用户名: 密码: 验证码:
广东省电力生态系统分析与调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国工业化和城镇化快速发展导致生态破坏和环境污染形势十分严峻,特别是酸雨、灰霾和光化学烟雾等区域性大气污染问题,已成为制约区域经济持续发展的重要因素。电力行业特别是火电行业是我国大气污染物排放的重要来源,如何实现经济与环境,电力与环境的协调发展,是生态学与环境科学研究领域亟待解决的重要问题。
     本研究首次提出了电力生态系统的基本理论,以广东省为案例,分析了广东省电力、环:境、经济子系统的发育特征,以计量经济学方法和大气环境质量模式给出了广东省电力与经济、电力与环境的定量关系,构建了广东省电力生态系统协调评价方法并予以应用,采用定性和定量结合的方法研究了广东省电力发展的优化方案,并提出了广东省电力生态系统调控政策。
     本研究的主要结论如下:
     (1)电力生态系统是以电力生产和消费链条为核心,以电力相关的社会经济活动为重要内容的人类社会生态系统。电力生态系统是由电力、环境与经济三个子系统相互影响、相互作用而形成的复合生态系统,存在着从无序向有序的自组织演化过程。
     (2)1978至2010年间,广东省经济子系统的发展是推动电力子系统发展的原因,反之则不成立,适当抑制电力子系统过快发展不一定会抑制广东省经济子系统的发展;电力消费量与经济发展存在长期稳定的数量关系,当地区生产总值和工业总产值分别增长1个单位时,电力消费量将分别增长0.97和0.64个单位。
     (3)相比2006年,2009年广东省电力行业主要污染物排放量有所下降,但依然是大气污染物排放的主要来源之一;2009年,电力行业对广东省大气污染物浓度的分布影响不大,电力贡献浓度的高值区主要集中在珠三角地区的排放源附近区域,电力行业不是影响大气环境质量最主要的原因。
     (4)2000至2010年间,广东省电力生态系统的协调度呈现以2004年为最低点,广东省电力生态系统正处于从无序向有序波动演化的过程中。
     (5)燃煤火电依然是广东省未来电力发展的主要类型,应重点布局在东西两翼的沿海地区,在不同的经济增长速度下,燃煤火电装机容量在“十二五”和“十三五”期间的最大量分别是1722-1784万kW和1906-2801万kW。
     (6)研究提出的两个电力发展优化情景优于基准情景,建议经济增长速度为8%时依优化情景1发展,当经济增长速度达到10%时依优化情景2发展,并从电力了系统和环境子系统两个层面加强对电力生态系统的调控。
Due to the rapid pace of urbanization and industrialization, the ecological cost and environmental contamination in China has reached a critical level. Particularly regional air pollution problems like acid rain, dusty haze and photochemical smog have already become a key factor holding back the development of region's sustainable economic growth. Power industry, especially thermal power industry contributes a large ratio of air pollutants that released in to the environment. How to achieve the goal of reconciling development of electricity and economy with the environment is a vital problem to be resolved for ecologist and environmentalist.
     In this paper, the basic theory of electricity ecosystem was first put forward, and taking Guangdong province as a case, the growth feature of electricity, environment and economy subsystem has been analyzed. The econometrics method and the quality of atmospheric environment model have been utilized to analyze the quantitative relation of electricity subsystem and economy subsystem. An evaluation method for coordinating electricity ecosystem has been built and applied. An optimization solution for development of power industry in Guangdong Province has been proposed by using the qualitative and quantitative methods, and advices have been provided on adjusting electricity ecosystem policies.
     The main conclusions are as follows:
     (1) Taking the electricity production, consumption chain as the core and the social economic activities related to electricity as the important content. Electricity ecosystem is a human social ecosystem. Electricity ecosystem that turned itself to the ordered states from the disordered states is a complex system that formed in the interactions among electricity, environment and economy.
     (2) From1978to2010, the growth of gross domestic product and total industrial output value is the driving factor of the growth of total electricity consumption, but not vice versa. Proper inhibiting excess development of electricity consumption might not prevent the growth of economy development. There is a long-term and stable relationship between electricity consumption and economy development, when gross domestic product and industrial gross output value grows1unit separately, the electricity consumption of the whole province will increase0.97and0.64unit respectively.
