用户名: 密码: 验证码:
恶臭假单胞菌CZ1非饱和生物膜耐受和累积重金属的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是全球广泛关注的环境问题,地球上99%以上的微生物都是以生物膜的形式存在,与游离态微生物相比,微生物生物膜在土壤重金属的分子形态、生物有效性和迁移转化过程中发挥着更为重要的作用。本论文以高铜锌耐性微生物恶臭假单胞菌CZ1为研究对象,采用原子力显微镜(AFM)、激光共聚焦显微镜(CLSM)、透射电镜(TEM)、X射线吸收精细结构谱(XAFS)和X射线荧光光谱(XRF)等微结构分析技术系统研究了重金属与非饱和生物膜之间的相互作用,从分子水平上初步阐明了非饱和生物膜及其组分在调控重金属耐性和吸收过程中的作用机制,旨在为土壤重金属污染风险评价和修复控制提供理论依据。研究成果主要包括:
     揭示了不同培养条件下非饱和生物膜中大分子组成和表面特性的变化规律。通过聚酯膜模拟培养恶臭假单胞菌非饱和生物膜,发现生物膜胞内外多糖、蛋白和核酸等大分子物质的组成受营养条件的调控,且胞外多聚物(EPS)更易受到影响。高温、低pH和一定强度的渗透压胁迫能显著促进恶臭假单胞菌CZ1分泌更多的胞外多聚物。随着生物膜的成熟,生物膜表面由光滑变粗糙,细胞表面布满直径15-50nm的椭球形胞外多聚物。在高渗透压胁迫下生物膜中细胞紧密粘合在一起,表明胞外多聚物的合成和生物膜中细胞间的相互协作也是生物膜应对环境胁迫的重要机制。
     弄清了重金属对游离态微生物、饱和及非饱和生物膜的毒性效应机制。生物膜对铜、锌、铅、铁、锰、镍等重金属都具有很高的抗性和富集能力。与其游离态细胞相比,恶臭假单胞菌生物膜对铜锌的抗性增加了2-8倍,且生物膜中细胞只有在长时间暴露于重金属时才会被逐渐杀死。SEM、 CLSM和AFM的研究结果表明,生物膜的表面形态、空间结构及胞外多聚物都与其高重金属抗性相关。
     阐明了非饱和生物膜对铜吸收、转运和累积的时空变化规律。XRF分析表明,生物膜中元素的空间分布规律存在显著的空间异质性,生物膜空气界面层是金属元素最主要的分布区域。非饱和生物膜对铜的吸收、转运和累积过程是一个快速主动的过程。生物膜从培养基中以柠檬酸铜的形式吸收铜,运输到生物膜的各个部位,并在靠近空气界面层的约40μm厚的小区域内以类似磷酸铜的形式沉积于胞外,从而保护培养基界面层细胞免受铜的毒害。
     明确了铜在非饱和生物膜及其不同组分上的分布特征、结合部位及其结合的分子形态。生物膜的EPS是铜的主要分布区,约60-67%的铜分布在EPS中,而其蒴状EPS中铜占到42.3-44.7%。铜胁迫下,胞内蛋白、胞外核酸和胞外酸性多糖的含量显著增加,红外光谱中相应的酰胺Ⅰ带、磷酰基和羧基峰也发生了显著变化,表明这些大分子物质在铜络合中发挥着重要作用。XAFS研究也表明,在生物膜的微生物细胞内、细胞壁和胞外多聚物中,铜分别主要以与巯基、磷酸基和羧基结合的类似形态存在。
     揭示了胞外多聚物中胞外核酸也能参与铜的络合。随机扩增多态性DNA(RAPD)分析表明,铜胁迫下生物膜的胞外核酸中某些条带含量显著增加,同时也有新特异条带出现。XAFS分析表明与胞内核酸相比,在胞外核酸中与铜配位的氧原子数更少,键长也更短。
Heavy metal pollution in soil is one of the global environmental issues. More than99%of microbes live as biofilm, which would paly more important role in the species, bioavailability and transportation processes of heavy metals in soil compared with plan tonic microbes. In the present study, a high heavy metal-resistant rhizobacterium Pseudomonas putida CZ1was studied. The macromolecular composition, surface morphology, spatial structure, metal resistance and accumulation, temporal and spatial distribution of metal elements, as well as the Cu speciation of unsaturated Pseudomonas putida CZ1biofilm were investigated using atomic force microscope (AFM), confocal laser scanning microscope (CLSM), transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), X-ray fluorescence microprobe (XRF) combined with conventional physical-chemical methods. These results illustrated the molecular mechanisms of metal resistance, accumulation and transportation within the unsaturated biofilms, which could provide theory basis for risk evaluation and bioremediation of heavy metal in contaminated soils.
     It was found that the protein, carbohydrate and DNA in the cellular and extracellular fractions of biofilm were regulated by nutritional factors, while the extracellular polymeric substances (EPS) were more easily influenced. Low pH, high temperature and appropriate osmotic stress (120mM NaCl) distinctly stimulated EPS production, and the main component enhanced was extracellular protein. With the aging of biofilm, the surfaces as well as the valleys among cells were studded with15-50nm spheroid-like EPS. Cells in the biofilm adhere tightly together to maintain a hydrated microenvironment under high osmotic (328mM NaCl) stress. These results indicated the variations of EPS composition and the cooperation of cells in biofilms is important for the survival of Pseudomonas putida CZ1from environmental stresses in unsaturated environments such as rhizosphere.
     P. putida CZ1biofilm has high resistant and accumulation capacity for Cu, Zn, Pb, Fe, Mn, and Ni. It was found that biofilm cultures were2to8times more resistant to Cu and Zn than the planktonic bacteria, and bacterial cells in the biofilm were killed by metals only for long-term exposure. Furtherly, AFM, SEM and CLSM analyses revealed that the spatial structure as well as the EPS of biofilm was responsible for the high metal resistance of biofilm.
     The spatial and temporal distribution of metals in unsaturated Pseudomonas putida CZ1biofilms was determined using synchrotron-based X-ray fluorescence microscopy (XRF). It was found that Fe, Mn and Ca were primarily located near the air-biofilm interface of biofilms. The sorption of copper by biofilm was rapid, with copper being found throughout the biofilm after only1h of exposure. Copper initially colocalized with Fe and Mn element layers in the biofilm, and then precipitated as copper phosphate in a40μm thick layer near the air-biofilm interface when exposed for12h. The results indicate the heterogeneity of metal distribution within the biofilm is one of the most important mechanisms for high metal resistance and accumulation.
