用户名: 密码: 验证码:
黄土高原半干旱区气溶胶辐射特性观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶作为大气的重要组成成分,通过直接、间接和半直接辐射效应调整地气系统辐射收支,进而影响区域和全球气候变化。气溶胶辐射效应是影响气候变化的关键因子,也是引起其不确定性的主要原因之一。气溶胶辐射强迫最大的不确定性仍然是对其时空分布、物理和光学性质等缺乏充分的认识。黄土高原半干旱区作为干旱和半湿润区的过渡带,下垫面状况特殊,气候变化敏感。但是这一地区观测点比较稀疏,也是气溶胶观测研究的薄弱环节。兰州大学半干旱气候与环境观测站长时间连续气溶胶观测分析对理解该地区气溶胶时空分布、物理和光学特性等提供了重要的科学支撑,也为深入认识气溶胶辐射特性和全球气候变化提供基础理论依据。
     本文利用兰州大学半干旱气候与环境观测站(SACOL,Semi-Arid Climate and Environment Observatory of Lanzhou University)Mie散射激光雷达(CE-370-2)和双波长偏振激光雷达(L2S-SM II)观测资料,分析了黄土高原半干旱区气溶胶垂直分布和时间演变特征。然后利用粒径谱仪(APS-3321)、PM10监测仪(TEOM RP1400a)结合HYSPLIT-4轨迹模式及NCEP/NCAR再分析资料和气象观测资料研究了气溶胶浓度、谱分布、PM1o浓度、气流路径及PM10浓度与气象要素的关系。最后利用Mie散射理论结合数浓度谱、积分浑浊度仪观测资料计算分析了沙尘和采暖期气溶胶散射系数随粒径的分布特征。观测分析得到了一些有意义的结果,主要结论如下:
     (1)利用2006~2011年激光雷达(CE-370-2)观测资料,分析表明黄土高原半干旱区气溶胶光学厚度3-5月和11-12月偏大,6-10月偏低。气溶胶光学厚度春季最大,为0.42;冬季次之,为0.36;秋季为0.30;夏季最小,为0.21。气溶胶光学厚度频数最大分布于0.30附近,且具有显著的季节差异。该区气溶胶主要分布于2km以下,其中1km以下占绝大多数。对流层底部(2km以下)气溶胶消光系数白天偏大,夜间偏小。气溶胶垂直分布夏季最高,秋季次之,冬季最低。沙尘过程,气溶胶主要分布于3km以下,强沙尘天气时,气溶胶可达到6km以上高度。沙尘气溶胶光学厚度演变趋势与近地面PM1o质量浓度变化趋势基本一致,两者相关系数为0.75。采暖期气溶胶光学厚度(0.2-0.5)相对背景期的(0.08-0.15)偏大,日变化趋势呈双峰结构,气溶胶集中分布于lkm以下。
     (2)利用双波长偏振激光雷达(L2S-SM II)观测资料,分析可知偏振激光雷达可很好地区分气溶胶和云,并基本可以区分出冰云、水云以及冰水混合状云。干净大气气溶胶532nm退偏比为0.10,沙尘气溶胶为0.30,采暖期气溶胶为0.13。沙尘气溶胶包含较多的不规则粗粒子,采暖期气溶胶主要由近似球形的细粒子组成。
     (3)对比地基激光雷达(L2S-SM II)与星载激光雷达(CALIOP)观测,晴天无沙尘条件下,两者观测结果基本一致,2km以上相对偏差不超过25%,2km以下偏差较大,主要由边界层气溶胶水平分布非均一性所引起。沙尘条件下,L2S-SM II与CALIOP均可观测到沙尘层,但两者观测到沙尘的高度和强度有差异,3km以下相对偏差低于35%,3km以上超过50%。
     (4)利用2007~2009年粒径谱仪(APS-3321)观测资料,分析得到气溶胶质量浓度5月最大,6月最小;数浓度1月最大,4月最小。春季质量浓度偏高,数浓度偏低,与沙尘天气有密切的关系;冬季质量浓度和数浓度均偏高;夏秋季质量浓度和数浓度均偏低。该区气溶胶98%以上为细粒子。气溶胶质量浓度谱分布呈双峰结构,峰值中心分别为0.72和5.05μm;数浓度谱分布呈典型的单峰结构,峰值中心为0.72μm。沙尘天气,粒径为2.5~10.0μm的粗粒子数目显著增加,气溶胶质量浓度和数浓度谱分布均呈单峰结构。采暖期气溶胶质量浓度谱和数浓度谱分布与背景期谱分布相似,但浓度明显偏大。
     (5)利用2008年中美沙尘暴联合观测实验PM1o浓度资料和HYSPLIT-4轨迹模式结合NCEP/NCAR再分析资料分析了SACOL(半干旱区)和张掖(干旱区)PM1o质量浓度和气流路径特征。两地PM1o质量浓度5月最大,4月次之,6月最小,日变化趋势基本一致,逐日变化具有较大波动性。4月SACOL地区0.5km高度气流以西路和东南路为主,张掖以西路和西南路为主;5月SACOL主导气流为西北路和北路,张掖为西路,SACOL气流经过张掖上空;6月SACOL气流以北路和南路为主,张掖为西北路。两地4km高度均为西北气流。PM10质量浓度与近地面风向风速有密切的关系,与垂直风速和降水量具有很好的负相关,近地面逆温层是导致22:00PM10浓度偏高的主要因素。
     (6)利用Mie散射理论结合数浓度谱等观测资料,分析了气溶胶散射系数随粒径的分布特征。沙尘气溶胶散射系数随粒径呈高斯分布,PM2.5和PM10对散射系数的贡献分别为20.95%和83.88%,粒径为2.5~10.0μm的粒子对沙尘气溶胶散射系数有重要作用;采暖期气溶胶散射系数随粒径呈近似的高斯分布,PM2.5和PM10的对散射系数贡献分别为66.23%和91.93%,细粒子对气溶胶散射系数有重要作用。
Atmospheric aerosol, as a crucial composition of atmosphere affects regional and global climate change through its direct, indirect, and semi-direct radiative effects modulation of the surface and atmospheric radiation budgets.It is a key factor of aerosol radiative forces as working on climate change, and also for climate change's uncertainty. The largest uncertainty of aerosol radiative effect has also been lack of fully understanding its space and temporal distribution, physical, and optical characteristics. The semi-arid region of the Loess Plateau with especial underlying surface is a transition area from arid to semi-wet region, and its climate is extremely vulnerable. However, only a few observatories are operating in the region, resulting in a lack of measurement and analysis of aerosol. The long continuous measurement of aerosol from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) can provide significant scientific support for understanding the space and temporal distribution, physical, and optical characteristics of aerosol in this region, and also provide basic theoretical proof for deeply knowing aerosol radiative effect and globle climate change.