     (3) Compared to2006, both the emission amount of air pollutants and proportion of the total emission of power industry in Guangdong province have different degrees of decline in2009. but power industry is still one of the main sources of air pollutants emission in Guangdong province. Power industry has slightly impact on air pollutants concentration distribution in2009, power industry is the main reason of environment degradation.
     (4) From2000to2010, the process of Guangdong electricity ecosystem is decreasing firstly and then rising steadily, the nadir is in2004. This ecosystem is turning itself to the ordered states from the disordered states.
     (5) In the future, coal thermal power plant still plays a significant role in the power plant development. Coal thermal power plant should be distributed mainly in the coastal areas of the east and west wings. Under different economic growth rate, the coal thermal power capacity will top17,220-17,840megawatts and19,060-28,010megawatts during the12th Five-Year Plan period and the13th Five-Year Plan period.
     (6) The thermal power plant in Guangdong province should be constructed based on optimized scenario put forward in this paper. If economic growth rate reaches8percent, the1st optimized scenario should be applied, the2nd optimized scenario will be used if reaches10percent. The electricity ecosystem adjusting policies should be perfected by electricity subsystem and environment subsystem.
引文
[1]毕军,章中.可持续发展的判别模式及其应用[J].中国环境科学,1998,(18):30-36.
    [2]陈长杰,马晓微,魏一鸣,等.基于可持续发展的中国经济-资源系统协调性分析[J].系统工程,2004,22(3):34-39.
    [3]陈汉利,马超群,秦滔.电力消费与中国经济增长的关系分析[J].系统工程,2007,25(8):68-73.
    [4]陈文颖,高鹏飞,何建坤.用MARKAL-MACRO模型研究碳减排对中国能源系统的影响[J].清华大学学报(自然科学版),2004,44(3):342-346.
    [5]陈文颖,吴宗鑫.用MARKAL模型研究中国未来可持续能源发展战略[J].清华大学学报(自然科学版),2001,41(12):103-106.
    [6]程玉桂,黎明,林明玉.基于遗传算法和BP神经网络的城区中长期电力负荷预测与分析[J].计算机应用,2010,30(1):224-226.
    [7]褚君.山西火电RE-ENV-EC复合系统协调度诊断预警分析[D].保定:华北电力大学,2009.
    [8]邓华,段宁.“脱钩”评价模式及其对循环经济的影响[J].中国人口·资源与环境,2004,14(6):44-47.
    [9]邓玉勇,杜铭华,雷仲敏.基于能源-经济-环境(3E)系统的模型方法研究综述[J].甘肃社会科学,2006,(3):209-212.
    [10]董会忠,綦振法.史成东.山东省工业总产值与能源消耗量的协整关系[J].中国人口·资源环境,2011,21(11):56-60.
    [11]付加峰,刘毅,张雷.基于GANN和DEA的我国工业经济与环境协调发展研究[J].干旱区资源与环境,2007,21(6):68-73.
    [12]韩力群.神经I网络研究趋势展望[J].北京工商大学学报(自然科学版),2007,25(6):39-43.
    [13]韩智勇,魏一鸣,焦建玲,等.中国能源消费与经济增长的协整性与因果关系分析[J].系统工程,2004,22(12):17-21.
    [14]郝卫平,李琼慧,赵一农.我国电力弹性系数的现实意义[J].经济师,2003,36(5):8-10.
    [15]何建坤,张阿玲,尚春生.应用于减排温室气体评价的INET能源系统模型[J].清华大学学报(自然科学版).1996,36(1):68-73.
    [16]何晓萍,刘希颖,林艳苹.中国城市进程中的电力需求预测[J].经济研究,2009、(1):118-130.
    [17]吉蕴,李祖平.逻辑斯蒂模型及其应用[J].潍坊学院学报,2009,9(5):78-80.
    [18]贾绍凤,毛汉英.国外可持续发展度量研究[J].地理科学进展,1999,14(6):596-601.