     Within the biofilm,60-67%of copper were located in the extracellular fraction of biofilms, with44.7-42.3%in the capsular EPS. Enhanced production of cellular proteins, extracellular DNA and alginate were found for Cu stressed biofilm. Additionally, with Cu treatment, the variations of absorption band of amide I,>P=O phosphodiester functional groups and carboxylate group in the FTIR spectra of cells and EPS were observed as well. These results indicated the important role of cellular protein, extracellular DNA and alginate in Cu binding of biofilm. Moreover, XAFS study furtherly revealed that Cu was primarilly bound with hydrosulfide, phosphate and carboxyl like ligands within the cell, cell wall and extracellular polymeric matrix, respectively.
     Extracellular DNA was also found to play a role in Cu binding. It was found that the composition of extracellular DNA was distinctly changed for Cu stress as revealed by RAPD analyses, and Cu was bound with oxygen ligands in the extracellular DNA with less oxygen and shorter radial distance compared with cellular DNA.
引文
Achouak, W.; Conrod, S.; Cohen, V.; Heulin, T., Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Molecular Plant-Microbe Interactions 2004,17, (8),872-879.
    Adav, S. S.; Lee, D. J.; Tay, J. H., Extracellular polymeric substances and structural stability of aerobic granule. Water Research 2008,42, (6-7),1644-1650.
    Adya, A. K.; Canetta, E.; Walker, G. M., Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Research 2006,6, (1),120-128.
    Aguilera, A.; Souza-Egipsy, V.; Martin-Uriz, P. S.; Amils, R., Extraction of extracellular polymeric substances from extreme acidic microbial biofilms. Applied Microbiology and Biotechnology 2008,78, (6),1079-1088.
    Alvarez, S.; Jerez, C. A., Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology 2004,70, 5177-5182
    Andreazza, R.; Pieniz, S.; Wolf, L.; Lee, M. K.; Camargo, F. A. O.; Okeke, B. C., Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Science of the Total Environment 2010,408, (7), 1501-1507.
    Angelita M. Souza, I. W. S., Exopolysaccharide and storage polymer production in Enterobacter aerogenes type 8 strains. Journal of Applied Microbiology 1994,76,463-468
    Appanna, V. D.; Pierre, M. S., Aluminum elicits exocellular phosphatidylethanolamine production in Pseudomonas fluorescens. Applied and Environmental Microbiology 1996,62, (8), 2778-2782.
    Atlas, R. M. Handbook of media for environmental microbiology. Taylor and Francis, New York 2005; pp 459.
    Auerbach, I. D.; Sorensen, C.; Hansma, H. G.; Holden, P. A., Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. Journal of Bacteriology 2000,182, (13),3809-3815.
    Badireddy, A. R.; Korpol, B. R.; Chellam, S.; Gassman, P. L.; Engelhard, M. H.; Lea, A. S.; Rosso, K. M., Spectroscopic characterization of extracellular polymeric substances from Escherichia coli and Serratia marcescens:suppression using sub-inhibitory concentrations of bismuth thiols. Biomacromolecules 2008,9, (11),3079-3089.
    Bais, H. P.; Fall, R.; Vivanco, J. M., Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology 2004,134, (1),307-319.
    Baldi, F.; Parati, F.; Semplici, F.; Tandoi, V., Biological removal of inorganic Hg(II) as gaseous elemental Hg(0) by continuous culture of a Hg-resistant Pseudomonas-putida Strain Fb-1. World Journal of Microbiology and Biotechnology 1993,9, (2),275-279.
    Bao, L. M.; Zhang, G. L.; Zhang, Y. X.; Li, Y.; Lin, J.; Liu, W.; Cao, Q. C.; Zhao, Y. D.; Ma, C. Y.; Han, Y, Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES. Chinese Physics C 2009,33,1010-1015
    Barton, L. L.; Choudhury, K.; Thomson, B. M.; Steenhoudt, K.; Groffman, A. R., Bacterial reduction of soluble uranium:The first step of in situ immobilization of uranium. Radioactive Waste Management and Environmental Restoration 1996,20, (2-3),141-151.
    Battin, T. J.; Sloan, W. T.; Kjelleberg, S.; Daims, H.; Head, I. M.; Curtis, T. P.; Eberl, L., Microbial landscapes:new paths to biofilm research. Nature Reviews Microbiology 2007,5:76-81
    Becker, J. S.; Matusch, A.; Depboylu, C.; Dobrowolska, J.; Zoriy, M. V., Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus arion) measured by laser ablation inductively coupled plasma mass spectrometry. Analytic Chemistry 2007, 79, (16),6074-6080.
    Bertin, C.; Yang, X. H.; Weston, L. A., The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 2003,256, (1),67-83.
    Beveridge, T. J.; Makin, S. A.; Kadurugamuwa, J. L.; Li, Z. S., Interactions between biofilms and the environment. FEMS Microbiology Reviews 1997,20, (3-4),291-303.
    Bianciotto, V.; Andreotti, S.; Balestrini, R.; Bonfante, P.; Perotto, S., Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHAO show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Molecular Plant-Microbe Interactions 2001,14, (2),255-260.
    Boles, B. R.; Thoendel, M.; Singh, P. K., Self-generated diversity produces "insurance effects" in biofilm communities. Proceedings of the National Academy of Sciences of the United States of America 2004,101, (47),16630-16635.
    Borriello, G.; Werner, E.; Roe, F.; Kim, A. M.; Ehrlich, G. D.; Stewart, P. S., Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrobial Agents and Chemotherapy 2004,48, (7),2659-2664.
    Bosco, M.; Miertus, S.; Turchini, S.; Prosperi, T.; Ascone, I.; Rizzo, R., Structural studies on poly gal acturonate gels:an EXAFS investigation combined with molecular modelling. Carbohydrate Polymers 2002,47, (1),15-26.
    Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976,72, 248-54.
    Branda, S. S.; Vik, A.; Friedman, L.; Kolter, R., Biofilms:the matrix revisited. Trends in Microbiology 2005,13, (1),20-26.
    Brown, M. J.; Lester, J. N., Comparison of bacterial extracellular polymer extraction methods. Applied and Environmental Microbiology 1980,40, (2),179-185.