     The vertical distribution and temporal evolution of aerosol over the semi-arid region of the Loess Plateau are analyzed by using the data of the Mie scattering lidar (CE-370-2) and the dual-wavelength polarization lidar (L2S-SM II) from SACOL. Then the properties of concentration and size of aerosol, PM10concentration, airflow path, and the relationship between PM10concentration and meteorological elements are presented based on the measurements of particle sizer (APS-3321)and PM10particulate monitor (TEOM RP1400a) combining with the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT-4) model and National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project data (2.5°×2.5°).Finally, using Mie theory in combination with the data of the number concentration size distribution of aerosol and the measurement of the nephelometer, the distributions of aerosol scattering coefficient with particle size in dust process and coal combustion period are calculated and analysed. Some valuable results are retrieved. The main results are as follows.
     (1)Using the observational data of the lidar (CE-370-2) since2006to2011,the results from the retrieval show that aerosol optical depth (AOD) during March to May and November to December is larger, and AOD during June to October is small. AOD in springtime is the largest with the value of0.42, and AODs in winter and fall are larger with the values of0.36and0.30respectively. AOD in summer is the least with the value of0.21.The analysis of frequency shows that AOD mostly ranges0.3around, and has significant seasonal differences. Aerosol in this region mostly distributes below2km, and has absolute dominance below1km. In daytime, aerosol extinction coefficient within the lowest troposphere (below2.0km) is large, and that in nighttime is small. The vertical distribution height of aerosol in summer is the highest, next in fall, and the height in winter is very low. In dust processes, aerosol mostly distributes below3km, and in strong dust events, aerosol can penetrate up to6km or more than6km.The temporal evolution trend of dust AOD is similar to that of PM10mass concentration, and their correlation coefficient is0.75. AOD (ranging from0.2to0.5) in coal combustion period is lager than that of background (ranging from0.08to0.15), and its diurnal variation presents dual-peaks structure, aerosol mostly distributing below1km.
     (2) The polarization lidar system can distinctly distinguish aerosol and cloud, and roughly identify ice cloud, water cloud and mixed cloud, based on the measurement of dual-wavelength polarization lidar (L2S-SM II). The depolarization ratio (532nm change) of aerosol in clean condition is0.10, and0.30for dust condition while0.13for coal combustion condition respectively. Dust aerosol contains more irregular coarse particles while aerosol in coal combustion condition includes more finer spherical particles.
     (3)Using the data of the ground lidar (L2S-SM II) and the space lidar (CALIOP), the comparison between the measurements shows that it is an approximate result in no cloud and dust condition which the relative error is below25%above2km, and that of error is larger below2km caused by the inhomogeneous horizontal distribution of aerosol within boundary layer; in dust condition, the two lidar systems both can observe dust layer, notwithstanding the intensity and height of dust layer have differences which the relative error is below35%above3km while exceeding50%below3km.
     (4) Based on the measurement of Aerodynamic Particle Sizer Spectrometer (APS-3321)since2007to2009, the results demonstrate that the maximum mass concentration (MC) of aerosol appears in May while the minimum appears in June; number concentration (NC) of aerosol in January is the maximal, and NC in April is the minimum; in spring MC is large, and NC is low which is caused by dust weather; in winter MC and NC are both larger; in summer and fall, MC and NC are both low; the primary composition of aerosol in this region is finer particle which accounts for98%;mass size distribution (MSD) of aerosol presents dual-peaks structure which the values of dual-peaks appear at0.72and5.05μm, respectively; number size distribution (NSD) shows typical one peaks appearing at0.72μm; in dust condition, MSD and NSD both present one peak, and the number of coarse particle (2.5μm     (5) The distribution characteristics of PM10mass concentration and airflow path over SACOL (semi-arid region) and Zhangye (arid region) are carried out using the data of2008China-U.S. joint dust storm experiment. The results show:in the two regions, the maximum mass concentration of PM10appears in May, MC in April is bit large, and MC in June is low; the diurnal variation trends of PM10over SACOL and Zhangye is almost consistent, and the day by day variation trends of that present much undulation; in April, the dominant path of airflow (DPA) at0.5km height over SACOL is west and southeast while that over Zhangye is west and southwest; in May the DPA over SACOL is west and north while that is west over Zhangye; in June the DPA is north and south while that is northwest over Zhangye; in the two region, the dominant path of airflow at4km is northwest. The mass concentration of PM10has compact relation with wind speed and direction, and has negative relation with vertical wind and precipitation; the inversion layer of temperature appearing at22:00is a major factor to PM10high concentration.
     (6) The distribution of aerosol scattering coefficient (ASC) with particle size is analyzed based on Mie theory combination the measurement data. It shows a Gaussian distribution of dust ASC against effective diameter, and the contribution percentages of PM2.5and PM10are respectively20.95%and83.88%, meaning that the coarse particle (2.5μm
引文
[1]盛裴轩,毛节泰,李建国,张霭琛,桑建国,潘乃先.大气物理学[M],北京,北京大学出版社,2003,25PP.
    [2]Andreae, M. O.:Aerosols before pollution [J],Science,2007,315:50-51.
    [3]Graf, H. F.:The complex interaction of aerosols and clouds [J], Science,2004,303: 1309-1311.
    [4]石广玉,王标,张华,赵剑琦,檀赛春,温天雪.大气气溶胶的辐射与气候效应[J],大气科学,2008,32(4):826-840.
    [5]Houghton, J. T., Ding, Y., et al.:IPCC.Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [M],Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2001,881 PP.
    [6]Clark, W. E. and Whitby, K. T.:Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions[J],Journal of Atmospheric Sciences,1967,24(6):677-687.
    [7]Zhang, X. Y, Arimoto, R., Zhu, G. H., Chen, T., and Zhang, G. Y:Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions [J], Tellus B, 1998,50(4):317-330.