    [19]蒋惠凤,何有世,杨伟雄.基于偏最小二乘回归的中长期电力负荷预测[J].电力系统及其自动化学报,2007,19(5):110-113.
    [20]蒋金荷,姚愉芳.中国经济增长与电力发展关系的定量分析研究[J].数量经济技术经济研究,2002,(10):5-10.
    [21]雷明.中国资源-能源-经济-环境综合投入产出表及绿色税费核算分析[J].东南学术,2001,(4):64-74.
    [22]李宾,张象枢.复合生态系统演化过程的环境影响分析[J].环境与可持续发展,2009,(2):27-29.
    [23]李济英.电力工业与国民经济互动关系分析[J].经济师,2004,(4):66-67
    [24]李克国.环境经济学[M].北京:中国环境科学出版社.2007.
    [25]李为正.MARKAL模型用于电力系统规划中若干问题的研讨[J].数量经济技术经济研究,1986,(10):34-39.
    [26]李艳,曾珍香,武优西,等.经济-环境系统协调发展评价方法研究及应用[J].系统上程理论与实践,2003,(5):54-58.
    [27]李艳梅,孙薇.多元线性回归分析在用电量预测中的应用[J].华北电力技术,2003,(11):40-41.
    [28]李玉文,徐中民,上勇,等.环境库兹涅茨曲线研究进展[J].中国人口·资源环境,2005,15(5):7-12.
    [29]李中才,刘林德,孙玉峰,等.基于PSR方法的区域生态安全评价[J].生.态学报,2010,30(23):6495-6503.
    [30]梁宇希,黄国和,林千果,等.基于不确定条件下的北京电源规划优化模型[J].电力系统保护与控制,2010,38(15):53-59.
    [31]林伯强.结构变化、效率改进与能源需求预测——以中国电力行业为例[J].经济研究,2003.(5):57-65.
    [32]林伯强.中J国电力消费与中国经济增长:基于生产函数的研究[j].管理世界,2003,(11):18-27
    [33]刘广迎,李翔.基于SVM模型的中国电力需求预测[J].制造业自动化,2010,32(3):159-162.
    [34]刘磊.张敏,喻元秀.中国主要污染物排放的环境库兹涅茨特征及其影响因素分析[J].环境污染与防治,2010.32(11):107-112.
    [35]刘丽香,孟庆鹏.考虑人口、经济、环境因素的城市电力需求预测[J].河北工程技术高等专科学校学报,2010,(1):30-33,55.
    [36]刘耀彬,李仁东,张守忠.城市化与生态环境协调标准及其评价模型研究[J].中国软科学,2005,(5):141-148.
    [37]刘耀年,五卫,杨冬峰.基于模糊划分聚类的中长期用电量预测[J].东北电力学院学报,2004,24(4):39-42.
    [38]陆钟武.关于进一步做好循环经济规划的几点看法[J].环境保护,2005(1):14-17,25.
    [39]吕连宏,罗宏,张征.中国能源—环境—经济复合系统的协调性分析[J].北京林业大学学报(社会科学版),2009,8(2):80-83.
    [40]吕连宏,张征,李道峰,等.应用层次分析法构建中国煤炭城市生态环境质量评价指标体系[J].能源环境保护,2005,19(5):53-56.
    [41]马世骏,王如松.社会—经济—自然复合生态系统[J].生态学报,1984,4(1):1-9.
    [42]门惠芹,张启敏.银川市人口、资源、环境与经济协调发展的多目标规划模型[J].宁夏农林科技,2009,(6):12-14.
    [43]牛东晓,成功,张博,等.基于MPCA-RBFNN的神经网络在中长期电力负荷预测中的应用[J].华北电力大学学报,2007,34(3):77-79.
    [44]牛文元.可持续发展导论[M].北京:科学出版社.1994.
    [45]彭水军,包群.中国经济增长与环境污染—基于时序数据的经验分析(1985-2003)[J].当代财经,2006,(7):5-12.