    Caiazza, N. C.; Merritt, J. H.; Brothers, K. M.; O'Toole, G. A., Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. Journal of Bacteriology 2007,189, (9),3603-12.
    Canovas, D.; Cases, I.; de Lorenzo, V., Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environmental Microbiology 2003,5,(12),1242-1256.
    Cerning, J.; Renard, C. M.; Thibault, J. F.; Bouillanne, C.; Landon, M.; Desmazeaud, M.; Topisirovic, L., Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology 1994,60, (11),3914-3919.
    Chang, W. S.; Halverson, L. J., Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms. Journal of Bacteriology 2003, 185,(20),6199-6204.
    Chang, W. S.; van de Mortel, M.; Nielsen, L.; Nino de Guzman, G.; Li, X.; Halverson, L. J., Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology 2007,189, (22),8290-8299.
    Chen, X. C.; Shi, J. Y.; Chen, Y. X.; Xu, X. H.; Xu, S. Y.; Wang, Y. P., Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Canadian Journal of Microbiology 2006,52, (4),308-316.
    Chen, X. C.; Shi, J. Y.; Chen, Y. X.; Xu, X. J.; Chen, L. T.; Wang, H.; Hu, T. D., Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Applied Microbiology and Biotechnology 2007b,74, (4),881-889.
    Chen, X. C.; Wang, Y. P.; Lin, Q.; Shi, J. Y.; Wu, W. X.; Chen, Y. X., Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids and Surface B Biointerfaces 2005,46, (2),101-107.
    Chen, X.; Hu, S.; Shen, C.; Dou, C.; Shi, J.; Chen, Y., Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresource Technology 2009,100, (1),330-337.
    Chen, X.; Wu, W.; Shi, J. Y.; Xu, X. H.; Wang, H.; Chen, Y. X., Adsorption of copper and zinc on Pseudomonas putida CZ1:Particle concentration effect and adsorption reversibility. Colloids and Surfaces B-Biointerfaces 2007a,54, (1),46-52.
    Choo-Smith, L. P.; Maquelin, K.; van Vreeswijk, T.; Bruining, H. A.; Puppels, G. J.; Thi, N. A. G.; Kirschner, C.; Naumann, D.; Ami, D.; Villa, A. M.; Orsini, F.; Doglia, S. M.; Lamfarraj, H.; Sockalingum, G. D.; Manfait, M.; Allouch, P.; Endtz, H. P., Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Applied and Environmental Microbiology 2001,67, (4),1461-1469.
    Comte, S.; Guibaud, G.; Baudu, M., Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme and Microbial Technology 2006,38, (1-2),237-245.
    Cooksey, D. A.; Azad, H. R., Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic Pseudomonads. Applied and Environmental Microbiology 1992,58, (1),274-278.
    Costerton, J. W.; Cheng, K. J.; Geesey, G. G.; Ladd, T.I.; Nickel, J. C.; Dasgupta, M.; Marrie, T. J., Bacterial biofilms in nature and disease. Annual Review of Microbiology 1987,41,435-64.
    Cross, S. E.; Kreth, J.; Zhu, L.; Qi, F. X.; Pelling, A. E.; Shi, W. Y.; Gimzewski, J. K., Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology 2006,17, (4), S1-S7.
    Danese, P. N.; Pratt, L. A.; Kolter, R., Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. Journal of Bacteriology 2000,182, (12), 3593-3596.
    Danhorn, T.; Fuqua, C., Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 2007,61,401-422.
    Danhorn, T.; Hentzer, M.; Givskov, M.; Parsek, M. R.; Fuqua, C., Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. Journal of Bacteriology 2004,186, (14),4492-4501.
    Degeest, B.; De Vuyst, L., Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Applied and Environmental Microbiology 1999,65:2863-2870
    Douglas, S.; Beveridge, T. J., Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology 1998,26, (2),79-88.
    Drenkard, E.; Ausubel, F. M., Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002,416, (6882),740-743.
    DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 1956,28, (3), 350-356.
    Dunn, N. W.; Gunsalus, I. C, Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas-putida. Journal of Bacteriology 1973,114, (3),974-979.
    Dynes, J. J.; Tyliszczak, T.; Araki, T.; Lawrence, J. R.; Swerhone, G. D. W.; Leppard, G. G.; Hitchcock, A. P., Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environmental Science and Technology 2006, 40, (5),1556-1565.
    Espinosa-Urgel, M.; Salido, A.; Ramos, J. L., Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. Journal of Bacteriology 2000,182, (9),2363-2369.
    Fan, G. C. Chemotaxisin microorganisms. Bull Biology 1996,31, (11),20-2.
    Fang, L.; Huang, Q.; Wei, X.; Liang, W.; Rong, X.; Chen, W.; Cai, P., Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technology 2010,101, (15), 5774-5779.
    Fang, L.; Wei, X.; Cai, P.; Huang, Q.; Chen, H.; Liang, W.; Rong, X., Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresource Technology 2010,102,(2),1137-1141.
    Flemming, H. C., Biofouling in water systems-cases, causes and countermeasures. Applied Microbiology and Biotechnology 2002,59,629-640
    Flemming, H. C; Neu, T. R.; Wozniak, D. J., The EPS matrix:The "House of Biofilm cells". Journal of Bacteriology 2007,189, (22),7945-7947.
    Flemming, H. C.; Wingender, J., The biofilm matrix. Nature Reviews Microbiology 2010,8, (9), 623-633.
    Frolund, B.; Palmgren, R.; Keiding, K.; Nielsen, P. H., Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research 1996,30, (8),1749-1758.
    Fux, C. A.; Costerton, J. W.; Stewart, P. S.; Stoodley, P., Survival strategies of infectious biofilms. Trends of Microbiology 2005,13, (1),34-40.
    Gadd, G. M., Metals, minerals and microbes:geomicrobiology and bioremediation. Microbiology-Sgm 2010,156,609-643.
    Gamar, L.; Blondeau, K.; Simonet, J. M., Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. Journal of Applied Microbiology 1997, 83,(3),281-287.
    Goeres, D. M.; Hamilton, M. A.; Beck, N. A.; Buckingham-Meyer, K.; Hilyard, J. D.; Loetterle, L. R.; Lorenz, L. A.; Walker, D. K.; Stewart, P. S., A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nature Protocols 2009,4, (5),783-788.