    [8]Zhu, Y.E., Hinds, W. C,Shen, S.,and Sioutas, C:Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles [J], Aerosol Science and Technology,2004,38(S1):5-13.
    [9]Fu, Q. and Liou, K. N.:Parameterization of the radiative properties of cirrus clouds [J], Journal of the Atmospheric Sciences,1993,50(13):2008-2025.
    [10]Satheesh, S.K. and Moorthy, K. K.:Radiative effects of natural aerosols:A review [J],Atmos. Environ.,2005,39:2089-2110.
    [11]Koch, D., Menon, S.,Genio, A. D.,Ruedy, R., Alienov, I.,and Schmidt, G. A.:Distinguishing aerosol impacts on climate over the past century [J],J. Climate,2009,22(10):2659-2677.
    [12]IPCC, Climate Change 1995:The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [M],Cambridge University Press,1996.
    [13]Xuan, J.,Liu, G. L., and Du, K.:Dust emission inventory in Northern China [J], Atmos. Environ.,2000,34(26):4565-4570.
    [14]Bergametti, G. and Dulac,F:Mineral aerosols:renewed interest for climate forcing and tropospheric chemistry studies [J], IGBPNewsletter,1998,33:19-52.
    [15]赵仲莲,尚可政,尚宝玉,县彦宗.中国沙尘天气空间分布差异的气候背景[J],干旱气象,2005,23(3):46-52.
    [16]王娜,张镭.沙尘气溶胶辐射特性及其观测方法初步评述[J],干旱气象,2007,25(4):68-73.
    [17]Tegen, I. and Lacis, A. A.:Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol [J], J. Geophys. Res.,1996,101(14): 19237-19244.
    [18]Perlwitz, J.,Tegen, I., and Miller, R. L.:Interactive soil dust aerosol model in the GISS GCM1.Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols [J],J. Geophys. Res.,2001,106(D16):18167-18192.
    [19]吴涧,罗燕,王卫国,郭世昌,屈卫锋.矿尘气溶胶短波辐射效应的初步研究[J],热带气象学报,2004,20(3):328-336.
    [20]Zhang, J. L. and Christopher, S.A.:Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra [J], Geophys. Res. Lett., 2003,30(23), doi:10.1029/2003GL018479.
    [21]郝丽,杨文,吴统文,赵剑琦,石广玉.沙尘气溶胶的光学特性及辐射强迫效应[J],中国沙漠,2010,30(6):1477-1482.
    [22]苏婧.中国西北地区沙尘气溶胶辐射强迫效应的研究[D],兰州大学博士学位论文,2010.
    [23]尹宏.大气辐射学基础[M],北京,气象出版社,1993,73PP.
    [24]Clarke, A. D.:Aerosol light absorption by soot in remote environments [J], Aerosol Science and Technology,1989,10:1161-1171.
    [25]Pusechel, R. F.,Blake, D.F., Snetsinger, K. G,Hansen, A.D. A.,Verma, S.,and Kato, K.: Black carbon (soot) aerosol in the lower stratosphere and upper troposphere [J],Geophys. Res.Lett.,1992,19:1659-1662.
    [26]Ku, J. C. and Shim, K. H.:A comparison of solutions for light-scattering and absorption by agglomerated or arbitrarily-shaped particles [J], J. Quant. Spectrosc. Ra.,1992,47:201-220.
    [27]Haywood, J. M. and Shine, K. P:The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget [J], Geophys. Res.Lett.,1995,22:603-606.
    [28]Haywood, J. M.,Roberts, D.L., Edwards, J. M., and Shine, K. P:General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol [J], J. Climate,1997,10:1562-1577.
    [29]Menon, S.,Hansen, J., Nazarenko, L.,and Luo, Y.F:Climate effects of black carbon aerosols in China and India [J], Science,2002,297, doi:10.1126/science.1075159.
    [30]Hendricks, J.,Karcher, B.,Dopelheuer, A., Feichter, J., Lohmann, U., and Baumgardner, D.: Simulating the global black carbon cycle:A revisit to the contribution of aircraft emissions [J],Atmos. Chem. Phys.,2004,4:2521-2541.
    [31]Hendricks, J., Karcher, B.,Lohmann, U., and Ponater, M.:Do aircraft black carbon emissions affect cirrus clouds on the global scale? [J],Geophys. Res. Lett.,2005,32(L12814), doi: 10.1029/2005GL022740.
    [32]Karcher, B.,Mohler, O., Demott, P. J., Pechtl, S.,and Fu, F.:Insights into the role of soot aerosols in cirrus cloud formation [J], Atmos. Chem. Phys. Disuss.,2007,7:7843-7905.
    [33]Jacobson, M. Z.:A physically-based treatment of elemental carbon optics:Implications for global direct forcing of aerosols [J],Geophys. Res.Lett.,2000,27:217-220.
    [34]Jacobson, M. Z.:Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols [J],Nature,2001,409:695-697.
    [35]Zhang, R. Y., Khalizov, A. F., Pagels, J., Zhang, D.,Xue, H. X.,and Mcmurry, P. H.: Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing [J], Proc. Natl.Acad Sci., USA,2008,15(30):10291-10296.
    [36]曹贤洁.兰州地区气溶胶辐射特性观测研究[D],兰州大学博士学位论文,2010.
    [37]Zender, C. S.,Krolewski, A. G., Tosca, M. G., and Randerson, J. T.:Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001-2009 MISR imagery of Borneo [J], Atmos. Chem. Phys. Disuss.,2011,11:30989-31030.
    [38]张磊.兰州远郊榆中地区气溶胶吸收特征[D],兰州大学硕士学位论文,2011.
    [39]Wallace, J. M. and Hobbs, P. V.:Atmospheric Science, An introuductory survey [M], Academic Press, New York,1977.
    [40]石广玉,许黎,郭建东,张豹武,孙宝来,龚知本,周军,谭琨,岩坂泰信,林政彦,谷正博.大气臭氧于气溶胶垂直分布的高空气球探测[J],大气科学,1996,20(4):401-407.
    [41]Kwon, S.A., Iwasaka, Y.,Shibata, T.,and Sakai, T.:Vertical distribution ofatmospheric particles and water vapor densities in the free troposphere:Lidar measurement in spring and summer in Nagoya, Japan [J], Atmos. Envion.,1997,31(10):1459-1465.