    [46]戚岳,王玮,周晖,等.灰色计量经济学模型在中长期电力需求预测中的应用研究[J].华北电力大学学报,2008,35(5):36-40.
    [47]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [48]钱学森.论系统工程[M].长沙:湖南科学技术出版社,1988.
    [49]钱学森.再谈开放的复杂巨系统[J].模式识别与人上智能,1991,4(1):1-4.
    [50]秦书生.复合生态系统自组织特征分析[J].系统科学学报,2008,16(2):45-49.
    [51]宋炜,顾阿伦,吴宗鑫.城镇居民生活用电需求预测模型[J].中国电力,2006,39(9):67-70.
    [52]谭显东.电力可计算一般均衡模型的构建及应用研究[D].保定:华北电力大学,2008.
    [53]万红飞,周德群,高亚平.可持续发展的能源,环境,经济(3E)关联模型[J].连云港化工高等专科学校学报,2000,13(1):50-53.
    [54]上蓓蓓,李扬.电力消耗与经济可持续发展关系的投入产出分析[J].电力自动化设备,2009,29(2):69-72.
    [55]王粲,陈吉宁,邹骥.基于CGE模型的CO2减排对中国经济的影响[J].清华大学学报(自然科学版),2005,45(12):1621-1624.
    [56]王恩创,任玉珑,朱春波.基于DEA的电能-环境协调发展评价研究[J].科技管理研究,2009,(5):164-167.
    [57]王国栋,邱镇,任燕峰,等.基于PSO优化的直接灰色模型在年用电量预测中的应用[J].水电能源科学,2010,28(10):148-150.
    [58]王国霞.刘洋、鲁奇.基于灰色系统理论的山西省电力需求预测[J].华北工学院学报,2005、26(2):122-126.
    [59]王浣尘.可持续发展与系统集成方法论[J].科学管理研究,1997,15(1):25-27.
    [60]王金专,韩静轩,上金亮.山东省电力消费和经济发展关系的协整分析[J].2008,10,22(4):415-418.
    [61]王金雪,王金亮,方云.基于电力消费弹性系数的山东省电力需求分析[J].山东电力技术,2009,(2):16-19.
    [62]王磊,宁大同.区域能源-工业经济-环境系统协调发展灰色决策[J].北京师范大学学报(自然科学版),1995,31(1):134-139.
    [63]上鹏飞.多元线性回归方法在中国用电量预测中的应用研究[J].东北电力技术,2005,(8):16-18.
    [64]王文青,苏艳娜,崔海霞.主成分分析模型在河北省农村第一产业电力消费预测研究中的应用[J].安徽农业科学.2007,35(15):4692-4693,4695.
    [65]王妍.基于MARKAL模型的我国火力发电节能减排研究[D].北京:北京工业大学,2008.
    [66]王宜虎,崔旭,陈雯.南京市经济发展与环境质量关系的实证研究[J].长江流域资源与环境,2006,15(2):142-146.
    [67]王玉庆.环境经济学[M].北京:中国环境科学出版社,2002.
    [68]魏一鸣,曾嵘,范英,等.北京市人口、资源、环境与经济协调发展的多目标规划模型[J].系统上程理论与实践,2002,(2):74-83.
    [69]吴安平.产业电力弹性系数的意义及在负荷预测中的应用[J].中国电力,1998,31(12):41-44.
    [70]吴承业,袁达.中国工业经济与环境协调发展的经济计量分析[J].数量经济技术经济研究,2000,(10):15-17.
    [71]吴彤.自组织方法论研究[M].北京:清华大学出版社,2001.
    [72]吴翔,孙健,隋建利.基于ARMA模型对我国电力消费量的预测[J].东北电力大学学报,2008, 28(6):29-32.
    [73]谢洪礼.关于可持续发眨指标体系的述评(二)—国外可持续发展指标体系研究的简要介绍[J].统计研究,1991.(1):59-63.
    [74]杨浩彦.台湾地区与能源使用相关的二氧化碳减量成本估计:多目标规划分析法之应用[J].人文及社会科学集刊,2000,12(3):459-494.
