用户名: 密码: 验证码:
全氟辛烷磺酸发育神经毒性的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全氟辛烷磺酸(perfluorooctane sulfonate, PFOS),是2009年被列入POPs黑名单的持久性有机污染物,其发育神经毒性已被国内外学者广泛研究,但PFOS神经毒性的分子机制尚不全面,本项目的主要目的是从分子水平揭示PFOS引起发育神经毒性的机制、与神经内分泌系统的相互关系以及预测PFOS潜在干扰的神经功能损伤。主要内容包括:
     (1)利用基因芯片及RT-PCR技术对发育期大鼠进行体内染毒,建立交叉繁殖模型,观察PFOS胚胎期及泌乳期暴露对发育期大鼠脑基因表达谱的影响,找出对PFOS刺激的敏感发育期,从分子水平揭示PFOS的发育神经毒性。结果显示,PFOS出生前及出生后暴露造成大鼠脑组织基因表达的广泛改变。PFOS暴露后仔鼠在出生后第1、7天分别有842和634个基因显著性差异表达(P<0.05),而出生后35天仅有35个基因显著变化(P<0.05)。受PFOS潜在影响的神经功能和生物过程包括,中枢神经系统发育、神经发生、长时程增强或抑制(LTP/LTD)、学习与记忆、神经递质传递和突触可塑性等(P0.05)。结果提示PFOS的胚胎期暴露对幼鼠神经发育的潜在毒性效应强于泌乳期暴露;PFOS对发育过程中神经系统的影响可能通过干扰神经内分泌系统作为第一靶标既而影响整个神经系统的功能改变。(2)采用miRNA芯片技术从分子水平找出PFOS引发脑基因差异表达的可能因素,确定PFOS敏感性微小RNA及其靶标功能蛋白的表达变化,并与靶基因的变化情况联合分析,进一步揭示PFOS引发神经毒性的分子机制。结果显示,在出生1、7天分别有24、17个1niRNA显著性差异表达(P<0.05),其中5种差异表达高达5倍之多的miRNA分别为miR-466b、miR-672、miR-297、miR-674-3p及miR-207,它们均参与调控了神经发育及突触传递等关键神经功能的反应过程。出生1、7天,p75、TrkC与VGLUT2三种蛋白表达显著下调,且没有上调变化的差异表达蛋白。结果提示,PFOS暴露可能影响谷氨酸代谢循环及谷氨酸兴奋突触前末梢的形成,而miR-297与miR-214和miR-1可能参与了其中的调控过程;本研究中没有观察到miRNA对其靶基因的反向调控作用,推测可能由于神经细胞的自我调控反馈回路被激活,使得靶蛋白反作用地抑制了miRNA的正常调控效应;微小RNA分子可能在神经系统发育早期参与了PFOS诱导的神经毒性效应,其中对神经突触传递路径的影响最为显著。
     (3)利用放射免疫、RT-PCR及Elisa等方法研究PFOS对发育期大鼠THs及THs调控基因和蛋白表达的影响,建立PFOS与BDE-47的(一种TH类似物,其代谢物是甲状腺激素受体的激动剂)联合染毒模型,探讨PFOS发育神经毒性与甲状腺激素转录调控系统的相互作用,并观察PFOS与BDE-47的可能联合毒性效应。结果显示,PFOS与BDE-47单独及联合暴露对血清THs水平及TH应答基因与蛋白表达的作用受脑区、暴露时间、染毒物质等多种因素的影响。①两种污染物在血清及脑组织中的蓄积模式显著不同;②以相同剂量暴露PFOS与BDE-47,但它们对血清TT3与TT4水平的影响显著不同;③血清THs浓度变化及TH调控基因与蛋白的表达变化具有脑区特异性以及暴露时间与发育期依赖性;④PFOS与BDE-47在影响BDNF蛋白表达过程中相互作用,出生1天脑皮质BDNF表现出PFOS与BDE-47的增强作用,出生14天海马组织BDNF表现出它们的抑制作用。结果表明,PFOS与BDE-47可能对发育期脑组织BDNF相关功能的影响产生联合毒性效应,但这种效应的机制可能并不由TH调控路径介导,而可能与其它生物调控途径有关。
     (4)根据发育期大鼠脑组织差异表达InRNA、miRNA的相关基因组学和路径分析结果,以及神经功能蛋白的差异表达结果,进一步对其进行比较分析,找出PFOS暴露关联最显著的神经生物路径,揭示PFOS可能导致的发育神经疾病或神经功能障碍。结果显示,PFOS极有可能对LTP的产生、发展、维持等进程中的某些环节产生毒性效应,并且PFOS对mRNA表达的影响、对]miRNA调控的干扰作用以及对LTP相关蛋白或基因表达的影响可能是导致突触传递LTP改变的诱因。LTP是脑学习、记忆的细胞基础,大鼠发育早期暴露PFOS可能对突触传递的LTP产生影响,进而干扰神经系统的突触可塑性,威胁脑的学习、记忆功能,提示胚胎期及出生早期母体避免暴露PFOS对保护后代学习记忆能力及脑健康发育至关重要。
PFOS is considered as an emerging persistent organic pollutant in2009. Although the developmental neurotoxicity of PFOS exposure has been widely studied, little is known about how PFOS perturbs the developing central nervous system (CNS) at the molecular level. To investigate and compare the potential molecular effects of prenatal and neonatal exposure to PFOS in the developing nervous system, figure out the relationship of PFOS with neuroendocrine system, and predict the potentially interrupted neuro-dysfunction and nervous system impairment by PFOS exposure, we carried out this study containing that:
     (1) We evaluate the transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain by performing gene expression profiling in the cerebral cortex. Six Illumina RatRef-12Expression BeadChips were used to identify gene expression changes on postnatal days (PNDs)1,7, and35. To compare prenatal and lactational exposure contributions to transcriptional effects, a subset of altered genes obtained from the gene-profile study that represented neurobiological functions was analyzed using RT-PCR in a follow-up cross-foster study from PND1to21. It was observed that prenatal and postnatal exposure to PFOS caused potential neurotoxicity as demonstrated by developmentally different global transcriptional changes.842and634genes were significantly affected by PFOS at PND1and PND7, respectively (P<0.05), whereas only13genes were significantly affected at PND35. Significantly affected genes (P<0.05) were involved in central nervous system development, neurogenesis, long-term potentiation/depression, learning and memory, neurotransmission and synaptic plasticity. These results suggest that prenatal exposure was more effective in altering expression of several genes. Also, transcriptional effects of PFOS exposure on neurodevelopment occurred primarily by disrupting the neuroendocrine system.