    Goutx, M.; Acquaviva, M.; Bertrand, J. C., Cellular and extracellular carbohydrates and lipids from marine.bacteria during growth on soluble substrates and hydrocarbons.Marine Ecology-Progress Series 1990, 61, 291-296.
    Grund,A.;Shapiro,J.;Fennewald,M.:Bacha,P;Leahy,J.;Markbreiter,K.;Nieder,M.;Toepfer, M.,Regulation Of alkane oKidatiOn in Pseudomonas-putida.Journal of Bacteriology 1975, 123,(2),546-556.
    Guibaud,G;Baudu,M.;Dollet,P;Condat,M.L.;Dagot,C.,Role of extracellular polymers in cadmium adsorption by activated sludges. Environmental Technology 1999,20, (10), 1045-1054.
    Guine,V.;Spadini,L.;Sarret,G;Milris,M.;Delolme,C.;Gaudet,J.P;Martins,J.M.,Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. Environmental Science and TechnoIogy 2006,40,(6),1806-1813.
    Ha,J.;Gelabert, A.;Spormann,A.M.;Brown Jr,G E.,Role of extracellular polmeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling,ATR-FTIR,and EXAFS study.Geochimica et Cosmochimica Acta 2010,74,(1), 1-15.
    Hamel,R.;Levasseur,R.;Appanna,V D.,Oxalic acid production and aluminum tolerance in Pseudomonas fluorescens. Journal of Inorganic Biochemistry 1999, 76, (2), 99-104.
    Hansen,S.K.;Rainey,P B.;Haagensen,J.A.J.;Molin,S.,Evolution Of species interactions in a bionlm community.Nattire 2007,445,(7127),533-536.
    Hansmeier,N.;Chao,T.C.;Puhler,A.;Tauch,A.;Kalinowski,J.,The cytosolic,cell stirface and extracellular proteomes Of the biotechnologically important Soil bacterium Cotnyebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 2006,6,(1),233-250.
    Hartison,J.J.;Ceri,H.;Stremick,C.A.;Turner,R.J.,Biofilm susceptibility to metal toxicity. Environinental Microbiology 2004,6,(12),1220-1227.
    Hartison,J.J.;Ceri,H.;Turner,R.J.,Multimetal resistance and tolerance in microbial biofilms. Nattire Reviews Microbiology 2007a,5,(12),928-938.
    Harrison,J.J.;Ceri,H.;Yerly,J.;Rabiei,M.;Hu,Y P.;Martinuzzi,R.;Turner,R.J.,Metal ions may suppress or enhance cellular difierentiation in Candida albicans and Candida tropicalis bi0films. Applied and Environmental Microbiology 2007b,73,(15),4940-4949.
    Harrison, J. J.; Rabiei, M.; Turner, R. J.; Badry, E. A.; Sproule, K. M.; Ceri, H., Metal resistance in Candida biofilms. FEMS Microbiology Ecology 2006,55, (3),479-491.
    Harrison, J. J.; Turner, R. J.; Ceri, H., Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environmental Microbiology 2005,7, (7),981-994.
    Hassett, D. J.; Ma, J. F.; Elkins, J. G.; McDermott, T. R.; Ochsner, U. A.; West, S. E.; Huang, C. T.; Fredericks, J.; Burnett, S.; Stewart, P. S.; McFeters, G.; Passador, L.; Iglewski, B. H., Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology 1999,34, (5),1082-1093.
    Henrici, A.T., Studies of fresh water bacteria. A direct microscopic method. Journal of Bacteriology 1933,25,277-286.
    Higham, D. P.; Sadler, P. J.; Scawen, M. D., Effect of cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. Journal of General Microbiology 1986, 132, (6),1475-1482.
    Hilger, H. A.; Cranford, D. F.; Barlaz, M. A., Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology and Biochemistry 2000,32, (4),457-467.
    Hinsa, S. M.; Espinosa-Urgel, M.; Ramos, J. L.; OToole, G. A., Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular Microbiology 2003,49, (4),905-918.
    Hinteregger, C.; Leitner, R.; Loidl, M.; Ferschl, A.; Streichsbier, F., Degradation of phenol and phenolic-compounds by Pseudomonas-putida Ekii. Applied Microbiology and Biotechnology 1992,37, (2),252-259.
    Hirsch, P.; Pankratz, S. H., Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift fur allgemeine Mikrobiologie 1970,10, (8), 589-605.
    Hirst, C. N.; Cyr, H.; Jordan, I. A., Distribution of exopolymeric substances in the littoral sediments of an oligotrophic lake. Microbial Ecology 2003,46, (1),22-32.
    Holden, P. A.; Ron, J. D., Biofilms in unsaturated environments. In Methods in Enzymology, Academic Press:2001; Vol. Volume 337, pp 125-143.
    Holden, P. A.; Halverson, L. J.; Firestone, M. K., Water stress effects on toluene biodegradation by Pseudomonas putida. Biodegradation 1997,8:143-151
    Hong, F. S.; Wu, C.; Liu, C.; Wang, L.; Gao, F. Q.; Yang, F.; Xu, J. H.; Liu, T.; Xie, Y. N.; Li, X. Z., Direct evidence for interaction between lead ions and kidney DNA from silver crucian carp. Chemosphere 2007,68, (8),1442-1446.
    Hu, N.; Zhao, B., Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiology Lett 2007,267, (1),17-22.
    Hu, Z. Q.; Hidalgo, G.; Houston, P. L.; Hay, A. G.; Shuler, M. L.; Abruna, H. D.; Ghiorse, W. C.; Lion, L. W. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Applied and Environmental Microbiology 2005,71,4014-4021.
    Hu, Z. Q.; Jin, J.; Abruna, H. D.; Houston, P. L.; Hay, A. G.; Ghiorse, W. C.; Shuler, M. L. Hidalgo, G.; Lion, L. W., Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environmental Science and Technology 2007,41, (3),936-941.
    Huang, C. T.; Yu, F. P.; Mcfeters, G. A.; Stewart, P. S., Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Applied and Environmental Microbiology 1995, 61, (6),2252-2256.
    Huang, W. E.; Stoecker, K.; Griffiths, R.; Newbold, L.; Daims, H.; Whiteley, A. S.; Wagner, M., Raman-FISH:combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environmental Microbiology 2007,9, (8),1878-1889.
    Hunter, R. C.; Beveridge, T. J., Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 2005,71, (5),2501-2510.