    [75]杨凯,叶茂,徐启新.上海城市废弃物增长的环境库兹涅茨特征研究[J].地理研究,2003,22(1):60-66.
    [76]杨士弘.广州城市环境与经济协调发展预测及调控研究[J].地理科学,1994,14(2):136-143.
    [77]杨晓帆,陈廷槐.人工神经网络固有的优点和缺点[J].计算机科学,1994,21(2):23-26.
    [78]于丽娟.双流县上地利用效益评价研究[D].四川:四川农业大学,2006,9-11.
    [79]袁家海,丁伟,胡兆光.电力消费与中国经济发展的协整与波动分析[J].电网技术,2006,30(9):10-14.
    [80]云雅如,柴发合,王淑兰,等.欧洲酸雨控制历程及效果综合评估[J].环境科学研究,2010,23(11):1361-1367.
    [81]张阿玲,郑淮,何建坤.适合中国国情的经济、能源、环境(3E)模型[J].清华大学学报(自然科学版),2002,42(12):1616-1620.
    [82]张德伟.试论广东缺电的社会成本[J].广东经济,2005,(7):42-45.
    [83]张福伟,肖国泉.基于系统动力学的电力可持续发展模型[J].现代电力,2000,17(5):89-94.
    [84]张建宇,潘荔,杨帆,等.中国燃煤电厂大气污染控制现状分析[J].环境工程技术学报,2011,1(3):185-196.
    [85]张军.电力工业与国民经济增长关系的协整分析及对策建议[J].华北电力大学学报(社会科学版),2004,4:35-37.
    [86]张伟吕,薛万磊.电力弹性系数分析及应用[J].山东电力技术,2006,(6):14-16.
    [87]张晓东,池天河.90年代中国省级区域经济与环境协调度分析[J].地理研究,2001,20(4):506-515.
    [88]张晓峒.经济计量分析[M].北京:经济科学出版社,2000.
    [89]张晓红,戴昌钧.基于灰色理论的我国电力产业与国民经济协调发展趋势分析[J].东华大学学报(自然科学版),2009,35(4):483-487.
    [90]张效莉.人口、经济发展与生态环境系统协调性测度及应用研究[D].成都:西南交通大学,2003.
    [91]帐宇,何永秀,焦艳燕,等.基于Panel Data模型的中国城市居民生活用电预测研究[J].华东电力.2009,37(1):51-55.
    [92]赵芳.能源-经济-环境非协调发展原因的经济学解释[J].中国人口·资源与环境,2008,18(4):67-72.
    [93]赵芳.中国能源-经济-环境(3E)协调发展状态的实证研究[J].经济学家,2009,(12):35-41.
    [94]赵景柱.社会-经济-自然复合生态系统持续发展评价指标的理论研究[J].生态学报,1995,15(3):327-330.
    [95]赵媛,梁中,袁林旺,等.能源与社会经济环境协调发展的多目标决策——以江苏省为例[J].地理科学,2001,21(2):164-169.
    [96]钟杰峰.广东电力弹性系数变化趋势分析[J].华东电力,2000,(10):16-17.
    [97]钟茂初,张学刚.环境库兹涅茨曲线理论及研究的批评综论[J].中J国人口资源与环境,2010, 20(2):62-67.
    [98J周晖,王玮,李晓梅.基于灰色关联理论的长春市电力消费预测模型的研究[J].东北电力技术,2004,(9):13-16.
    [99]周伦,夏长富.电力系统投入产山模型[J].系统工程理论与实践,1997,(5):117-123.
    [100]Afgan N H, Carvalho M G, Hovanov N V. Energy system assessment with sustainability indicators[J]. Energy Policy,2000,28(9):603-612.
    [101]Afgan N H, Carvalho M G Multi-criteria assessment of new and renewable energy power plants[J]. Energy,2002,27(8):739-755.
    [102]Afgan N H, Carvalho M G. Sustainability assessment of a hybrid energy system[J]. Energy Policy, 2008,36(8):2903-2910.
    [103]Afgan N H, Carvalho M G. Sustainability assessment of hydrogen energy systems[J]. International Journal of Hydrogen Energy,2004,29(13):1327-1342.