     (2) We used eight miRNA arrays to profile the expression of brain miRNAs in neonatal rats on postnatal days (PND)1and7with0mg/kg (Control) and3.2mg/kg of PFOS feed treatment, and subsequently examined six potentially altered synapse-associated proteins to evaluate presumptive PFOS-responsive functions. A complex TH-mediated gene and protein response to BDE-47and/or PFOS exposure that depends on the region, time and chemical characteristics was observed. The results revealed that1) a significant accumulation difference occurred between the two chemicals;2) On a equimolar basis, BDE-47and PFOS affected serum TT3and TT4differently in adults and offspring;3) there were region-specific and exposure-and time-dependent alterations in TH concentrations and tested gene and protein expression levels; and4) interaction for the combined chemicals was only observed for BDNF, which exhibited a synergistic effect on PND1in the cortex and an antagonistic effect on PND14in the hippocampus. Our results suggest that little combined interaction of co-exposures was observed except on BDNF. The underlying mechanisms remain uncertain but seem to involve more actions than just TH-regulated pathway.
     (3) To investigate whether an interaction existed between PFOS and BDE-47on TH-mediated pathways, adult female Wistar rats were exposed to3.2and32mg/kg of PFOS or BDE-47in their diet, and co-exposed to a combination of each chemical (3.2mg/kg) from gestational day (GD)1to postnatal day (PND)14. Serum and brain tissues from both male and female neonates were collected on PND1,7, and14to examine TH-regulated gene and protein expression. Twenty-four brain miRNAs on PND1and seventeen on PND7were significantly altered with PFOS exposure (P<0.05), of which, miR-466b,-672, and-297that are critical in neurodevelopment and synapse transmission showed high reduction by more than five fold. Protein levels of p75, TrkC, and VGLUT2were significantly decreased and no protein level increased with PFOS exposure during PND1to7. Our findings indicate that PFOS has the potential to effect the formation of glutamate excitatory pre-synaptic terminals, which may involve the functional regulation of miR-297,-214and-1. Negative regulation of miRNA was rarely observed in the present study, suggesting a possible fail-safe mechanism for the interaction of miRNA and its targets. These data identify the role of miRNAs in PFOS-responsive neurobiological processes, especially the synaptic pathway.
     (4) Based on the GO and Pathway results associated with differentially expressed mRNAs and miRNAs, and results of neuro-functional protein changes, we further explored the common associated neurological pathways by these miRNAs, mRNAs and proteins with attempt to find out the most potential neurological diseases and neuro-dysfunctions involved in PFOS exposure. It was found that PFOS has the potential of affecting the initiation, development and lasting process of LTP to make a toxic action. Moreover, the underlying mechanism of PFOS-induced potential LTP is likely related to the induction of changes in mRNA and miRNA levels, and alteration of LTP-associated gene and protein expressions. As cell LTP is important in brain functions such as learning and memory, the potential toxicity of PFOS exposure on LTP processes may translate into other neuro-disorders such as interruption of synaptic plasticity and threaten to impair the learning and memory ability, suggesting that protection of offspring from PFOS prenatal and postnatal exposure is very critical for the healthy development of brain.
引文
[1]Giesy J P, Kannan K. Perfluorochemical surfactants in the environment [J]. Environ Sci Technol, 2002,36:146-152.
    [2]Berthiaume J, Wallace K B. Perfluorooctanoate, pertlourooctanesulfonate, and N-ethylpertluorooctanesulfonamido ethanol; peroxisome proliferation and mitochondrial biogenesis [J]. Toxicology Letters,2002,129:23-32.
    [3]Calafat A M, Needham L L, Kuklenyik Z, et al. Perfluorinated chemicals in selected residents of the American continent [J]. Chemospherem,2006,63:490-496.
    [4]Kannan K, Tao L, Sinclair E, et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain [J]. Arch Environ ContamToxicol,2005,48:559-566.
    [5]Smithwick M, Muir D C, Mabury S A, et al. Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus) [J]. Environ Toxicol Chem,2005,24:981-986.
    [6]Tomy G T, Budakowski W, Halldorson T, et al. Fluorinated organic compounds in an eastern Arctic marine food web [J]. Environ Sci Tecnol,2004,38:6475-6481.
    [7]Kannan K, Choi J W, Iseki N, et al. Concentrations of perfluorinated acids in livers of birds from Japan and Korea [J]. Chemoshpere,2002,49:225-231.
    [8]Jones P D, Hu W, De Coen W, Newsted J L, Giesy J P. Binding of perfluorinated fatty acids to serum proteins [J]. Environ Toxicol Chem,2003,22:2639-2649.
    [9]Taniyasu S, Kannan K, Horii Y, et al. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan [J]. Environ Sci Technol,37:2634-2639.
    [10]Renner R.2001. Growing concern over perfluorinated chemicals [J]. Environ SciTechnol,2003, 35:154A-160A.
    [11]金一和,汤先伟,曹秀娟等.全球性全氟辛烷磺酰基化合物环境污染及其生物效应[J].自然杂志.2002,24:344—348.
    [12]de Vos M G, Huijbregts M A, van den Heuvel-Greve M J, et al. Accumulation of perfluorooctane sulfonate (PFOS) in the food chain of the Western Scheldt estuary:Comparing field measurements with kinetic modeling [J]. Chemosphere,2008,70:1766-1773.