    Ishibashi, Y.; Cervantes, C.; Silver, S., Chromium reduction in Pseudomonas-putida. Applied and Environmental Microbiology 1990,56, (7),2268-2270.
    Jackson, T. A.; Bistricki, T., Selective scavenging of copper, zinc, lead, and arsenic by iron and manganese oxyhydroxide coatings on plankton in lakes polluted with mine and smelter wastes-results of energy-dispersive x-ray-microanalysis. Journal of Geochemical Exploration 1995,52, (1-2),97-125.
    James, G. A.; Korber, D. R.; Caldwell, D. E.; Costerton, J. W., Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. Journal of Bacteriology 1995,177,907-915.
    Jefferson, K. K., What drives bacteria to produce a biofilm? FEMS Microbiology Letters 2004, 236, (2),163-173.
    Keasling, J. D., Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Annals of the New York Academy of Sciences 1997,829, (1),242-249.
    Kemner, K. M.; Kelly, S. D.; Lai, B.; Maser, J.; O'Loughlin E, J.; Sholto-Douglas, D.; Cai, Z.; Schneegurt, M. A.; Kulpa, C. F., Jr.; Nealson, K. H., Elemental and redox analysis of single bacterial cells by x-ray microbeam analysis. Science 2004,306, (5696),686-687.
    Kidambi, S. P.; Sundin, G. W.; Palmer, D. A.; Chakrabarty, A. M.; Bender, C. L., Copper as a signal for alginate synthesis in Pseudomonas-syringae pv syringae. Applied and Environmental Microbiology 1995,61,2172-2179.
    Kim, B.-E.; Nevitt, T.; Thiele, D. J., Mechanisms for copper acquisition, distribution and regulation. Nature Chemical Biology 2008,4, (3),176-185.
    Kirisits, M. J.; Prost, L.; Starkey, M.; Parsek, M. R., Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 2005,71, (8),4809-4821.
    Klausen, M.; Aaes-Jorgensen, A.; Molin, S.; Tolker-Nielsen, T., Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology 2003,50, (1),61-68.
    Knutson, C. A.; Jeanes, A., A new modification of the carbazole analysis:Application to heteropolysaccharides. Analytical Biochemistry 1968,24, (3),470-481.
    Kong, S.; Yonge, D. R.; Johnstone, D. L.; Petersen, J. N.; Brouns, T. M., Chromium distribution in subcellular components between fresh and starved subsurface bacterial consortium. Biotechnology Letters 1992,14,521-524.
    Kuiper, I.; Lagendijk, E. L.; Pickford, R.; Derrick, J. P.; Lamers, G. E.; Thomas-Oates, J. E.; Lugtenberg, B. J.; Bloemberg, G. V., Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Molecular Microbiology 2004,51,(1),97-113.
    Latimer, J.; Stokes, S. L.; Graham, A. I.; Bunch, J.; Jackson, R. J.; McLeod, C. W.; Poole, R. K., A novel method for exploring elemental composition of microbial communities:laser ablation-inductively coupled plasma-mass spectrometry of intact bacterial colonies. Journal of Microbiological Methods 2009,79, (3),329-35.
    Lemos, J. L.; Fontes, M. C.; Pereira, N., Jr., Xylanase production by Aspergillus awamori in solid-state fermentation and influence of different nitrogen sources. Applied Biochemistry and Biotechnology 2001,91-93:681-689
    Lensbouer, J. J.; Patel, A.; Sirianni, J. P.; Doyle, R. P., Functional characterization and metal ion specificity of the metal-citrate complex transporter from Streptomyces coelicolor. Journal of Bacteriology 2008,190, (16),5616-23.
    Lenz, A. P.; Williamson, K. S.; Pitts, B.; Stewart, P. S.; Franklin, M. J., Localized gene expression in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 2008,74, (14),4463-71.
    Letoffe, S.; Ghigo, J. M.; Wandersman, C., Iron acquisition from heme and hemoglobin by a Serratia-marcescens extracellular protein. Proceedings of the National Academy of Sciences of the United States of America 1994,91, (21),9876-9880.
    Li, B. K.; Bishop, P. L., Micro-profiles of activated sludge floe determined using microelectrodes. Water Research 2004,38, (5),1248-1258.
    Li, X. H.; Nielsen, L.; Nolan, C.; Halverson, L. J., Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment. Environmental Microbiology 2010,12, (6),1578-1590.
    Liu, Y.; Fang, H. H. P., Precipitates in anaerobic granules treating sulphate-bearing wastewater. Water Research 1998,32, (9),2627-2632.
    Lombi, E.; Susini, J., Synchrotron-based techniques for plant and soil science:opportunities, challenges and future perspectives. Plant and Soil 2009,320, (1),1-35.
    Lugtenberg, B. J. J.; Dekkers, L.; Bloemberg, G. V., Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology 2001,39,461-490.
    Lynch, J. M.; Whipps, J. M., Substrate flow in the rhizosphere. Plant and Soil 1990,129, (1),1-10.
    Macaskie, L. E.; Bonthrone, K. M.; Yong, P.; Goddard, D. T., Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.:a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 2000, 146,(8),1855-1867.
    MacNaughton, J. B.; Kurmaev, E. Z.; Finkelstein, L. D.; Lee, J. S.; Wettig, S. D.; Moewes, A., Electronic structure and charge carriers in metallic DNA investigated by soft x-ray spectroscopy. Physical Review B 2006,73, (20),205114.
    MacNaughton, J. B.; Yablonskikh, M. V.; Hunt, A. H.; Kurmaev, E. Z.; Lee, J. S.; Wettig, S. D.; Moewes, A., Solid versus solution:Examining the electronic structure of metallic DNA with soft x-ray spectroscopy. Physical Review B 2006,74, (12),125101.
    Majors, P. D.; McLean, J. S.; Pinchuk, G. E.; Fredrickson, J. K.; Gorby, Y. A.; Minard, K. R.; Wind, R. A., NMR methods for in situ biofilm metabolism studies. Journal of Microbiological Methods 2005,62, (3),337-344.
    Mayer, C.; Moritz, R.; Kirschner, C.; Borchard, W.; Maibaum, R.; Wingender, J.; Flemming, H. C., The role of intermolecular interactions:studies on model systems for bacterial biofilms. International Journal of Biological Macromolecules 1999,26, (1),3-16.
    Monds, R. D.; Silby, M. W.; Mahanty, H. K., Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA 147-2. Molecular Microbiology 2001,42, (2),415-426.