    [42]Alpert, P., Kischcha, P., Shtivelman, A., Krichak, S.O.,and Joseph, J. H.:Vertical distribution of Saharan dust on 2.5-year model predictions [J], Atmos. Res.,2004,70(2):109-130.
    [43]He, Q. S.,Li, C., Mao, J., Lau, A. K. H.,and Chu, D. A.:Analysis of aerosol vertical distribution and variability in Hong Kong [J], J. Geophys.Res.,2008,113(D14211),doi: 10.1029/2008JD009778.
    [44]杨晓武.气溶胶的激光雷达探测和特性分析[D],南京信息工程大学硕士学位论文,2008.
    [45]Huang, J. P., Minnis, P., Chen, B.,Huang, Z. W., Liu, Z. Y.,Zhao, Q. Y., Yi, Y. H., and Ayer, J. K.:Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX [J],J. Geophys. Res.,2008,113(D23212), doi: 10.1029/2008JD010620.
    [46]刘文彬,伦伟明,邝俊侠,刘建国,谢品华.广州城区冬季大气边界层气溶胶激光雷达探测[J],广州环境科学,2011,26(2):7-10.
    [47]王毅荣.黄土高原气候系统的基本特征[J],甘肃农业,2004,216:12-13.
    [48]姚玉璧,王毅荣,李耀辉,张秀云.中国黄土高原气候暖干化对生态环境的影响[J],资源科学,2000,27(5):146-152.
    [49]Wang, J.,Fu, B.J., Qiu, Y, and Chen, L. D.:Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China [J], J. Arid Environ.,2001,48(4):537-50.
    [50]何乱水,马炳祥,杜文奎,任慧英.西北黄土高原干旱半干旱条件下城市污染特点[J], 中国地质,2003,30(4):442-448.
    [51]Huang, J. P., Zhang, W., Zuo, J. Q., Bi, J. R.,Shi, J.S.,Wang, X., Chang, Z. L., Huang, Z. W., Yang, S.,Zhang, B.D.,Wang, G. Y.,Feng, G. H.,Yuan, J. Y,Zhang, L.,Zuo, H. C.,Wang, S. G,Fu, C.B.,and Chou,J. F.:An overview of the semi-arid climate and environment research observatory over the Loess Plateau [J],Adv. Atmos.Sci.,2008,25(6):906-921.
    [52]Xia, X. A.,Chen, H. B.,Wang, P. C., Zong, X. M., Qiu, J. H., and Philippe, G:Aerosol properties and their spatial and emporal variations over north China in spring 2001 [J], Tellus B,2005,57(1):28-39.
    [53]Kim, S.W., Yoon, S.C.,Kim, J.,and Kim, S.Y:Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements [J],Atmos.Environ.,2007,41(8): 1634-1651.
    [54]Kim, Y. S.,Iwasaka, Y., Shi, G. Y., Nagatani, T.,Shibata, T., Trochkin, D.,Matsuki, A., Yamada, M., Chen, B.,Zhang, D., Nagatani, M., and Nakata, H.:Dust particles in the free atmosphere over desert areas on the Asian continent:measurements from summer 2001 to summer 2002 with balloon-borne optical particle counter and lidar, Dunhuang, China [J],J. Geophys. Res.,2004,109(D19S26), doi:10.1029/2002JD003269.
    [55]Li, Z. Q., Chen, H.,Cribb, M., Dickerson, R., Holben, B.,Li, C.,Lu, D.,Luo, Y, Maring, H., Shi, G., Tsay, S.C.,Wang, P.,Wang, Y,Xia, X., Zheng, Y., Yuan, T., and Zhao, F.:Preface to special section on East Asian Studies of Tropospheric Aerosols:An International Regional Experiment (EAST-AIRE) [J], J. Geophys. Res.,2007,112(D22S00), doi: 10.1029/2007JD008853.
    [56]Li, Z. Q.,Li, C., Chen, H.,Tsay, S. C.,Holben, B.,Huang, J. P., Li, B.,Maring, H., Qian, Y, Shi, G., Xia, X., Yin, Y.,Zheng, Y, and Zhuang, G.:East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC):An overview [J],J. Geophys. Res.,2011,116(D00K34), doi:10.1029/2010JD015257.
    [57]Huang, Z. W.,Huang, J. P.,Bi, J. R., Wang, G. Y., Wang, W. C.,Fu, Q., Li, Z. Q.,Tsay, S.C., and Shi, J. S.:Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S.joint dust field experiment [J],J. Geophys.Res.,2010,115(D00K15), doi: 10.1029/2009JD013273.
    [58]Ge, J. M., Su, J.,Ackerman, T. P.,Fu, Q.,Huang, J.P.,and Shi, J. S.:Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment [J], J. Geophys. Res.,2010,115(D00K12), doi: 10.1029/2009JD013263.
    [59]Zhang, L., Cao, X.,Bao, J., Zhou, B.,Shi, J.,Bi, J.:A case study of dust aerosol radiative properties over Lanzhou, China [J],Atmos. Chem. Phys.,2010,10:4283-4293,doi: 10.5194/acp-10-4283-2010.
    [60]Bi, J. R., Huang, J. P., Fu, Q.,Wang, X.,Shi, J. S.,Zhang, W., Huang, Z. W., and Zhang, B.T.: Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China [J],J. Quant. Spectrosc. Ra.,2011,112(4):346-360.
    [1]http://climate.lzu.edu.cn/about/index_cn.asp.
    [2]Wang, G. Y., Huang, J. P., Guo, W. D.,Zuo, J. Q.,Wang, J. M., Bi, J. R.,Huang, Z. W., and Shi, J. S.:Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China [J],J. Geophys. Res.,2010,115(P00K17), doi:10.1029/2009JD013372.
    [3]王振海.半干旱地区气溶胶的观测研究及垂直分布的反演[D],兰州大学硕士学位论文,2010.10PP.
    [4]Liu, Y., Huang, J., Shi, G., Takamura, T., Khatri, P., Bi, J.,Wang, T., Wang, X.,and Zhang, B.: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China [J],Atmos. Chem. Phys.,2011,11:11455-11463.
    [5]闭建荣.黄土高原半干旱区地表能量平衡的观测试验研究[D],兰州大学硕士学位论文,2008.
    [6]Zhang, L., Chen, C., and Murlis, J.:Study on winter air pollution control in Lanzhou, China [J], Water, Air,& Soil Pollution,2001,127:351-372.