    [13]Anttila M A, Kosma V M, Hongxiu J, et al. WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer [J]. Br J cancer,1999,79:1870.
    [14]EI-Deiry W S, Tokino T, Velculescv V E, et al. WAF1 a potential mediator of p53 tumor suppression [J]. Cell,1993,75:817-825.
    [15]Fuentes S, Colomina M T, Rodriguez J, Vicens P, Domingo J L. Interactions in developmental toxicology:concurrent exposure to perfluorooctane sulfonate (PFOS) and stress in pregnant mice [J]. Toxicol Lett,2006,164:81-89.
    [16]Butenhoff J L, Ehresman D J, Chang S C, et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:developmental neurotoxicity [J]. Reprod Toxicol. 2009,27:319-330.
    [17]Chang S C, Ehresman D J, Bjork J A, et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:Toxicokinetics, thyroid hormone status, and related gene expression [J]. Reproductive Toxicology,2009,27,387-399.
    [18]Johansson N, Fredriksson A, Eriksson P, et al. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice [J]. Neuro Toxicology,2008,29,160-169.
    [19]Kamp F, Hamilton J A. How fatty acids of different chain length enter and leave cells by free diffusion [J]. Prostaglandins, Leukotrienes and Essential Fatty Acids.2006,75:149-159.
    [20]Kudo N, Suzuki E, Katakura M, et al. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats [J]. Chem Biol Interact,2001,134:203-216.
    [21]Kannan K, Corsolini S, Falandysz J, et al. Perfluorooctane sulfonate and related fluorochemicals in human blood from several countries [J]. Environ Sci Technol,2004,38:4489-4449.
    [22]LEO W Y, YEUNG M K. Perfluorooctanesulfonate and related fluorochemicals in human blood samples from china[J]. Environ Sci Technol,2006,40:715-720.
    [23]金一和,董光辉.沈阳和重庆人群血清中全氟辛烷磺酸和全氟辛酸的污染水平比较研究[J].卫生研究,2006,35:560-563.
    [24]Fromme H, Midasch O. Occurrence of perfluorinated substances in an adult German population in southern Bavaria[J]. Arch Occup Environ Health,2007,80:313-319.
    [25]Harada K, Norimitsu S. The influence of time, sex and geographic factors on levels of erfluorooctane sulfonate and perfluorooctanoae in human serum over the last 25 years[J].Occup Health 2004,46:141-147.
    [26]Harada K, Koizumi A. Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan[J]. Chemosphere,2007, 66:293-301.
    [27]Gerhard A. Wiesmuller. et al. The Environmental Specimen Bank for Human Tissues as part of the German Environmental Specimen Bank[J]. Environ Health,2007,210:299-305.
    [28]Anna Karrman, Jochen F. et al. Levels of 12 Perfluorinated chemicals in pooled australian serum, collected 2002-2003, in relation to age, gender, and region [J]. Environ Health,2006,40: 3742-3748.
    [29]Cariton Kubwabo, Natalia Vais and Frank M. Benoit. A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians[J]. Environ. Monit.,2004,6:540-545
    [30]Antonia M. CALAFAT, et al. Serum Concentrations of 11 Polyfluoroalkyl Compounds in the U.S. Population:Data from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 [J]. Environ Sci Technol,2007,41:2237-2242.
    [31]胡存丽.仲来福.全氟辛烷磺酸和全氟辛酸毒理学研究进展[J].中国工业医学杂志2006,12,19:354-358.
    [32]ANTONIA M. CALAFAT. et al. Perfluorochemicals in Pooled Serumto PFCs. Samples from United States Residents in 2001 and 2002[J]. Environ.Sci.Technol.2006,40:2128-2134.
    [33]金一和,汤先伟.全球性全氟辛烷磺酰基化合物环境污染及其生物效应[J].自然杂志,2002,24:344-348.
    [34]Ingrid Ericsona, Mercedes Gomezb, et al. Perfluorinated chemicals in blood of residents in Catalonia (Spain) in relation to age and gender:A pilot study [J].2007,1:3.
    [35]Anna K, Ingrid E, et al. Exposure of Perfluorinated Chemicals through Lactation:Levels of Matched Human Milk and Serum and a Temporal Trend,1996-2004, in Sweden[J]. Environmental Health Perspectives,2007,2,115:226-230.
    [36]Keerthi S, Guruge, Sachi T, et al. Perfluorinated organic compounds in human blood serum and seminal plasma:a study of urban and rural tea worker populations in Sri Lanka[J]. Environ Monit, 2005,7,371:377-371.
    [37]Olsen G W, Logan P W, Hansen K J, et al. An occupational exposure assessment of a perfluorooctanesulfonyl fluoride production site:biomonitoring [J]. AIHA J (Fairfax, Va),2003, 64:651-659.
    [38]Hansen K J, Clemen L A, Ellefson M E and Johnson H O:Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices [J]. Environ sci Technol,2001, 35,766-770.
    [39]Olsen G W, Burris J M, Mandel J H, et al. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees [J]. J Occup Environ Med,1999, 41:799-806.
    [40]Geary W O, Timothy R C, et al. Perfluorooctanesulfonate and Other Fluorochemicals in the Serum of American Red Cross Adult Blood Donors [J]. Environmental Health Perspectives,2003, 16:1892-1901.
    [41]Julie R, Thibodeaux R, Hanson G.et al. Exposure to Perfluorooctane Sulfonate during Pregnancy in Rat and Mouse I:Maternal and Prenatal Evaluations [J]. toxicological sciences,2003,74: 369-381.
    [42]Glaza S M. Acute oral toxicity study of T-6669 in rats [Z]. Corning Hazalton Inc, CHW 61001760.
    [43]金一和,李莹.全氟辛磺酸对大鼠脑组织谷氨酸神经元影响的免疫组织化学研究[J].卫生毒理学杂志.