    Mulcahy, H.; Charron-Mazenod, L.; Lewenza, S., Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. Plos Pathogens 2008,4:el000213
    Nandal, K.; Sehrawat, A. R.; Yadav, A. S.; Vashishat, R. K.; Boora, K. S., High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp (Cajanus). Microbiological Research 2005,160, (4), 367-373.
    Nelson, K. E.; Weinel, C.; Paulsen, I. T.; Dodson, R. J.; Hilbert, H.; Martins dos Santos, V. A.; Fouts, D. E.; Gill, S. R.; Pop, M.; Holmes, M.; Brinkac, L.; Beanan, M.; DeBoy, R. T.; Daugherty, S.; Kolonay, J.; Madupu, R.; Nelson, W.; White, O.; Peterson, J.; Khouri, H.; Hance, I.; Chris Lee, P.; Holtzapple, E.; Scanlan, D.; Tran, K.; Moazzez, A.; Utterback, T.; Rizzo, M.; Lee, K.; Kosack, D.; Moestl, D.; Wedler, H.; Lauber, J.; Stjepandic, D.; Hoheisel, J.; Straetz, M.; Heim, S.; Kiewitz, C.; Eisen, J. A.; Timmis, K. N.; Dusterhoft, A.; Tummler, B.; Fraser, C. M., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonasputida KT2440. Environmental Microbiology 2002,4, (12),799-808.
    Nevot, M.; Deroncele, V.; Montes, M. J.; Mercade, E., Effect of incubation temperature on growth parameters of Pseudoalteromonas antarctica NF3 and its production of extracellular polymeric substances. Journal of Applied Microbiology 2008,105, (1),255-263.
    Ngo Thi, N. A.; Naumann, D., Investigating the heterogeneity of cell growth in microbial colonies by FTIR microspectroscopy. Analytical and Bioanalytical Chemistry 2007,387, (5), 1769-1777.
    Nieder, M.; Shapiro, J., Physiological function of Pseudomonas-putida Ppg6 (Pseudomonas-Oleovorans) alkane hydroxylase-monoterminal oxidation of alkanes and fatty-acids. Journal of Bacteriology 1975,122, (1),93-98.
    Nielsen, J. L.; Wagner, M.; Nielsen, P. H., Use of microautoradiography to study in situ physiology of bacteria in biofilms. Reviews in Environmental Science and Biotechnology 2003,2, (2),261-268.
    Nielsen, K. M.; Johnsen, P. J.; Bensasson, D.; Daffonchio, D., Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research 2007,6, (1-2), 37-53.
    Nies, D. H., Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews 2003,27, (2-3),313-339.
    Nikolaev, Y. A.; Plakunov, V. K., Biofilm-"City of microbes" or an analogue of multicellular organisms? Microbiology 2007,76, (2),125-138.
    Norlund, K. L. I.; Southam, G.; Tyliszczak, T.; Hu, Y. F.; Karunakaran, C.; Obst, M.; Hitchcock, A. P.; Warren, L. A., Microbial architecture of environmental sulfur processes:A novel syntrophic sulfur-metabolizing consortia. Environmental Science and Technology 2009,43, (23),8781-8786.
    Normander, B.; Hendriksen, N. B.; Nybroe, O., Green fluorescent protein-marked Pseudomonas fluorescens:Localization, viability, and activity in the natural barley rhizosphere. Applied and Environmental Microbiology 1999,65, (10),4646-4651.
    Nott, K. P.; Paterson-Beedle, M.; Macaskie, L. E.; Hall, L. D., Visualisation of metal deposition in biofilm reactors by three-dimensional magnetic resonance imaging (MRI). Biotechnology Letters 2001,23, (21),1749-1757.
    Nunez, M. E.; Martin, M. O.; Duong, L. K.; Ly, E.; Spain, E. M., Investigations into the life cycle of the bacterial predator Bdellovibrio bacteriovorus 109J at an interface by atomic force microscopy. Biophysical Journal 2003,84, (5),3379-3388.
    Paktunc, D.; Foster, A.; Heald, S.; Laflamme, G., Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta 2004,68, (5),969-983.
    Pal, A.; Paul, A., Microbial extracellular polymeric substances:central elements in heavy metal bioremediation. Indian Journal of Microbiology 2008,48, (1),49-64.
    Pandey, A.; Trivedi, P.; Kumar, B.; Palni, L. M. S., Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Current Microbiology 2006,53, (2),102-107.
    Pardo, R.; Herguedas, M.; Barrado, E.; Vega, M., Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida. Analytical and Bioanalytical Chemistry 2003, 376, (1),26-32.
    Park, C. H.; Keyhan, M.; Wielinga, B.; Fendorf, S.; Matin, A., Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Applied and Environmental Microbiology 2000,66, (5),1788-1795.
    Park, C.; Novak, J. T., Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Research 2007,41, (8),1679-1688.
    Pelling, A. E.; Li, Y.; Shi, W.; Gimzewski, J. K., Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 2005,102, (18),6484-6489.
    Petry, S.; Furlan, S.; Crepeau, M. J.; Cerning, J.; Desmazeaud, M., Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Applied and Environmental Microbiology 2000,66, (8), 3427-3431.
    Phoenix, V. R.; Holmes, W. M., Magnetic resonance imaging of structure, diffusivity, and copper immobilization in a phototrophic biofilm. Applied and Environmental Microbiology 2008,74, (15),4934-4943.
    Priester, J. H.; Horst, A. M.; Van de Werfhorst, L. C.; Saleta, J. L.; Mertes, L. A.; Holden, P. A., Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. Journal of Microbiological Methods 2007,68, (3),577-587.
    Priester, J. H.; Olson, S. G.; Webb, S. M.; Neu, M. P.; Hersman, L. E.; Holden, P. A., Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Applied and Environmental Microbiology 2006,72, (3),1988-1996.
    Prithiviraj, B.; Bais, H. P.; Weir, T.; Suresh, B.; Najarro, E. H.; Dayakar, B. V.; Schweizer, H. P.; Vivanco, J. M., Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infection and Immunity 2005,73, (9),5319-5328.
    Quaranta, D.; McCarty, R.; Bandarian, V.; Rensing, C., The copper-inducible cin operon encodes an unusual methionine-rich azurin-like protein and a pre-Qo reductase in Pseudomonas putida KT2440. Journal of Bacteriology 2007,189, (14),5361-5371.