    [104]A1-Ghandoor A, Al-Hinti I, Jaber J O, et al. Electricity consumption and associated GHG emissions of the Jordanian industrial sector:Empirical analysis and future projection[J]. Energy Policy,2008, 36(1):258-267.
    [105]Alice Shiu, Pun-Lee Lam. Electricity consumption and economic growth in China[J]. Energy Policy,2004,22:47-54
    [106]Andreoni J, Levinson A. The Simple Analytics of The Environmental Kuznets Curve[J]. Journal of Public Economics,2001,80:269-286.
    [107]Azadeh A, Ghaderi S F, Sohrabkhani S. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors[J]. Energy Conversion and Management, 2008,49(8):2272-2278.
    [108]Beenstock M, Goldin E, Nabot D. The demand for electricity in Israel[J]. Energy Economics,1999, 21(2):168-183.
    [109]Begic F, Afgan N H. Sustainability assessment tool for the decision making in selection of energy system-Bosnian case[J]. Energy,2007,32(10):1979-1985.
    [110]Bertalanffy L V. General System Theory[M]. New York:George Braziller,1968.
    [111]Chen S T, Kuo H I, Chen C C. The relationship between GDP and electricity consumption in 10 Asian countries[J]. Energy Policy,2007,35(4),2611-2621.
    [112]Cole M A. Trade, the pollution haven hypothesis and the environmental Kuznets Curve:examining the linkages[J]. Ecological Economics,2004,48(1):71-81.
    [113]David I S, Michael S C, Edward B B. Economic growth and environmental degradation:The environmental Kuznets curve and sustainable development[J].World Development,1996,24(7): 1151-1160.
    [114]De Bruyn S, Heintz R. The Environmental Kuznets Curve Hypothesis[M]. Handbook of Environmental Economics. BlackWell Publishing Co., Oxford,1998.
    [115]Engle R F and Granger C W J. Co-integration and Error Correction:Representation, Estimation and Testing[J]. Econometrica,1987,55(2):251-276.
    [116]Fu-Kuang Ko, Chang-Bin Huang, Pei-Ying Tseng. Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan[J]. Energy Policy,2010,38(1):288-300.
    [117]Gilbert A. Criteria for sustainability in the development of indicators for sustainable development[J]. Chemosphere,1996,33(9):1739-1748.
    [118]Granger C W J. Investigating Causal Relations by Econometric Models and Cress-spectral Methods[J]. Econometrica,1969,37(3):424-438.
    [119]Gutierrez R, Gutierrez-Sanchez R. Nafidi A. Electricity consumption in Morocco:Stochastic Gompertz diffusion analysis with exogenous factors[J]. Applied Energy,2006,83(10):1139-1151.
    [120]Hawdon D. Pearson P. Input-output simulations of energy. environment, economy interactions in the UK[J]. Energy Economics,1995,17(1):73-86.
    [121]Hettige H, Mani M, Wheeler D. Industrial pollution in economic development:the environmental Kuznets curve revisited[J]. Journal of Development Economics,2000,62(2):445-476.
    [122]Hovanov N, Kornikov V, Seregin I. Qualitative information processing in DSS ASPID-3W for complex objects estimation under uncertainty[C]. Proceedings of the International Conference "Informatics and Control", St. Petersburg, Russia.1997,808-816.
    [123]Hovanov N. Analysis and Synthesis of Parameters under Information Deficiency[M]. St. Petersburg:St. Petersburg State University Press.1996.
    [124]Hsu G J Y, Feng-Ying Chou. Integrated planning for mitigating CO2 emissions in Taiwan:a multi-objective programming approach[J]. Energy Policy,2000,28:519-523.
    [125]Jiahai Yuan, Changhong Zhao, Shunkun Yu, et al. Electricity consumption and economic growth in China:Cointegration and co-feature analysis[J]. Energy Economics,2007,29(6):1179-1191.
    [126]Kraft J, Kraft A. Relationship between energy and GNP[J]. Journal of Energy and Development, 1978,3:401-403.