    [44]刘冰,于麒麟,金一和等.全氟辛烷磺酸对大鼠海马神经细胞内钙离子浓度的影响[J].毒理学杂志,2005,19:225.
    [45]Lau C, Thibodeaux J R, Hanson R G, et al. Exposure to Perfluorooctane Sulfonate during Pregnancy in Ratand Mouse. Ⅱ:Postnatal Evaluation[J]. Toxicological Sicences,2003,74: 382-392.
    [46]Shi X, Du Y, Lam P K, et al. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol,2008,230,23-32.
    [47]Bjork J A, Lau C, Chang S C,et al. Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression [J]. Toxicology,2008,251,8-20.
    [48]Luebker D J, Case M T, York R G, et al. Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats [J]. Toxicology 2005,215,126-148.
    [49]Austin M E, Kasturi B S, Barber M et al. Neuroendocrine Effects of Perfluorooctane Sulfonate in Rats[J]. Environmental Health Perspectives,2003,111:1485-1489.
    [50]Zheng Q, Wang X J, GOEAST:a web-based software toolkit for Gene Ontology enrichment analysis [J].2008,36:358-363.
    [51]Malone J H, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome [J]. BMC Biol,2011,9:34.
    [52]Shan J, Feng L, Luo L, et al. MicroRNAs:potential biomarker in organ transplantation [J]. Transpl Immunol,2011,24:210-215.
    [53]Biggar K K, Storey K B. The emerging roles of microRNAs in the molecular responses of metabolic rate depression [J]. J Mol Cell Biol,2011,3:167-175.
    [54]Ferdin J, Kunej T, Calin G A. Non-coding RNAs:identification of cancer-associated microRNAs by gene profiling [J]. Technol Cancer Res Treat,2010,9:123-138.
    [55]Lj J, Lin Q, Yoon H G, et al. Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor[J].Mol Cel Biol,2002,22:5688-5697.
    [56]Takeuchi Y, Murata Y, Sadow P, et al. Steroid receptor coactivator-1 deficiency causes variable alterations in the modulation of T3-regulated transcription of genes in vivo [J]. Endocrinology, 2002,143:1346-1352.
    [57]Marimuthu A, Feng W, Tagami T, et al. TR surfaces and conformations required to bind nuclear receptor corepressor [J]. Mol Endocrinol,2002,16:271-286.
    [58]Kembra LA. model of the developm ent of the brain as a construct of the thyroid system [J]. Environ health perspect,2002,110:337-348.
    [59]Oppenheimer JH, Samuels HH. Molecular basis of thyroid hormone action[C].//Schwartz HL. Effect of thyroid hormone on growth and development[M]. New York:Acadenicpress,1983, 413-444.
    [60]Thompson C C, Potter G B. Tyroid hormone action in neurodevelopment[J]. Cereb Cortex,2000, 10:939-945.
    [61]Koibuchi N, Chinw W. Tyroid hormone action and brain development[J]. Trend Endocrinol Metab,2000,11:123-128.
    [62]Obernosterer G, Leuschner P J, Alenius M, et al. Post-transcriptional regulation of microRNA expression[J]. RNA,2006,12:1161-1167.
    [63]Gregory R I, Yan K P, Amuthan G, et al. The Microprocessorcomplex mediates the genesis of microRNAs[J]. Nature,2004,432:235-240.
    [64]Zarnore P D, Haley B. The big world of small RNAs[J]. Science,2005,309:1519-1524.
    [65]李海英,杨峰山,邵淑丽,等.现代分子生物学与基因工程.北京,.化学工业出版社,2008.
    [66]Cummins J M, R J, Paqliarini R, et al. The colorectal microRNAome[J]. PNAS,2006,103: 3687-3692.
    [67]Couzin J. Break through of the year:Small RNAs make big splash Science [J].2002,298: 2296-2297.
    [68]Hu W, Jones P D, Celius T, et al. Identification of genes responsive to PFOS using gene expression profiling[J]. Environ Toxicol Pharmacol,2005,19,57-70.
    [69]Thibodeaux J R. Perfluorooctane sulfonate-induced thyroid hormone disruption in the rat[D]. USA, North Carolina State University,2005.
    [70]Moffat I D, Boutros P C, Celius T,et al. microRNAs in adult rodent liver are refractory to dioxin treatment[J]. Toxicol Sci,2007,99,470-487.
    [71]Sathyan P, Golden H B, Miranda R C, et al. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure:evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium [J]. J Neurosci,2007,27,8546-8557.
    [72]Zhang B, Pan X. RDX induces aberrant expression of microRNAs in mouse brain and liver [J]. Environ Healt Perspect,2009,117,231-240.
    [73]Pillai R S, Artus C G, Filipowicz W,et al. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA,2004,10,1518-1525.
    [74]Harada K, Xu F, Ono K,et al. Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun,2005,329,487-494.
    [75]Chang S C, Thibodeaux J R, Eastvold M L, et al. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS) [J]. Toxicology,2008,243, 330-339.
    [76]Liao C Y, Li X Y, Wu B, et al. Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel [J]. Environ Sci Technol,2008,42,5335-5341.
    [77]Johansson N, Eriksson P, Viberg H. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain [J]. Toxicol Sci,2009,108,412-418.
    [78]Midasch O, Drexler H, Hart N, et al. Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate:a pilot study [J]. Int Arch Occup Environ Health,2007,80,643-648.
    [79]Karrman A, Ericson I, van Bavel B, et al. Exposure of perfluorinated chemicals through lactation: levels of matched human milk and serum and a temporal trend,1996-2004 in Sweden [J]. Environ Health Perspect,2007,115,226-230.
    [80]Hu W, Jones P D, DeCoen W, et al. King, L. Alterations in cell membrane properties caused by perfluorinated compounds [J]. Comp Biochem Physiol C:Pharmacol Toxicol 2003,135,77-88.