    [7]葛觐铭.西北沙尘气溶胶光学特性反演与沙尘暴的卫星监测[D],兰州大学博士学位论文,2010.
    [8]刘瑞金.半旱区卷云和沙尘气溶胶激光雷达观测[D],兰州大学硕士学位论文,2011.
    [9]Operation Manual of Cloud and Aerosol Micro-Lidar CAMLTM, CIMEL Electronique, France, 2005.
    [10]Lawler, A.:Clouds Part for NASA [J],Science,2006,312:675.
    [11]庞之浩.“地球观测系统”又添两颗重要卫星[J],中国航天,2006,9:33-37.
    [12]Winker, D. M., Hunt, W. H., and Mcgill, M. J.:Initial performance assessment of CALIOP [J], Geophys. Res. Lett.,2007,34(L19803), doi:10.1029/2007GL030135.
    [13]Eguchi, K., Uno, I.,Yumimoto, K., Takemura, T.,Shimizu, A.,Sugimoto, N., and Liu, Z.: Trans-pacific dust transport:integrated analysis of NASA/CALIPSO and a global aerosol transport model [J],Atmos. Chem. Phys.,2009,9:3137-3145.
    [14]Peyridieu, S.,Chedin, A.,Tanre, D., Capelle, V.,Pierangelo, C,Lamquin, N.,and Armante, R.:Saharan dust infrared optical depth and altitude retrieved from AIRS:a focus over North Atlantic-comparison to MODIS and CALIPSO [J],Atmos. Chem. Phys.,2010,10: 1953-1967.
    [15]Model 3321 Aerodynamic Particle Sizer Spectrometer Instruction Manual, Revision E,2004.
    [16]曹贤洁.兰州地区气溶胶辐射特性观测研究[D],兰州大学博士学位论文,2010.
    [17]Collis, R. T. H.:Lidar:a new atmosphere probe [J], Q. J. Roy. Meteor. Soc.,1966,92(392): 220-230.
    [18]Collis, R. T. H. and Russell, P. B.:Lidar measurements of particles and gases by elastic backscattering and differential absorption, in:Laser Monitoring of the Atmosphere [M], Springer-Verlag, Hinkley, E. D., Germany,1976,14:71-151.
    [19]Klett, J.D.:Stable analytical inversion solution for processing lidar returns [J], Appl. Opt., 1981,20:211-220.
    [20]Klett, J.D.:Lidar inversion with variable backscatter/extinction ratio[J],Appl. Opt.,1985, 24:1638-1643.
    [21]Fernald, F. G.:Analysis of atmospheric lidar observations:some comments [J], Appl. Opt., 1984,23(5):652-653.
    [22]周碧,张镭,曹贤洁,韩霄,张武,冯广泓.利用激光雷达资料分析兰州远郊气溶胶光学特性[J],高原气象,2011,30(4):1011-1017.
    [23]赵柏林,张蔼琛.大气探测原理[M],北京,气象出版社,1987,392-393.
    [24]Tao, Z., Mccormick, M. P.,and Wu, D.:A comparison method for spaceborne and ground-based lidar and its application to the CALIPSO lidar [J], Appl. Phys. B,2008,91(3): 639-644.
    [25]Chiang, C. H.,Das, S.K., and Nee, J. B.:An iterative calculation to derive extinction-to-backscatter ratio based on lidar measurements [J], J. Quant. Spectrosc. Ra., 2008,109(7):1187-1195.
    [26]Wu, D., Wang, Z., Wang, B.,Zhou, J.,and Wang, Y.:CALIPSO validation using ground-based lidar in Hefei (31.9°N,117.2°E), China [J], Appl. Phys. B,2011,102(1): 185-195.
    [27]夏俊荣.利用激光雷达探测兰州大气气溶胶辐射特性[D],兰州大学硕士学位论文,2006,19-28.
    [28]韩霄.激光雷达观测分析兰州城郊大气气溶胶辐射特性[D],兰州大学硕士学位论文,2007,17-23.
    [29]Shimizu, A.,Sugimoto, N.,Matsui, I.,Arao, K.,Uno, I., Murayama, T., Kazuma, N., Kazuma, A.,Uchiyama, A.,and Yamazaki, A.:Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia [J],J. Geophys. Res., 2004,109(D19S17),doi:10.1029/2002JD003253.
    [30]Liu, Z. Y., Sugimoto, N., and Murayama, T.:Extinction-To-Backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar [J], Appl. Opt.,2002,41(15): 2760-2767.
    [31]Xie, C. B.,Nishizama, T., Sugimoto, N., Matsui, I., and Wang, Z.F.:Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China [J], Appl. Opt,,2008,47(27):4845-4851.
    [32]Murayama, T., Muller, D.,Wada, K.,Shimizu, A., Sekiguchi, M., and Tsukamoto, T.: Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo Japan in spring 2003 [J],Geophys. Res. Lett.,2004,31(L23103), doi: 10.1029/2004GL021105.
    [33]He, Q.S.,Li, C.C.,Mao, J. T., Lau, A. K. H., and Li, P. R.:A study on the aerosol extinction to backscatter ratio combination of micro-pulse lidar and MODIS over Hong Kong [J], Atmos. Chem. Phys.,2006,6:3242-3256.
    [34]Miiller, D.,Ansmann, A.,Mattis, I.,Tesche, M.,Wandinger, U.,Althausen, D., and Pisani, G: Aerosol-type-dependent lidar ratio observed with Raman lidar [J],J. Geophy. Res.,2007, 112(D16202), doi:10.1029/2006JD008292.
    [35]尹宏.大气辐射基础[M],北京,气象出版社,1993,144PP.
    [36]Draxler, R. R. and Hess,G. D.:DESCRIPTION OF THE HYSPLIT-4 MODELING SYSTEM [R],NOAA Technical Memorandum ERL ARL-224,1997.
    [37]曹贤洁,张镭,周碧,鲍婧,史晋森,闭建荣.利用激光雷达观测兰州沙尘气溶胶辐射特性[J],高原气象,2009,28(5):1115-1120.
    [1]赵秀娟,陈长和,袁铁,张武,东秀娟.兰州冬季大气气溶胶光学厚度及其能见度的关系[J],高原气象,2005,24(4):617-622.