    Ramos, C.; Molbak, L.; Molin, S., Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Applied and Environmental Microbiology 2000,66, (2),801-809.
    Ramos, J. L.; Gallegos, M. T.; Marques, S.; Ramos-Gonzalez, M. I.; Espinosa-Urgel, M.; Segura, A., Responses of Gram-negative bacteria to certain environmental stressors. Current Opinion in Microbiology 2001,4,166-171
    Ramsing, N. B.; Kuhl, M.; Jorgensen, B. B., Distribution of sulfate-reducing bacteria,02, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Applied and Environmental Microbiology 1993,59, (11),3840-3849.
    Rani, S. A.; Pitts, B.; Beyenal, H.; Veluchamy, R. A.; Lewandowski, Z.; Davison, W. M.; Buckingham-Meyer, K.; Stewart, P. S., Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. Journal of Bacteriology 2007,189, (11),4223-4233.
    Reardon, K. F.; Mosteller, D. C.; Rogers, J. D. B., Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnology and Bioengineering 2000,69, (4),385-400.
    Register, F. Certified host-vector systems.1982, p.17197.
    Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R., Extracellular electron transfer via microbial nanowires. Nature 2005,435, (7045),1098-1101.
    Renninger, N.; Knopp, R.; Nitsche, H.; Clark, D. S.; Keasling, J. D., Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Applied and Environmental Microbiology 2004,70, (12),7404-7412.
    Reva, O. N.; Weinel, C.; Weinel, M.; Bohm, K.; Stjepandic, D.; Hoheisel, J. D.; Tummler, B., Functional genomics of stress response in Pseudomonas putida KT2440. Journal of Bacteriology 2006,188, (11),4079-4092.
    Sandt, C.; Smith-Palmer, T.; Pink, J.; Brennan, L.; Pink, D., Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. Journal of Applied Microbiology 2007,103, (5),1808-1820.
    Saxena, D.; Srivastava, S., Short Communication:Carbon source-starvation-induced precipitation of copper by Pseudomonas putida strain S4. World Journal of Microbiology and Biotechnology 1998,14, (6),921-923.
    Schooling, S. R.; Beveridge, T. J., Membrane vesicles:an overlooked component of the matrices of biofilms. Journal of Bacteriology 2006,188, (16),5945-5957.
    Schooling, S. R.; Hubley, A.; Beveridge, T. J., Interactions of DNA with biofilm-derived membrane vesicles. Journal of Bacteriology 2009,191,4097-4102.
    Schurks, N.; Wingender, J.; Flemming, H. C.; Mayer, C., Monomer composition and sequence of alginates from Pseudomonas aeruginosa. International Journal of Biological Macromolecules 2002,30, (2),105-111.
    Sheng, G. P.; Yu, H. Q.; Wang, C. M., FTIR-spectral analysis of two photosynthetic hydrogen-producing [corrected] strains and their extracellular polymeric substances. Applied Microbiology and Biotechnology 2006,73, (1),204-210.
    Sheng, G. P.; Yu, H. Q.; Yu, Z., Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology 2005,67, (1),125-130.
    Sheng, G. P.; Yu, H. Q.; Yue, Z., Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. International Biodeterioration and Biodegradation 2006,58, (2),89-93.
    Spath, R.; Flemming, H. C.; Wuertz, S., Sorption properties of biofilms. Water Science and Technology 1998,37, (4-5),207-210.
    Stanley, N. R.; Lazazzera, B. A., Environmental signals and regulatory pathways that influence biofilm formation. Molecular Microbiology 2004,52, (4),917-924.
    Steinberger, R. E. Physiology of unsaturated Pseudomonas aeruginosa biofilms. Ph.D. thesis, University of California,2005.
    Steinberger, R. E.; Allen, A. R.; Hansma, H. G.; Holden, P. A., Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturated biofilms. Microbial Ecology 2002,43, 416-423.
    Steinberger, R. E.; Holden, P. A., Extracellular DNA in single-and multiple-species unsaturated biofilms. Applied and Environmental Microbiology 2005,71, (9),5404-5410.
    Steinberger, R.E.; Holden, P.A. Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source. Biofilms 2004,1,37-47.
    Stewart, P. S.; Franklin, M. J., Physiological heterogeneity in biofilms. Nature Reviews Microbiology 2008,6, (3),199-210.
    Stukalov, O.; Korenevsky, A.; Beveridge, T. J.; Dutcher, J. R., Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules. Applied and Environmental Microbiology 2008,74, (17),5457-5465.
    Sutherland, I. W., Exopolysaccharides in biofilms, floes and related structures. Water Science and Technology 2001a,43, (6),77-86.
    Sutherland, I. W., The biofilm matrix-an immobilized but dynamic microbial environment. Trends in Microbiology 2001b,9, (5),222-227.
    Tapia, J. M.; Munoz, J. A.; Gonzalez, F.; Blazquez, M. L.; Malki, M.; Ballester, A., Extraction of extracellular polymeric substances from the acidophilic bacterium Acidiphilium 3.2Sup(5). Water Science and Technology 2009,59, (10),1959-1967.
    Tebo, B. M.; Bargar, J. R.; Clement, B. G.; Dick, G. J.; Murray, K. J.; Parker, D.; Verity, R.; Webb, S. M., Biogenic manganese oxides:Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences 2004,32,287-328.
    Teitzel, G M.; Geddie, A.; De Long, S. K.; Kirisits, M. J.; Whiteley, M.; Parsek, M. R., Survival and growth in the presence of elevated copper:transcriptional profiling of copper-stressed Pseudomonas aeruginosa. Journal of Bacteriology 2006,188, (20),7242-56.
    Teitzel, G. M.; Parsek, M. R., Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology 2003,69, (4),2313-2320.
    Templeton, A. S.; Trainor, T. P.; Spormann, A. M.; Newville, M.; Sutton, S. R.; Dohnalkova, A.; Gorby, Y.; Brown, G. E., Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environmental Science and Technology 2003,37, (2),300-307.
    Templeton, A. S.; Trainor, T. P.; Traina, S. J.; Spormann, A. M.; Brown, G. E., Pb(II) distributions at biofilm-metal oxide interfaces. Proceedings of the National Academy of Sciences of the United States of America 2001,98, (21),11897-11902.
    Templeton, A.; Knowles, E., Microbial Transformations of Minerals and Metals:Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annual Review of Earth and Planetary Sciences 2009,37, (1),367-391.