    [81]Hu W Y, Jones P D, Upham B L, et al. Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo [J]. Toxicol Sci,2002,68,429-436.
    [82]Yeung L W Y, Guruge K.S, Yamanaka N, et al. Differential expression of chicken hepatic genes responsive to PFOA and PFOS [J]. Toxicology,2007,237,111-125.
    [83]Krovel A. V, Softeland L, Torstensen, B, Olsvik P. A. Transcriptional effects of PFOS in isolated hepatocytes from Atlantic salmon Salmo salar L [J]. Comp. Biochem. Physiol. C:Pharmacol. Toxicol.2008,148,14-22.
    [84]Grasty R C, Bjork J A, Wallace K B,et al. Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat [J]. Birth Defects Research, Part B 2005,74, 405-416.
    [85]Beeson J, Gondo Y, Sueoka N. Selection of rat genomic clones transcribed into brain polysomal RNA [J]. Gene,1983,24,237-244.
    [86]Barbara D A, Cynthia J W, Kaberi P D, et al. Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferators activated receptor-alpha (PPARy) in the mouse [J]. Reproductive Toxicology,2009,27:258-265.
    [87]Luebker D J, York R G, Hansen K J, et al. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats:dose-response, and biochemical and pharamacokinetic parameters [J]. Toxicology,2005,215:149-169.
    [88]Borg D, Bogdanska J, Sundstrom M, et al. Perinatal tissue distribution of perfluorooctane sulphonate (PFOS) in mice [J]. Toxicology Letters,2009,189:147.
    [89]Grasty R C, Wolf D C, Grey E,et al. Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat [J]. Birth Defects Res B Dev Reprod Toxicol,2003,68:465-471.
    [90]Yahia D, Tsukuba C, Yoshida M, et al. Neonatal death of mice treated with perfluorooctane sulfonate [J]. The Journal of toxicological sciences,2008,0533:219-226.
    [91]Fuentes S, Colomina M T, Vicens P,et al. Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice[J]. Toxicol Lett,2007,171:162-170.
    [92]Slotkin T A, MacKillop E A, Melnick R L, et al. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro [J]. Environ Health Perspect,2008,116:716-722.
    [93]Du Y, Shi X, Liu C, et al. Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish:a partial life-cycle test [J]. Chemosphere,2009,74:723-729.
    [94]Tan, Y M, Clewell H J, Andersen M E, et al. Time dependencies in perfluorooctylacids disposition in rat and monkeys:A kinetic analysis [J]. Toxicol Lett 2008,177,38-47.
    [95]Rice D, Barone S J. Critical periods of vulnerability for the developing nervous system:evidence from humans and animal models [J]. Environ Health Perspect, Suppl,2000,3:511-533.
    [96]Hansen K J, Clemen L A, Ellefson M E, et al. Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices [J]. Environ Sci Technol,2001,35,766-770.
    [97]Stead J D, Neal C, Meng F, et al. Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci, 2006,26,345-353.
    [98]Yu W G, Liu W, and Jin, Y H. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ Toxicol, Chem,2009,28,990-996.
    [99]Shipley J M, Hurst C H, Tanaka S S, et al. trans-activation of PPARalpha and induction of PPARalpha target genes by perfluorooctane-based chemicals. Toxicol Sci,2004,80:151-160.
    [100]Luebker D J, Hansen K J, Bass N M, et al. Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology,2002,176:175-185.
    [101]Hennemann G, Docter R, Friesema E C, et al. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. EndocrRev,2001,22:451-476.
    [102]Andrew, P. Halestrap. What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 2009,46,821-831.
    [103]Sweatt, J. Toward a molecular explanation for long-term potentiation. Learn Mem.1999,6, 399-416.
    [104]Malenka R, Bear M. LTP and LTD:an embarrassment of riches. Neuron,2004,44,5-21.
    [105]Kourrich S, Glasgow S D, Caruana D A, et al. Postsynaptic Signals Mediating Induction of Long-Term Synaptic Depression in the Entorhinal Cortex [J]. Neural Plasticity, doi:10.1155.
    [106]Wade S, Bleiberg-Daniel F, Le Moullac B, et al. Value of serum transthyretin measurements in the assessment of marginal protein-energy malnutrition in rats [J]. Metabolism and Hormonal Regulation,1998,15,1002-1009.
    [107]Li W, Zha J, Spear PA, et al. Changes of thyroid hormone levels and related gene expression in Chinese rare minnow (Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery [J]. Aquat Toxicol,2009,92:50-57.
    [108]Moullac B, Gouache P, Bleiberg-Daniel F. Regulation of hepatic transthyretin messenger RNA levels during moderate protein and food restriction in rats [J]. J Nutr,1992,122:864-870.
    [109]Brouillette J, Quirion R. Transthyretin:a key gene involved in the maintenance of memory capacities during aging [J]. Neurobiol Aging,2008,29:1721-1732.
    [110]Palha JA, Nissanov J, Fernandes R, et al. Thyroid hormone distribution in the mouse brain:the role of transthyretin [J]. Neuroscience,2002,113:837-847.
    [111]Ben-Hur T, Einstein O, Mizrachi-Kol R, et al. Transplanted multi-potential neural precursor cells migrate into the inflamed white matter in response to experimental auto immune encephalomyelitis[J]. Glia,2003,41:73-80.
    [112]Einstein O, Fainstein N, Vaknin I, et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression [J]. Ann Neurol,2007,61:209-218.
    [113]Einstein O, Grigoriadis N, Mizrachi-Kol R, et al. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental auto immune encephalomyelitis[J]. Exp Neurol,2006,198:275-284.
    [114]Lee J, Gravel M, Zhang R, et al. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol,2005,170,661-673.
    [115]Yu, W G, Liu W, Jin Y H, et al. Nakayama, S. F. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development:A cross-foster study on chemical burden and thyroid hormone system [J]. Environ Sci Technol,2009,43,8416-8422.