    [2]胡波,张武,张镭,陈长和,冯广泓.兰州市西固区冬季大气气溶胶粒子的散射特征[J],高原气象,2003,22(4):354-360.
    [3]Morille, Y.,Haeffelin, M.,Drobinski, P., and Pelon, J.:STRAT:An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data [J],Journal of Atmospheric and Oceanic Technology,2007,24 (5):761-775.
    [4]Nousiainen, T.:Optical modeling of mineral dust particles:A review [J], J. Quant. Spectrosc. Ra.,2009,110(14):1261-1279.
    [5]Huang, Z. W.,Huang, J. P.,Bi, J. R., Wang, G. Y.,Wang, W.C., Fu, Q., Li, Z. Q., Tsay, S.C., and Shi, J. S.:Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S.joint dust field experiment [J],J. Geophys.Res.,2010,115(D00K15), doi: 10.1029/2009JD013273.
    [6]高庆先,任阵海,张运刚,李占青,普布次人.利用静止卫星资料跟踪沙尘天气的发生、发展及其传输[J],资源科学,2004,26(5):24-29.
    [7]卢士庆,陈渭民,高庆先.使用6S模型由GMS5卫星资料反演陆地大气气溶胶光学厚度[J],南京气象学报,2006,29(5):669-675.
    [8]黄艇,陈长和,陈勇航,张武,张镭.利用MODIS卫星资料对比反演兰州地区气溶胶光学厚度[J],高原气象,2006,25(5):886-892.
    [9]Novitsky, E. J. and Philbrick, C.R.:Multistatic lidar profiling of urban atmospheric aerosols [J],J. Geophys. Res.,2005,110, doi:10.1029/2004JD004723.
    [10]Schmid, B.,Ferrare, R.,Flynn, C., Elleman, R.,Covert, D.,Strawa, A.,Welton, E., Turner, D., Jonsson, H., Redemann, J., Eilers, J.,Ricci, K.,Hallar, A.G.,Clayton, M.,Michalsky, J., Smirnov, A.,Holben, B.,and Barnard, J.:How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? [J],J.Geophys. Res.,2006, 111,doi:10.1029/2005JD005837.
    [11]Pahlow, M., Feingold, G.,Jefferson, A.,Andrews, E., Ogren, J.A.,Wang, J.,Nee, Y.N., Ferrare, R. A.,and Turner, D. D.:Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement site [J], J. Geophys. Res.,2006,111,doi:10.1029/2004JD005646.
    [12]Leon, J.F., Derimian, Y., Chiapello, I., Tanre, D., Podvin, T., Chatenet, B.,Diallo, A.,and Deroo, C.:Aerosol vertical distribution and optical properties over M'Bour(16.96°W; 14.39°N), Senegal from 2006 to 2008 [J],Atmos. Chem. Phys.,2009,9:9249-9261.
    [13]Ansmann, A.,Tesche, M.,Groβ, S., Freudenthaler, V., Seifert, V., Heibsch, A., Schmidt, J., Wandinger, U.,Mattis, U.,Muller, I., and Wiegner, M.:The 16 April 2010 major volcanic ash plume over central Europe:EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany [J], Geophys. Res. Lett.,2010,37(L13810), doi: 10.1029/2010GL043809.
    [14]Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., and Okamoto, H.:Algorithms to retrieve optical properties of three component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering nonsphericity of dust [J],J. Quant. Spectrosc. Ra.,2011,112(2):254-267.
    [15]赵世强,张镭,王治厅,张磊,梁捷宁.利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J],气候与环境研究,2012,待发表.
    [1]Raymond, M. M.:Laser remote sensing fundamentals and applications [M], Krieger Publishing Company, Florida,1992.
    [2]Schotland, R, M., Sassen, K.,and Stone, R.:Observations by lidar of linear depolarization ratios for hydrometeors [J], Journal of Applied Meteorology,1971,10(5):1011-1017.
    [3]Sassen, K.:Lidae backscatter depolarization technique, lidar scattering by nonspherical partical [M], Mishchenko, M. I.,Hovenier, J. W., and Travis, L. D.,Academic Press,2000, 393-416.
    [4]Li, J.,Hu, Y.,Huang, J., Stamnes, K.,Yi, Y.,and Stamnes, S.:A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal [J], Atmos. Chem. Phys.,2011,11:2903-2916.
    [5]徐赤东,纪玉峰.偏振微脉冲激光雷达对一次沙尘过程的探测分析[J],中国粉体技术,2009,15(2):75-77.
    [6]Iwasaka, Y., Shibata, T., Nagatani, T., Shi, G. Y., Kim, Y. S.,Matsuki, A.,Trochkine, D., Zhang, D.,Yamada, M.,Nagatani, M., Nakata, H., Shen, Z., Li, G., Chen, B.,and Kawahira, K.:Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements:Possible diffusion and transport of dust particles [J],J. Geophys. Res.,2003,108(D23), doi:10.1029/2002JD003267.
    [7]Sugimoto, N. and Lee, C.H.:Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths [J], Appl. Opt.,2006,45(28):7468-7474.
    [8]迟如利,刘厚通,王珍珠,刘东,周军,胡欢陵.偏振-米散射激光雷达对卷云的探测[J],强激光与粒子束,2009,21(9):1295-1230.
    [9]卜令兵,单坤玲,吕晶晶,曹念文,官莉,黄兴友,王振会.云和气溶胶探测星载激光雷达及其应用[J],光学与光电技术,2009,4:62-64.
    [10]Kim, S.W., Yoon, S.C.,Kim, J. Y.,Kang, Y. J., and Sugimoto, N.:Asian dust event observed in Seoul, Korea, during 29-31 May2008:Analysis of transport and vertical distribution of dust particles from lidar and surface measurements [J], Science of The Total Environment,2010,408(7):1707-1718.
    [11]Forster, P.,Ramaswamy, V., Artaxo, P., et al. in Climate Change 2007:The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmen-tal Panel on Climate Change, edited by:Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M.,Averyt, K. B.,Tignor, M., and Miller, H.L., Cambridge University Press, New York, USA, online available at:http://www.ipcc.ch,2007.
    [12]Kaufman, Y. F., Holben, B.N., Tanre, D.,Slutsker, I.,Smirnov, A.,and Eck, T.E:Will aerosol measurements from Terra and Aqua polar orbiting satellites represent the daily aerosol abundance and properties? [J],Geophys. Res. Lett.,2000,27,3861-3864.