    Thomas, R. A. P.; Beswick, A. J.; Basnakova, G.; Moller, R.; Macaskie, L. E., Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. Journal of Chemical Technology and Biotechnology 2000,75, (3),187-195.
    Toner, B.; Fakra, S.; Villalobos, M.; Warwick, T.; Sposito, G., Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Applied and Environmental Microbiology 2005,71, (3),1300-1310.
    Toner, B.; Manceau, A.; Marcus, M. A.; Millet, D. B.; Sposito, G., Zinc sorption by a bacterial biofilm. Environmental Science and Technology 2005,39, (21),8288-8294.
    Toner, B.; Manceau, A.; Webb, S. M.; Sposito, G, Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta 2006,70, (1),27-43.
    Torino, M. I.; Hebert, E. M.; Mozzi, F.; de Valdez, G F., Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium. Journal of Applied Microbiology 2005,99,1123-1129.
    Ueshima, M.; Ginn, B. R.; Haack, E. A.; Szymanowski, J. E. S.; Fein, J. B., Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochimica et Cosmochimica Acta 2008,72, (24),5885-5895.
    van Hullebusch, E.; Zandvoort, M.; Lens, P., Metal immobilisation by biofilms:Mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology 2003,2, (1),9-33.
    Villalobos, M.; Bargar, J.; Sposito, G., Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environmental Science and Technology 2005,39, (2),569-576.
    Vogt, M.; Flemming, H. C.; Veeman, W. S., Diffusion in Pseudomonas aeruginosa biofilms:a pulsed field gradient NMR study. Journal of Biotechnology 2000,77, (1),137-146.
    Von Bodman, S. B.; Bauer, W. D.; Coplin, D. L., Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology 2003,41,455-482.
    von Canstein, H.; Li, Y.; Timmis, K. N.; Deckwer, W. D.; Wagner-Dobler, I., Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environmental Microbiology 1999,65, (12),5279-5284.
    Wagner, M.; Nielsen, P. H.; Loy, A.; Nielsen, J. L.; Daims, H., Linking microbial community structure with function:fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion of Biotechnology 2006,17, (1),83-91.
    Walters, M. C.; Roe, F.; Bugnicourt, A.; Franklin, M. J.; Stewart, P. S., Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy 2003,47, (1),317-323.
    Wang, B.; Liu, P.; Jiang, W.; Pan, H.; Xu, X.; Tang, R., Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie International Edition 2008,47, (19),3560-3564.
    Waters, M. S.; Sturm, C. A.; El-Naggar, M. Y.; Luttge, A.; Udwadia, F. E.; Cvitkovitch, D. G.; Goodman, S. D.; Nealson, K. H., In search of the microbe/mineral interface:quantitative analysis of bacteria on metal surfaces using vertical scanning interferometry. Geobiology 2008,6, (3),254-262.
    Watt, S. A.; Wilke, A.; Patschkowski, T.; Niehaus, K., Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 2005,5, (1), 153-167.
    Wentland, E. J.; Stewart, P. S.; Huang, C. T.; McFeters, G. A. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnology Progress 1996,12, 316-321.
    Whitchurch, C. B.; Tolker-Nielsen, T.; Ragas, P. C.; Mattick, J. S., Extracellular DNA required for bacterial biofilm formation. Science 2002,295, (5559),1487-1487.
    White, C.; Gadd, G. M. Accumulation and effects of cadmium on sulfate reducing bacterial biofilms. Microbiology 1998,144,1407-1415.
    White, C.; Gadd, G. M., Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiology Letter 2000,183, (2),313-318.
    Wigglesworth-Cooksey, B.; Cooksey, K. E., Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Applied and Environmental Microbiology 2005,71,(1),428-435.
    Williams, P. A.; Murray, K., Metabolism of benzoate and methylbenzoates by Pseudomonas-putida (arvilla) mt-2-Evidence for existence of a Tol plasmid. Journal of Bacteriology 1974,120, (1),416-423.
    Wimpenny, J.; Manz, W.; Szewzyk, U., Heterogeneity in biofilms. FEMS Microbiology Review 2000,24, (5),661-671.
    Worsey, M. J.; Williams, P. A., Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2-Evidence for a new function of Tol plasmid. Journal of Bacteriology 1975, 124,(1),7-13.
    Wu, B.; Chen, Y. X.; Becker, J. S., Study of essential element accumulation in the leaves of a Cu-tolerant plant Elshohzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Analytica Chimica Acta 2009, 633,(2),165-172.
    Wu, B.; Zoriy, M.; Chen, Y. X.; Becker, J. S., Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 2009,78, (1),132-137.
    Wu, J.; Xi, C., Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Applied Environmental and Microbiology 2009,75, (16),5390-5.
    Wuertz, S.; Spaeth, R.; Hinderberger, A.; Grieba, T.; Flemming, H. C.; Wilderer, P. A., A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Water Science and Technology 2001,43, (6),25-31.
    Yee, N.; Benning, L. G; Phoenix, V. R.; Ferris, F. G., Characterization of metal-cyanobacteria sorption reactions:a combined macroscopic and infrared spectroscopic investigation. Environmental Science and Technology 2003,38, (3),775-782.
    Zhang, L. H.; Dong, Y. H., Quorum sensing and signal interference:diverse implications. Molecular Microbiology 2004,53, (6),1563-71.
    陈新才.重金属在土壤-微生物界面相互作用的分子机制.[浙江大学博士学位论文],杭州,浙江大学,2006.
    郭嘉亮,陈卫民.细菌群体感应信号分子与抑制剂研究进展.生命科学,2007,19,(2),224-232.
    胡少平.土壤重金属迁移转化的分子形态研究.[浙江大学博士学位论文],杭州,浙江大学,2009.
    康春莉,郭晶,郭平,赵宇侠,董德明.自然水体生物膜有机组分对pb2+的吸附特性及其影响因素.高等学校化学学报,2005,26,(11),2043-2045.
    林惠荣.水稻土壤重金属和硫分子形态转化的功能微生物作用机制.[浙江大学博士学位论文],杭州,浙江大学,2010.
    李燕,牟伯中.细菌趋化性研究进展.应用与环境生物学报,2006,12,(1),135-139.
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21,(7),1197-1203.
    武贝.海州香薷Cu耐性与积累机制研究.[浙江大学博士学位论文],杭州,浙江大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700