    [116]Ibarrola N, Rodriguez-Pena A. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development [J]. Brain Research 1997,752,285-293.
    [117]盛祖杭,陆佩华.神经元突触传递的细胞和分子生物学:神经生物学基本原理.上海,上海科学技术出版社.2008.
    [118]Murphy K P S J, Reid G P, Trentham D R, et al. Activation of NMDA receptor is ecessary for the indution of associative long-term potentiation in area CA1 of the rat hippocampal slice [J]. J Physiol Lond,1997,504:379-385
    [119]Rison R A, stanton P K. Long-term potentiation and N-methyl-d-aspartate receptors:foundation of memory and neurologic disease? [J] Neurosci biobehav rev,1995,19:533-552.
    [120]Giese K P, Fedorov N B, Filipkowski R K, et al. Autophosphorylation at Thr286 of the alpha calcium in LTP and learning [J]. Science,1998,2779:807-813.
    [121]Barria A, Muller D, Derkach V, et al. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KⅡ during long-term potentiation [J]. Science,1997,276:2042-2045.
    [122]Yu X M, Rand A, Gary J K, et al. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science,1997,275:674-678.
    [123]Brann D W, Zamorano P L, Chorich L P, et al. Steroid hormone effects on NMDA receptor binding and NMDA receptor mRNA levels in the hypothalamus and cerebral cortex of the adult rat [J]. Neuroendocrinology 1993,58,666-672.
    [124]Gore A C, Oung T, Woller M J, et al. Age-related changes in hypothalamic gonadotropin-releasing hormone and N-Methyl-D-Aspartate receptor gene expression, and their regulation by oestrogen, in the female rat [J]. Journal of Neuroendocrinology,2002,14, 300-309.
    [125]Gascon S, Deogracias R, Sobrado M, et al. Transcription of the NR1 Subunit of the N-Methyl-D-aspartate receptor is down-regulated by excitotoxic stimulation and cerebral ischemia [J]. J Biol Chem,2005,280,35018-35027.
    [126]Lim G, Wang S, Zeng Q, et al. Expression of spinal NMDA receptor and PKCy after chronic morphine is regulated by spinal glucocorticoid recepto r [J]. J Neurosci,2005,25,11145-11154.
    [127]Cooke S F, Bliss T V P. Plasticity in the human central nervous system [J]. Brain,2006,129, 1659-1673.
    [128]Lee P R, Brady D, Koenig J I. Corticosterone alters N-methyl-D-aspartate receptor subunit mRNA expression before puberty [J]. Molecular Brain Research,2003,115,55-62.
    [129]Sircar, R. Developmental maturation of the N-methyl-D-aspartic acid receptor channel complex in postnatal rat brain [J]. Devi Neuroscience,2000,18,121-131.
    [130]Liao C Y, Cui L, Zhou Q f, et al. Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons [J]. Environ Toxicol Pharmacol, 2009,27,338-344.
    [131]孙大业,郭艳林,马力耕.细胞信号转导.北京:科学出版社,1998.
    [132]VannucchJ M G. Receoptors in interstitial cells of cajal:identification and possible physiological roles[J]. J Microsc Res Tech,1999,47:325-335.
    [133]Stefanik P, Macejova D, Mravec B, et al. Distinct modulation of a gene expression of the type 1 and 2 IP3 receptors by retinoic acid in brain areas. Neurochemistry International,2005,46, 559-564.
    [134]Lencesova L, Ondrias K, Micutkova L. Immobilization stress elevates IP3 receptor mRNA in adult rat hearts in a glucocorticoid-dependent manner [J]. FEBS Letters,2002,531,432-436.
    [135]Sohlenius A K, Andersson K, Olsson J, et al. Peroxisome proliferation and associated effects caused by perfluorooctanoic acid in vitamin A-deficient mice [J]. Chemico-Biological Interactions,1995,98,45-50.
    [136]Dutra F, Quintans G, Banchero G. Lesions in the central nervous system associated with perinatal lamb mortality [J]. Aust Vet J,2007,85:405-413.
    [137]Wilson W R, Geraci J E, Danielson G K, et al. Anticoagulant therapy and central nervous system complications in patients with prosthetic valve endocarditis [J]. Circulation,1978,57: 1004-1007.
    [138]White H, Pieper C, Schmader K. The association of weight change in Alzheimer's disease with severity of disease and mortality:A longitudinal analysis [J]. Journal of the American Geriatrics Society,1998,46:1223-1227.
    [139]Haughey K G. Vascular abnormalities in the central nervous system associated with perinatal lamb mortality:association of the abnormalities with recognised lesions [J]. Aust Vet J,1973, 49:9-15.
    [140]Olsen L, Klausen M, Helboe L, et al. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats[J] PLoS One,2009,4, e7225.
    [141]Wahid F, Shehzad A, Khan T, et al. MicroRNAs:synthesis, mechanism, function, and recent clinical trials[J]. Biochim Biophys Acta,2010,1803:1231-1243.
    [142 Sathyan P, Golden H B, Miranda R C. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure:evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium[J]. J Neurosci,2007,27,8546-8557.
    [143]Hua Y J, Tang Z Y, Tu K, et al. Identification and target prediction of miRNAs specifically expressed in rat neural tissue[J] BMC Genomics,2009,10,214.
    [144]Konecna A, Heraud J E, Schoderboeck L, et al. What are the roles of microRNAs at the mammalian synapse? [J] Neurosci Lett,2009,466,63-68.
    [145]Lugli G, Torvik V 1, Larson J, et al. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem,2008,106,650-661.
    [146]Zeng H C, Zhang L, Li Y Y, et al. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure[J]. Neurotoxicology,2011,32,130-139.
    [147]Lian J, Zhang X, Tian H, et al. Altered microRNA expression in patients with non-obstructive azoospermia [J]. Reprod Biol Endocrinol,2009,7,13.
    [148]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method [J]. Methods,2001,25,402-408.