    [13]缪国军,张镭,舒红.利用WRF对兰州冬季大气边界层的数值模拟[J],气象科学,2007,27(2):169-175.
    [14]Tao,Z.,Mccormick, M. P., and Wu, D.:A comparison method for spaceborne and ground-based lidar and its application to the CALIPSO lidar [J],Appl. Phys.,2008, B91: 639-644.
    [1]刘兆荣,陈忠明,赵广英等.《环境化学教程》[M],北京,化学工业出版社,2003,256.
    [2]Eck, T.F, Holben, B.N.,Reid, J. S.,Dubovik, O., Smimov, A.,Neill, N.T.,Slutsker, I., and Kinne, S.:Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol [J], J. Geophys.Res.,1999,104(D24):31333-31349.
    [3]杨溯,石广玉,王标,杨红龙,赵剑琦,秦世广.气溶胶光学厚度谱特征判断粒子大小方法初探[J],应用气象学报,2011,22(2):152-157.
    [4]司福祺,刘建国,谢品华,张玉钧,窦科,刘文清.差分吸收光谱技术监测大气气溶胶粒谱分布[J],物理学报,2006,55(6):3165-3169.
    [5]雷文方,任丽新,吕位秀,张文.黑河地区沙漠气溶胶浓度和谱分布特征[J],高原气象,1993,12(2):170-179.
    [6]Xiao, Y.,Zhang, R., Arimoto, R.,Zhu, G. H.,Chen, T.,and Zhang, G. Y.:Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions [J], Tellus B, 1998,50(4):317-330.
    [7]牛生杰,章澄昌,孙继明.贺兰山地区沙尘气溶胶粒子谱分布的观测研究[J],大气科学,2001,25(2):243-252.
    [8]成天涛,吕达仁,陈洪滨,李占清.浑善达克沙地沙尘气溶胶的粒谱特征[J],大气科学,2005,29(1):147-153.
    [9]刘立超,王涛,周茅先,李新荣,失吹贞代,柳泽文孝.沙坡头地区沙尘气溶胶质量浓度的试验观测研究[J],中国沙漠,2005,25(3):336-341.
    [10]Sun, Y. L., Zhuang, G. S.,Wang, Y, Han, L. H., Guo, J. H., Dan, M.,Zhang, W. J., Wang, Z. F.,and Hao, Z.P.:The air-borne particulate pollution in Beijing-concentration, composition, distribution and source [J],Atmos. Environ.,2004,38(35):5991-6004.
    [11]黄红莲,黄印博,饶瑞中.合肥地区气溶胶数浓度和谱分布特征的观测研究[J],红外与激光工程,2006,35:390-395.
    [12]孙贞,杨育强,徐晓亮,盛春岩,侯忠新,丁锋.青岛市连续天气过程中不同气溶胶特征对比分析[J],环境科学,2010,31(4):871-876.
    [13]李尉卿,崔娟.郑州市大气气溶胶数浓度和质量浓度时空变化研究[J],气象与环境科学, 2010,33(2):7-13.
    [14]田凤霞,赵传燕,冯兆东.黄土高原地区降水的空间分布[J],兰州大学学报(自然科学版),2009,45(5):1-5.
    [15]王振海,张武,史晋森,黄建平,陈艳,闭建荣,张北斗.半干旱地区大气颗粒物浓度及粒径谱特征的观测研究[J],中国沙漠,2010,30(5):1186-1193.
    [16]高丽,张镭.兰州东部地区冬季风场温度场模拟[J],兰州大学学报(自然科学版),2002,28(3):120-126.
    [17]Almeida, D. and schutz, L.:Number, mass and volume distributi on of mineml aerosol and soils of the Sahara [J], J. Climate Appl.Meteo.,1983,22:233-243.
    [18]Wang, J., Fu, B.J., Qiu, Y.,and Chen, L. D.:Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China [J], Journal of Arid Environments,2001,48(4):537-550.
    [19]Xia, X. A., Chen, H. B.,Wang, P. C.,Zong, X. M., Qiu, J. H., and Philippe, G.:Aerosol properties and their spatial and emporal variations over north China in spring 2001 [J], Tellus B,2005,57(1):28-39.
    [20]Kim, S.W.,Yoon, S.C.,Kim, J., and Kim, S.Y.:Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements [J],Atmos. Environ..,2007, 41(8):1634-1651.
    [1]Liu, L. Y., Shi, P. J.,Gao, S.Y., Zou, X. Y, Erdon, H.,Yan, P.,Li, X. Y, Ta, W. Q.,Wang, J. H., and Zhang, C. L.:Dustfall in China's western loess plateau as influenced by dust storm and haze events[J],Atmos. Environ.,2004,38(12):1699-1703.
    [2]冯鑫媛,王式功,杨德保,尚可政.近几年沙尘天气对中国北方环保重点城市可吸入颗粒物污染的影响[J],中国沙漠,2011,31(3):735-740.
    [3]Grivas, G.,Chaloulakou, A.,Samara, C,and Spyrellis, N.:Spatial and Temporal Variation of PM10 Mass Concentrations within the Greater Area of Athens, Greece [J], Water, Air,& Soil Pollution,2004,158(1):357-371.
    [4]Vecchi, R.,Marcazzan, G., and Valli, G.:A study on nighttime-daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy) [J], Atmos. Environ.,2007,41(10):2136-2144.
    [5]傅为.基于MODIS气溶胶光学厚度反演的PM10浓度监测—以惠州市为例[D],中南大学硕士学位论文,2009.
    [6]何秀,邓兆泽,李成才,刘启汉,王美华,刘晓阳,毛节泰MODIS气溶胶光学厚度产品在地面PMl0监测方面的应用研究[J],北京大学学报(自然科学版),2010,46(2):178-184.
    [7]邱玉珺,牛生杰,沈建国.内蒙古沙地和草地环境下地面PM10分布特征及其与相关气象要素的关系[J],气候与环境研究,2009,14(1):97-104.
    [8]郭利,张艳昆,刘树华,李炬,马雁军.北京地区PM10质量浓度与边界层气象要素相关性分析[J],北京大学学报(自然科学版),2011,4:607-612.
    [9]刘淑梅,杨泓,傅朝,邵志宏.兰州市冬春两季PM10重度污染的气象条件分析研究[J],环境科学与技术,2008,31(5):80-83.
