta. AdvancedComposite Materials in Bridges and St ructures. Cal-gary,2004.
    [27] Rajan Sen,Larry Liby, Gray Mulins. Strengthening Steel Bridge Section Using CFRP Laminates [J].Composite:Part B,2001,32:309-332.
    [28]杨勇新,王敬,张小冬.碳纤维布加固混凝土结构耐久性能初步研究[J].港工技术,2002(2):25-27.
    [29]杜平安,甘娥忠,于亚婷.有限元法原理、建模及应用[M].北京:国防工业出版社,2004.
    [30] Gawronski W,Sawicki J. Structral damage detection using modal norms[J]. Journal of Sound Vibration,2000,129(1):194-198.
    [31]方恩权.碳纤维布与混凝土界面粘结性能试验研究[D].郑州:郑州大学环境与水利学院,2005.
    [32] Khalifa A. T,Al khrdajit,Nanni A,et al. Anchorage of surface mounted FRP reinforcement [J].Concrete International:Design and Const ruction,1999,21(10):49-54.
    [33]滕锦光,陈建飞等. FRP加固混凝土结构[M].北京:中国建筑工业出版社,2004.
    [34] Camille A. Issa, Ziad Kmeid. Advanced wood engineering:glulam beams[J]. Construction and BuildingMaterials,2005,19:99-106.
    [35] Gary M. Raftery, Annette M. Harte, Peter D. Rodd. Bond quality at the FRP–wood interface usingwood-laminating adhesives[J]. International Journal of Adhesion&Adhesives,2009,29:101-110.
    [36] Yeou-Fong Li, Yao-Ming Xie, Ming-Jer Tsai. Enhancement of the flexural performance of retrofittedwood beams using CFRP composite sheets[J]. Construction and Building Materials,2009,23:411-422.
    [37] Marco Corradi,Emanuela Speranzini,Antonio Borri,Andrea Vignoli. In-plane shear reinforcement ofwood beam floors with FRP[J]. Composites,2006,37:310-319.
    [38]杨允表,石洞.复合材料在桥梁工程中的应用[J]桥梁建筑,1997,22(4):1-4.
    [39] Barbero E, Davalos J. Bond strength of FRP-Wood interface[J]. Journal of reinforced plastics andcomposites,1994:835-853.
    [40] Davis, G.. The performance of adhesive systems for structural timbers[J]. International Journal ofAdhesion and Adhesives,1997,17(3):247-255.
    [41] Daniel A. Tingley. The Stress-Strain Relationships in Wood and Fiber-Reinforced Plastic Laminate ofReinforced Glued-Laminated Wood Beams[D]. Oregon State University. June,1996.
    [42] Triantafillou T. C.,Deskovic N. Innovative prestressing with FRP sheets mechanics of short termbehavior[J]. Journal of Engineering Mechanics-ASCE,1991,117(7):1652-1672.
    [43] Gentile C, Svecova D. Timber beams strengthened with GFRP Bars: development and applications[J].Journal of Composites for construction,2002,6(1):11-20.
    [44] L.De Lorenzis, V.scialpi. Analytical and experimental atudy on bonded-in CFRP bars in glulamtimber[J]. J Compos.,2005:279-289.
    [45] Lu X Z, Teng J G, Ye L P. Bond slip models for FRP sheets/plates externally bonded to concrete [J].Engineering Structures,2005,27(6):938-950.
    [46] Jed S. Lyons, Mallik R. Ahmed. Factors affecting the bond between polymer composites and wood[J].Journal of reinforced plastics and composite,2005:405-412.
    [47] K. U. Schober, K.Rautenstrauch. Post-strengthening of timber structures with CFRP’s[J]. Materials andStructures,2006,40:27-35.
    [48] Yeou-Fong Li, Yao-Ming Xie, Ming-Jer Tsai. Enhancement of the flexual performance of retrofittedwood beams using CFRP composite sheets[J]. Construction and Building Materials,2009,23(1):411-422.
    [49] Ludomir J., Jankowski. Experimental assessment of CFRP reinforced wooden beams by4-point bendingtests and photoelastic coating technique[J]. Materials and Structures,2010,43:141-150.
    [50] M. Naghipour, M. Nematzadeh, Q. Yahyazadeh. Analytical and experimental study on flexuralperformance of WPC-FRP beams[J]. Construction and Building Materials,2011,25(2):829-837.
    [51]周先雁,王兰彩.碳纤维复合材料(CFRP)在土木工程中的应用综述[J].中南林业科技大学学报,2007,27(5):26-32.
    [52] Junhui Jia. Mode-I Fatigue Fracture of Interface for Fiber-Reinforced Polymer Composite Bonded toWood[D]. West Virginia University. Morgantown.2002.