    [149]Liu X H, Liu W, Jin Y H, et al. Effects of subchronic perfluorooctane sulfonate exposure of rats on calcium-dependent signaling molecules in the brain tissue [J]. Arch Toxicol,2010,84, 471-479.
    [1505]Adams B D, Furneaux H, Bruce A. White The Micro-Ribonucleic Acid (miRNA) miR-206 Targets the Human Estrogen Receptor-a (ERa) and Represses ERa Messenger RNA and Protein Expression in Breast Cancer Cell Lines [J]. J Mol Endocrinol 2007,21,1132-1147.
    [151]Becskei, A, Serrano, L. Engineering stability in gene networks by autoregulation [J]. Nature, 2000,405,590-593.
    [152]Yu Z, Wang C G, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation [J]. J Cell Biol,2008,182,509-517.
    [153 Lee S T, Chu K, Im W S, et al. Altered microRNA regulation in Huntington's disease models [J]. Exp Neurol,2011,227,172-179.
    [154]Li J L, Fujiyama F, Kaneko T, et al. Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat. J Comp Neurol,2003,457:236-259.
    [155]Chen G H, Wang Y J, Qin S, et al. Age-related spatial cognitive impairment is correlated with increase of synaptotagmin 1 in dorsal hippocampus in SAMP8 mice [J]. Neurobiol Ageing, 2007,28:611-618.
    [156]Dechant G, Barde Y A. The neurotrophin receptor p75 (NTR):novel functions and implications for diseases of the nervous system [J]. Nat Neurosci,2002,5:1131-1136.
    [157]Baxter G T, Radeke M J, Kuo R C, et al. Feinstein, signal transduction mediated by the truncated trkB receptor isoforms, trkB-T1 and trkB·T2 [J]. Neuroscience,1997,17:2683-2690.
    [158]Ultsch M H, Wiesmann C, Simmons L C, et al. Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC [J] J Mol Biol,1999,290:149-159.
    [159]Naumann T, Casademunt E, Hollerbach E, et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons [J]. J Neurosci,2002,22:2409-2418.
    [160]Kim J, Inoue K, Ishii J,et al. A MicroRNA feedback circuit in midbrain dopamine neurons [J]. Science,2007,317,1220-1224.
    [161]Sylvestre Y, De Guire, V, Querido E, et al. An E2F/miR-20a autoregulatory feedback loop [J]. J Biol Chem,2007,282,2135-2143.
    [162]Rau C S, Jeng J C, Jeng S F, et al. Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats [J]. BMC Musculoskelet Disord,2010,11, 181.
    [163]Vasudevan S, Tong Y, Steitz J. Switching from repression to activation:microRNAs can up-regulate translation [J]. Science,2007,318,1931-1934.
    [164]Takahashi H, Arstikaitis P, Prasad T,et al. Postsynaptic TrkC and presynaptic PTPo function as a bidirectional excitatory synaptic organizing complex [J]. Neuron,2011,69,287-303.
    [165]Miyazaki T, Fukaya M, Shimizu H, et al. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum [J]. Eur J Neurosci, 2003,17,2563-2572.
    [166]Wallen-Mackenzie A, Wootz H, Englund H. Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse:what have we learnt about functional glutamatergic neurotransmission? [J] Ups J Med Sci,2010,115,11-20.
    [167]Chen H, Shalom-Feuerstein R, Riley J, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro [J]. Biochem Biophys Res Commun, 2001.
    [168]Liu N K, Wang X F, Lu Q B, et al. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol,2009,219,424-429.
    [169]Eriksson P, Jakobson E, Fredriksson A. Brominated flam e retardants:a novel class of developmental neumtoxicants in our envimnment[J]. Environ Health Perspect,2001,109: 903-908.
    [170]Ellis-Hutchings R G, Chert G N, Hanna L A, et al. Polybrominate diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development[J]. Toxicol Appl Pharmacol,2006,215(2):135-145
    [171]Richardson V M, Staskal DnF, Diliberto J J, et al. Efects of 2,2,4,4-tetra-bmmodiphenyl ether on nuclear receptor regulated genes:implications for thyroid organ disruption [J]. Organohalogen Compd,2006,68:403-406.
    [172]Dingemans M M L, Ramakers G M J, Gardoni F, et al. Neonatal exposure to bmminated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus[J]. Environ Health Perspect,2007,115:865-870.
    [173]Lema S C, Dickey J T, Schultz I R, et al. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain [J]. Environ Health Perspect,2008,116,1694-1699.
    [174]Hovander L, Athanasiadou M, Asplund L, et al. Extraction and cleanup methods for analysis of phenolic and neutral organohalogens in plasma [J]. J Anal Toxicol,2000,24,696-703.
    [175]Skarman E, Darnerud P O, Ohrvik H,et al. Reduced thyroxine levels in mice perinatally exposed to polybrominated diphenyl ethers [J]. Environ Toxicol Phar,2005,19,273-281.
    [176]Talsness C E, Kuriyama S N, Sterner-Kock A, et al. In utero and lactational exposures to low doses of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat offspring [J]. Environ Health Perspect,2008,116,308-314.
    [177]Viberg H, Fredriksson A, Jakobsson E, et al. Neonatal exposure to polybrominated diphenyl ethers (PBDE-153) disrupts spontaneous behavior, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice [J]. Toxicol Appl Pharmacol,2003,192, 95-106.
    [178]Viberg H, Mundy W, Eriksson P. Neonatal exposure to decabrominated diphenyl ether (BDE-209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis [J]. Neurotoxicology,2008,29,152-159.
    [179]Yu W G, Liu W, and Jin Y H, Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ Toxicol Chem,2009,28,990-996.
    [180]Gauger K J, Kato Y, Haraguchi K, et al. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors [J]. Environ Health Perspect,2004,112,516-523.