    [10]Ge, J. M., Su, J., Ackerman, T. P.,Fu, Q.,Huang, J. P., and Shi, J. S.:Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment [J], J. Geophys. Res.,2010,115(DOOK12), doi: 10.1029/2009JD013263.
    [11]徐鑫强,王鑫,黄建平.张掖及兰州榆中地区沙尘气溶胶粒子谱分布的观测研究[J],高原气象,2011,30(1):208-216.
    [12]张良,李耀辉,王胜,柳媛普,刘宏谊,赵建华,李刚.张掖国家气候观象台常规气象资料检验分析[J],干旱气象,2010,28(1):49-53.
    [13]只茂群.环境空气可吸入颗粒物PM10连续自动检测TEOM微量震荡天平法和Beta射线法测定中相关问题的分析与探讨[J],科技信息,基础理论研讨,2007,25:45-46.
    [1]罗云锋,周秀骥,李维亮.大气气溶胶辐射强迫及气候效应的研究现状[J],地球科学进展,1998,13:572-581.
    [2]Zhang, R. J.,Wang, M. X.,and Xia, X.G.:Chemical composition of aerosols in winter/spring in Beijing [J],Journal of Environmental Sciences,2002,14(1):7-11.
    [3]Kanfman, Y. J., Tanre, D.,Remer, L. A.,Vermote, E. F., Chu, A.,and Holben, B.N.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer [J],J. Geophys.Res.,1997,102(D14):17051-17067.
    [4]Haywood, J. M., Ramaswamy, V.,and Soden, B.:Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans [J],Science,1999,283(5406):1299-1303.
    [5]Kim, D.H., Sohn, B.J., Nakajima, T.,Takamura, T., Takemura, T., Choi, B.C.,and Yoon, S. C.:Aerosol optical properties over east Asia determined from ground-based sky radiation measurements[J], J. Geophys. Res.,2004,109(D02209), doi:10.1029/2003JD003387.
    [6]柳晶.中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究[D],南京信息工程大学博士学位论文,2010.
    [7]Intergovernmental Panel on Climate Change (IPCC):Radiative forcing of climate change, in Climate Change 2001 [M], New York, Cambridge University Press,2001.
    [8]Yu,H.B.,Dickinson, R. E., Chin, M., Kaufman,Y. J., Zhou, M.,Zhou, L., Tian, Y.,Dubovik, O., and Holben, B.N.:Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations[J], J. Geophys.Res.,2004,109(D03206), doi:10.1029/2003JD003914.
    [9]奚晓霞,权建农,陈长和,赵秀娟.兰州市城关区冬季TSP的检测分析及其与辐射的关系[J],高原气象,2002,21(4):427-431.
    [10]Dubovoi, S.E.:Aerosol impacts on visible light extinction in the atmosphere of Mexico City [J],Science of The Total Environment,2002,287(3):213-230.
    [11]盛裴轩,毛节泰,李建国,张霭琛,桑建国,潘乃先.大气物理学[M],北京大学出版社,2002,78PP.
    [12]Charlson, R. J.:The intergrating nephenlometer [J],Atmos. Techn.,1980,12:10-14.
    [13]胡波,张武,张镭,陈长和,冯广泓.兰州市西固区冬季大气气溶胶粒子的散射特征[J],高原气象,2003,22(4):354-360.
    [14]孟昭阳,蒋晓明,颜鹏,张怀德,王雁,林伟立,闫世明.太原冬季大气气溶胶的散射特征[J],气候变化研究进展,2007,3(5):255-259.
    [15]章秋英,牛生杰,沈建国,王英舜,武魁,王敏,张凯霞.半干旱区气溶胶散射特性研究[J],中国沙漠,2008,28(4):755-761.
    [16]苏晨,张小玲,刘强,汤洁.上甸子本底站气溶胶散射系数变化特征的初步研究[J],气候与环境研究,2009,14(5):537-545。
    [17]田磊,张武,史晋森,黄建平,宋松涛,丁晓东,闭建荣,曹贤洁,张镭.河西春季沙尘气溶胶粒子散射特性的初步研究[J],高原气象,2010,29(4):1050-1057.
    [18]曹贤洁,张镭,李霞,史晋森,徐记亮,黄建平,张武.张掖地区气溶胶吸收和散射特性分析[J],高原气象,2010,29(5):1246-1253.
    [19]吴涧,罗燕,王卫国,郭世昌,屈卫峰.矿尘气溶胶短波辐射效应的初步研究[J],热带气象学报,2004,20(3):328-336.
    [20]孙正国,孙强,任智斌.基于Mie散射理论的微球体颗粒半径分析[J],红外与激光工程,2005,34(4):495-498.
    [21]黄旭峰,布扬,王向朝.基于米氏散射理论的太阳光散射偏振特性[J],中国激光,2010,37(12):3002-3006.
    [22]Muller, T., Schladitz, A.,Massling, A.,Kaaden, N.,Kandler, K., and Wiedensohler, A.: Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1 [J], Tellus B,2009,61(1):79-95, doi:10.1111/j.1600-0889.2008.00399.x.
    [23]Wiegner, M., Gasteiger, J., Kandler, K.,Weinzierl, B.,Rasp, K.,Esselborn, M., Freudenthaler, V., Heese, B.,Toledano, C.,Tesche,M., and Althausen, D.:Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications [J], Tellus B,2009, 61(1):180-194, doi:10.1111/j.1600-0889.2008.00381.x.
    [24]Gasteiger, J., Groβ, S.,Freudenthaler, V.,and Wiegner, M.:Volcanic ash from Iceland over Munich:mass concentration retrieved from ground-based remote sensing measurements [J], Atmos. Chem. Phys.,2011,11:2209-2223.
    [25]Fu, Q.,Thorsen, T. J.,Su, J.,Ge, J.,and Huang, J. P.:Test of Mie based single-scattering properties of non-spherical dust aerosols in radiative flux calculations [J],J. Quant. Spectrosc.Ra.,2009,110:1640-1653.
    [26]尹宏.大气辐射学基础[M],北京,气象出版社,1993,75PP.
    [27]田文寿,陈长和,黄建国.兰州市冬季气溶胶的谱特征及其折射率[J],兰州大学学报(自然科学版),1996,32(3):126-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700