    [53]冯鹏,叶列平. FRP结构和FRP组合结构在工程中的应用与发展[C].见:第二界全国土木工程用纤维增强复合材料应用技术学术交流会论文集.昆明:清华大学出版社,2002,51-63.
    [54]祝金标,王柏生等.碳纤维布加固破损木梁的试验研究[J].工业建筑,2005,35(10):86-89.
    [55]王增春,南建林等. CFRP增强木梁的预应力施工方法[J].施工技术,2006,35(10):73-75.
    [56]李世宏,徐永红,李宝华.碳纤维布增强杨木LVL梁、柱试验研究[J].江苏建筑,2007,12(6):25-30.
    [57]杨会峰,刘伟庆. FRP增强胶合木梁的粘结剪应力分析[J].江苏大学学报,2007,28(1):72-77.
    [58]杨会峰,刘伟庆. FRP增强胶合木梁弯曲变形的解析分析[J].南京工业大学学报,2006,28(3):1-6.
    [59]杨会峰,刘伟庆. FRP增强胶合木梁的受弯性能研究[J].建筑结构学报,2007,28(1):64-71.
    [60]谢启芳,赵鸿铁,薛建阳等.碳纤维布加固木梁正截面抗弯承载力的计算[J].建筑结构,2008,38(5):76-79.
    [61]谢启芳,赵鸿铁,薛建阳等. CFRP布加固木梁界面粘结应力的试验研究和理论分析[J].建筑结构,2008,25(7):229-234.
    [62]朱雷,许清风,戴广海等. CFRP加固开裂短木柱性能的试验研究[J].建筑结构,2009,39(11):101-103.
    [63]宋二玮,陆伟东,岳孔. FRP增强胶合木梁弯曲蠕变性能研究[J].建筑结构,2011,41(S2):463-465.
    [64]张少实,庄茁.复合材料与粘弹性力学[M].机械工业出版社,2005.
    [65]王玉萍,华志为.均布荷载作用下预应力木梁承载能力的计算[J].长沙交通学院学报,2001,17(4):64-65.
    [66]《木结构设计手册》编辑委员会,木结构设计手册.中国建筑工业出版社,2006.
    [67]中华人民共和国标准.木结构设计规范(GB50005-2003).北京:中国建筑工业出版,2003.
    [68]吕建雄,鲍甫成,姜笑梅等.汽蒸处理对木材渗透性的影响[J].林业科学,1994,30(4):352-357.
    [69] Design Manual. Canada Wood Couneil,2005.
    [70]杨班权,陈光南,张坤等.图层/基体材料界面结合强度测量方法的现状与展望[J].力学进展,2007,37(1):67-79.
    [71] Bizindavyi L, Neale K W. Transfer lengths and bond strengths for composites bonded to concrete[J].Journal of Composites for Construction,1999(11):153-160.
    [72] Lu X Z, Teng J G, Ye L P. Bond slip models for FRP sheets/plates externally bonded to concrete[J].Engineering Structures,2005,27(6):938-950.
    [73] Khalifa A T, Al Khrdajit, Nanni A. Anchorage of surface mounted FRP reinforcement[J]. ConcreteInternational: Design and Construction,1999,21(10):49-54.
    [74] Chaj Es J, Finch W, Januszka F. Bond and force transfer of composite material plates bonded to concrete[J]. ACI Structural Journal,1996,93(2):208-217.
    [75] Triantafillou T C, Deskovic N. Prestressed FRP sheets as external reinforcement of wood members [J].Journal of Structural Engineering ASCE,1992,118(5):1270-1284.
    [76]方恩权,刘桂凤,张雷顺. CFRP-混凝土界面粘结性能试验研究[J].建筑材料学报,2007(10):32-36.
    [77]庄荣忠,杨勇新. BFRP与木材的有效粘结长度的试验[J].华侨大学学报,2010(1):74-77.
    [78]王占桥,高丹盈.碳纤维片材与混凝土有效粘结长度的试验研究[J].2009(2):36-39.
    [79] Daniel A. Tingley. The Stress-Strain Relationships in Wood and Fiber-Reinforced Plastic Laminate ofReinforced Glued-Laminated Wood Beams[D]. Oregon State University. June,1996.
    [80]陆新征,叶列平,滕锦光. FRP混凝土界面粘结滑移本构模型[J].建筑结构学报,2005(4):10-18.
    [81]关明杰.竹木复合材料湿热效应研究[D].2006.
    [82]郑锡涛,李野.湿热对单向复合材料层合板II型分层特性的影响[J].航空学报,1998,19(1):107-110.
    [83]马志宏,李金国.湿热环境应力下产品失效机理分析[J].环境技术,2006(5):31-33.
    [84] D. E. Grey. Development, tea and evaluation of material for extreme climatic conditions[J]. MachineDesign,1995,5(5):116-119.