    [181]Roosens L, D Hollander W, Bervoets, L, et al. Brominated flame retardants and perfluorinated chemicals, two groups of persistent contaminants in Belgian human blood and milk [J]. Environ Pollut,2010 158,2546-2552.
    [182]Lind Y, Darnerud P O, Atuma S, et al. Polybrominated diphenyl ethers in breast milk from Uppsala Country, Sweden [J]. Environ Res,2003,93,186-194.
    [183]Mazdai A, Dodder N G, Abernathy M P, et al. Polybrominated diphenyl ethers in the maternal and fetal blood samples [J]. Environ Health Perspect, 2003,111,1249-1252.
    [184]Hovander L, Athanasiadou M, Asplund L, et al.2000. Extraction and cleanup methods for analysis of phenolic and neutral organohalogens in plasma[J]. J Anal Toxicol,24,696-703.
    [185]Weijs L, Das K, Neels H,et al. Occurrence of anthropogenic and naturally-produced organohalogenated compounds in tissues of Black Sea harbour porpoises [J]. Mar Pollut Bull, 2010,60,725-731.
    [186]Gebbink W A, Sonne C, Dietz R, et al. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus) [J]. Environ Pollut,2008,152,621-629.
    [187]Szabo D T, Richardson V M, Ross D G, et al. Effects of perinatal PBDE exposure on hepatic phase Ⅰ, phase Ⅱ, phase Ⅲ, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups [J]. Toxicol Sci,2009,107,27-39.
    [188]Watanabe M X, Jones S P, Iwata H, et al. Effects of co-exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and perfluorooctane sulfonate or perfiuorooctanoic acid on expression of cytochrome P450 isoforms in chicken (Gallus gallus) embryo hepatocyte cultures [J]. Comp Biochem Physiol C Toxicol Pharmacol,2009,149,605-612.
    [189]Iwamuro S, Yamada M, Kato M, et al. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and down-regulation of retinoid X receptor gamma in Xenopus tail culture [J]. Life Sci,2006,79,2165-2171.
    [190]Bagamasbad P, Howdeshell K L, Sachs L M, et al. A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta [J]. J Biol Chem,2008, 283,2275-2285.
    [191]Denver R J, Ouellet L, Furling D, et al. Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth [J]. J Biol Chem,1999,274,23128-23134.
    [192]Iniguez M A, Rodriguez-Pena A, Ibarrola N, et al. Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology,1993,133,467-473.
    [193]Benowitz L I, and Routtenberg A. GAP-43:An intrinsic determinant of neuronal development and plasticity [J]. Trends Neurosci,1997,20,84-91.
    [194]Mantelas A, Stamataki A, Kazanis I, et al. Control of neuronal nitric oxide synthase and brain-derived neurotrophic factor levels by GABA-A receptors in the developing rat cortex [J]. Brain Res Dev Brain Res,2003,145,185-195.
    [195]Liu C, Du Y, Zhou B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes [J]. Aquat Toxicol,2007,85,267-277.
    [196]Onishchenko N, Karpova N, Sabri F, et al. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury [J]. J Neurochem,2008,106,1378-1387.
    [197]Liu Y, Fowler C D, Young L J, et al. Expression and estrogen regulation of brain-derived neurotrophic factor gene and protein in the forebrain of female prairie voles [J]. J Comp Neurol, 2001,433,499-514.
    [198]Morita K. and Her S. Progesterone pretreatment enhances serotonin-stimulated BDNF gene expression in rat c6 glioma cells through production of 5alpha-reduced neurosteroids [J]. J Mol Neurosci,2008,34,193-200.
    [199]Jensen, A A and Leffers, H. Emerging endocrine disrupters:Perfluoroalkylated substances [J]. Int J Androl,2008,31,161-169.
    [200]Lau C, Butenhoff J L, Rogers J M. The developmental toxicity of perfluoroalkyl acids and their derivatives[J]. Toxicol Appl Pharmacol,2004,198:231-241.
    [201]Laezza F, Doherty J J, Dingledine R.. Long-term depression in hippocampal interneurons:joint requirement for pre-and post-synapticevents [J].Science,1999,285:1411-1414
    [202]Yang H W, Hu X D, Zhang H M, et al. Roles of CaMKⅡ, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn[J]. J Neurophysio,2004,91:1122-1133.
    [203]Vargas R, Cifuentes F, Morales M A.. Differential contribution of extracellular and intracellular calcium sources to basal transmission and long-term potentiation in the sympathetic ganglion of the rat[J]. Dev Neuro bio,2007,67:589-560.
    [204]Xia Z, Storm D R. The role of calmodulin as a signal integrator for synaptic plasticity[J]. Nat Rev Neurosc,2005,6:267-276.
    [205]Frank D A, Greenberg M E. CREB:A mediator of long-term memory from mollusks to mammals[J].Cell,1994,79:5-8.
    [206]Lledo P M, Zhang X G, Sudhof T C, et al. Postsynaptic mem-brane fusion and long-term potentiation[J]. Science,1998,279:399-403.
    [207]Oumesmar B N, Vignais L, Duhamel-clerin E, et al. Expression of the highly polysialylated neural cell adhesion molecule during postnatal myelination and following chemically induced demyelination of the adult mouse spinal cord [J]. Eur J Neurosci,1995,7:480-491.
    [208]Foster T C.1999. Involvement of hippocampal synaptic plasticityin age-related memory[J]. Brain Res,30:236-249.
    [209]Napolitano M, Marfia G A, Vacca A, et al. Modulation of gene expression following long-term synaptic depression in the striatum[J]. Brain Res,1999,72:89-96.
    [210]Qin H, Dent E W, Meiri K F. Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of Ser41, the protein kinase C site [J]. J Neurosci, 1997,17:3515.
    [211]Skene JH.Axonal growth-associated proteins [J]. Ann Rev Neurosci,1989,12:127.
    [212]Dang M T, Yin H H, Lovinger D M.et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum[J]. Proc Natl Acad Sci,2006,103: 15254-15259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700