    [127]Kuznets S. Economic growth and income inequality[J]. American Economic Review,1955,45: 1-28.
    [128]Lean H H, Smyth R. CO2 emissions, electricity consumption and output in ASEAN[J]. Applied Energy,2010,87(6):1858-1864.
    [129]Liposcak M. Afgan N H. Duic N. et al. Sustainability assessment of cogeneration sector development in Croatia[J]. Energy,2006,31(13):2276-2284.
    [130]Mahlia T M I. Emissions from electricity generation in Malaysia[J]. Renewable Energy,2002. 27(2):293-300.
    [131]Mallah S. Nuclear energy option for energy security and sustainable development in India[J]. Annals of Nuclear Energy,2011,38:331-336.
    [132]Merklein H, Hardy W C. Energy economics[M]. Houston, Tex:Gulf Pub. Co., Book Division, 1977
    [133]Mohamed Z, Bodger P. Forecasting electricity consumption in New Zealand using economic and demographic variables[J]. Energy,2005.30(10):1833-1843.
    [134]Naill R F. A system dynamics model for national energy policy planning[J]. System Dynamics Review,1992,8(1):1-19.
    [135]Narayan P K, Prasad A. Electricity consumption-real GDP causality nexus:Evidence from a bootstrapped causality test for 30 OECD countries[J]. Energy Policy,2008.36(2):910-918.
    [136]Nguyen K Q. Impacts of wind power generation and CO2 emission constraints on the future choice of fuels and technologies in the power sector of Vietnam[J]. Energy Policy.2007,35(4): 2305-2312.
    [137]Panayotou T. Demystifying the environmental Kuznets curve:turning a black box into a policy tool[J]. Environment and Development Economics,1997,2:465-484.
    [138]Panayotou T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development [C].Working Paper WP238, Technology and Employment Programme, International Labor Office. Geneva.1993.
    [139]Perman R. Evidence from panel unit root and cointegration tests that the environmental Kuznets Curve does not exist[J]. Australian Journal of Agricultural,2003,47:325-347.
    [140]Phillips P C B and Perron P. Testing for a Unit Root in Time Series Regression[J]. Biometrika. 1987,75:335-346.
    [141]Rafaj P, Kypreos S. Internalization of external cost in the power generation sector:Analysis with Global Multi-regional MARKAL model[J]. Energy Policy,2007,35:828-843.
    [142]Roca J, Padilla E, Farre M, et al. Economic growth and atmospheric pollution in Spain:discussing the environmental Kuznets curve hypothesis[J]. Ecological Economics,2001,39(1):85-99.
    [143]Sadownik R, Barbosa E P. Short-term forecasting of industrial electricity consumption in Brazil[J]. Journal of Forecasting,1999,18(3):215-224.
    [144]Seebregts A, Kram T, Schaeffer G J, et al. Endogenous learning and technology clustering:analysis with MARKAL model of the Western European energy system[J]. International Journal of Global Energy Issues,2000,14:289-319.
    [145]Selden D I. Environmental Quality and Development:Is There a Kuznets Curve for Air Pollution Estimates?[J]. Journal of Environmental Economics and Management.1994,27:147-162.
    [146]Singh R K, Murty H R, Gupta S K, et al. An overview of sustainability assessment methodologies[J]. Ecological Indicators,2009,9(2):189-212.
    [147]Tser-yieth Chen. The impact of mitigating CO2 emissions on Taiwan's economy[J]. Energy Economics,2001,23:141-151.
    [148]Wolde-Rufael Y. Electricity consumption and economic growth:a time series experience for 17 African countries[J]. Energy Policy,2006,34:1106-1114.
    [149]Xing Ping Zhang, Xiao Mei Cheng. Energy consumption, carbon emissions, and economic growth in China[J]. Ecological Economics,2009,68:2706-2712.
    [150]Yoo S H, K Wak S Y. Electricity consumption and economic growth in seven South American countries[J]. Energy Policy,2010,38(1):181-188.
    [151]Yu E S H, Hwang B K. The relationship between energy and GNP:Further results[J]. Energy Economics,1984,6(3):186-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700