    [85] Chaje M J, Finch W W, Januszka T F et al. Bond and force transfer of composite material plates bondedto wood [J]. ACI Structural Journal,1996,3(2):208-217.
    [86] Bizindavyi L, Neale K W. Transfer lengths and bond strengths for composites bonded to lumber [J].Journal of Composites for Construction,1999(11):153-160.
    [87]张洋,周兆兵,袁少飞等.速生杨树木材表面的动态润湿性能和自由能研究[J].南京林业大学学报,2008,32(1):49-52.
    [88]岳清瑞,杨勇新.不同环境条件下CFRP自然老化性能试验研究[J].工业建筑,2008,38(2):1-3.
    [89]王喜明.木材干燥学[M].北京:中国林业出版社,2007.
    [90] Rice J. Elastic fracture mechanics concepts for interfacial cracks[J]. J Appl Mech.1988,55:98-103.
    [91] Sun C T,Jih C J.On strain energy release rates for interfacial cracks in biomaterial media. Eng FractMech.1987,28:13-20.
    [92]黄维扬.工程断裂力学[M].航空工业出版社,1992.
    [93]邵卓平,任海青,江泽慧.柔度法标定木材断裂韧性的研究[J].林业科学,2001,(2).
    [94]王瑞等.织物增强复合材料层合板I型层间断裂特性[J].复合材料学报,2004,21(1).
    [95]刘宝琛.试验断裂、损伤力学测试技术[M].机械工业出版社,1994.
    [96]沈观林,胡更开.复合材料力学[M].清华大学出版社,2006.
    [97]王瑞,王广峰,郭兴峰.缝合层合板的I型层间断裂韧性研究[J].无机材料学报,2004,19(5):1123-1128.
    [98]管国阳,矫桂琼,潘文革.湿热环境下复合材料的混合型层间断裂特性研究[J].复合材料学报,2004,21(2).
    [99]陈瑛,乔丕忠,姜弘道等.双材料界面断裂力学模型与实验方法[J].力学进展,2008,38(1):53-60.
    [100]向毅斌,吴诗淳.双材料界面断裂韧性的测定方法[J].兵工学报,2002,23(1):112-115.
    [101] Comninou M. The interface crack[J]. Journal of Applied Mechanics,1977,44:631-636.
    [102] Devitt J.M., Schapery R.A., Bradley. A method for deternining mode I delamination fracture toughnessof elastic and viscoelastic composite materials[J]. Journal of Composite Materials,1980,14(5):270-285.
    [103]周海宾,费本华,任海青世界木结构房屋研究的最新进展[J].木材工业,2006,20(4):l-4.
    [104]张宁,岳清瑞.碳纤维布加固修复钢结构粘接界面受力性能试验研究[J].工业建筑,2003,33(5):71-73.
    [105] Chaj Es J, Finch W, Januszka F. Bond and force transfer of composite material plates bonded toconcrete [J]. ACI Structural Journal,1996,93(2):208-217.
    [106]庄荣忠,杨勇新. FRP加固木结构的研究和应用现状[J].四川建筑科学研究,2008,34(5):89-92.
    [107] Yong Hong. Fatigue and fracture of the FRP-Wood Interface: Experimental Characterization andPerformance Limits [D]. B. S. University of Maine. May,2003.
    [108]任惠韬,胡安妮,姚谦峰.湿热环境对FRP加固混凝土结构耐久性能的影响[J].哈尔滨工业大学学报,2006,38(11).
    [109]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [110]王逢瑚.木质材料流变学[M].哈尔滨:东北林业大学出版社,1997.
    [111]李大纲.意杨木材弯曲蠕变特性的初步研究[J].四川农业大学学报,1998,16(1):99-101.
    [112]David G. Hunt. The prediction of long-time viscoelastic creep from short-time data[J]. Wood Scienceand Technology,2004,38(2):479-492.
    [113]Robert J. Primary creep in Dongl as fir beams of commercial size and quality[J]. Wood Fiber S cience,1985,17(3):300-313.
    [114]Dean G D, Brought ON W. Linear Creep in Polypr Opylene[J]. Polymer Testing,2007,26(8):1068-1081.
    [115]Samarasinghe S,Loferski J R,Siegfried M. Creep modeling of wod using time-temperaturesuperposition[J].Wood and Fiber Science,1994,26(1):122-130.
    [116] Gary M. Raftery, Annette M. Harte, Peter D. Rodd. Bond quality at the FRP–wood interface usingwood-laminating adhesives[J]. International Journal of Adhesion&Adhesives,2009,29(1):101-110.
    [117]赵腾伦. ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [118]王玉镯. ABAQUS结构工程分析及实例详解[M].北京:中国建筑工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700