用户名: 密码: 验证码:
β-葡萄糖苷酶的固定化及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验对多孔陶瓷球、介孔TiO_2(M-TiO_2)和巯丙基官能化介孔TiO_2(SH-M-TiO_2)这三种载体固定化β-葡萄糖苷酶的技术进行研究,初步考察了陶瓷球固定化酶填充床反应器的酶解工艺和模型。得出的主要结论如下:
     1、以多孔陶瓷球为载体,采用吸附交联—包封的方法固定化β-葡萄糖苷酶,I-a型陶瓷球固定化表观酶活最大约为1.75U/g,从单因素实验还可以看出,戊二醛交联和胶粘剂包封的步骤在陶瓷球固定化酶的操作过程中起关键作用。固定化酶在酸碱、热、储存稳定性方面较游离酶有明显改善;且重复测定酶活30批后,残余酶活仍在80%以上。在重复分批酶解实验中,前三批底物的转化率在90%以上,随后转化率逐渐下降,第九批的转化率降到50%左右,反应10批后固定化酶的残余酶活下降到68.5%。
     2、采用连续水解的模式,将陶瓷球固定化酶装填成一单级填充床反应器,反应器的最佳工作温度和pH分别是60℃、pH4.8。底物进料流速低时,转化率高,但是体积生产效率低下;如流速为3.53ml/min时,转化率可达97.5%,而体积生产效率仅为6.29g/(l·h),当流速增大到11.2ml/min时,转化率仅为82.1%,而体积生产效率高达15.62g/(l·h)。进料速度5.47ml/min时,反应器连续水解十天,转化率保持在90%以上,平均转化率为90.7%。建立了描述填充床的一维稳态轴向扩散模型,以STATISTICA软件对保留时间和转化率关系进行拟合,拟合因子R为0.95,模型计算结果与实验结果的平均偏差为9.15%。
     3、由陶瓷球固定化酶二级串联反应器的实验可知,流速为7.67ml/min时,反应器转化率达91.4%,体积生产效率为12.69g/(l·h),对比单级反应器转化率为91.7%时的体积生产效率为8.98g/(l·h),二级串联反应器的体积生产效率比单级反应器提高了41%。
     4、M-TiO_2吸附法固定β-葡萄糖苷酶(BG-M-TiO_2)的最大表观酶活回收率为64.14%,对应的表观酶活为4.68U/g;当起始给酶量为0.907U/ml时,BG-M-TiO_2的表观酶活力接近最大值,约为7.6U/g。M-TiO_2固载酶后N2吸附量略有下降,比表面积(SBET)从62.04m~2/g降低到47.72m~2/g,孔容(Vp)从0.37cm~3/g降低到0.29cm~3/g。BG-M-TiO_2重复测定酶活6批后,残余酶活降到50%以下。
     5、分别以3-氨丙基三乙氧基硅烷(-NH2改性)和3-巯丙基三甲氧基硅烷(-SH改性)两种偶联剂,对M-TiO_2进行后嫁接法官能化改性,BG-SH-M-TiO_2在酶活、酶活回收率和重复分批测定酶活稳定性中的结果均优于BG-NH2-M-TiO_2。-SH改性后的M-TiO_2SBET从62.04m~2/g降低到53.50m~2/g,孔径(DBJH)从20.3nm下降到18.2nm,Vp从0.37cm~3/g降低到0.31cm~3/g;SH-M-TiO_2能谱图新增了Si和S元素的特征吸收峰,质量分数分别是1.78%和1.81%,巯丙基占的总质量分数约为3.6%;SH-M-TiO_2的热重曲线在355℃出现了来自巯丙基官能团的失重峰,质量损失约为2%。
     6、BG-SH-M-TiO_2固定化酶的表观酶活回收率最高为92.84%,对应的表观酶活为10.99U/g,当起始给酶量为18U/ml时,BG-SH-M-TiO_2的表观酶活接近最大值为21.3U/g。BG-SH-M-TiO_2重复测定酶活30批后,残余酶活仍在50%左右。在重复分批酶解实验中,前八批对纤维二糖的转化率都在90%以上,反应10批后,BG-SH-M-TiO_2的残余酶活为反应前的80.5%。
There were three carriers, porous ceramic balls, mesoporous TiO_2(M-TiO_2),and mercapto-modified mesoporous TiO_2(SH-M-TiO_2), which were studied on theimmobilization of the enzyme β-glucosidase (BG). In additional, the hydrolysisprocess and model of packed-bed reactor, which was loaded with β-glucosidaseimmobilized onto the porous ceramic balls, were investigated. The main conclusionsare as follows:
     1. The β-glucosidase was immobilized onto the porous ceramic ball of type I-a bythe crossing-linking and enveloping operation. The maximum apparent activity ofimmobilized β-glucosidase was about1.75U/g. It was known that two operationsplayed key roles to the activity of the immobilized enzyme. One was crossing-linkedwith the glutaraldehyde, the other was enveloped with a goil-based adhesive. Theimmobilized β-glucosidase showed better stabilities on pH, thermal and storage thanthe free β-glucosidase. After reacted for30cycles on β-glucosidase assay, theretained activity of the immobilized β-glucosidase was over80%. In the batchhydrolysis experiment, the conversion was over90%in the former three batches andthen declined gradually. The conversion was only50%for the ninth batch. Theretained activity of the immobilized β-glucosidase was68.5%after10batches ofreaction.
     2. A single packed-bed reactor was constructed for the hydrolysis of cellubiose ina continuous mode, while the reactor was loaded with the immobilized β-glucosidaseonto the porous ceramic ball of type I-a. The optimum operation pH and temperatureof the reactor were4.8and60℃, respectively. As the flow rate was low, theconversion was high but the production efficiency on volume was low. For example,as the flow rate was3.53ml/min, the conversion attained97.5%, but the productionefficiency on volume was only6.29g/(l·h). As the flow rate raised up to11.2ml/min,the conversion was only82.1%, but the production efficiency on volume attained15.62g/(l·h). Furthermore, as the flow rate was stable at5.47ml/min, the conversionmaintained over90%with an average value of90.7%. In addition, a model ofone-dimensional steady-state axial dispersion was set up to describe the performanceof the single packed-bed reactor. The fitting factor R of the model was0.95. Theaverage deviation was9.15%between the calculated results and the experimentalresults.
     3. When the two packed-bed reactors were linked in a serial mode and the flow rate was7.67ml/min, the conversion was91.4%, and the production efficiency onvolume was12.69g/(l·h). Compared with the data on single packed-bed reactor,which were the conversion of91.7%and the production efficiency on volume of8.98g/(l·h),the production efficiency on volume of the double serial reactors increased by41%.
     4. When β-glucosidase was immobilized onto M-TiO_2(BG-M-TiO_2) with theabsorption action, the maximum apparent activity recovery of BG-M-TiO_2was64.14%, meanwhile the apparent activity was4.68U/g. As the initial enzymeconcentration was0.907U/ml, the apparent activity of BG-M-TiO_2was closed to themaximum value of7.6U/g. After the immobilization of BG, M-TiO_2got less on theabsorption volume to N2, the specific surface area (SBET) of M-TiO_2reduced from62.04m~2/g to47.72m~2/g, and the pore volume (Vp) of M-TiO_2reduced from0.37cm~3/g to0.29cm~3/g. After reacted for6cycles on BG assay, the retained activity ofBG-M-TiO_2was below50%.
     5. NH2-M-TiO_2and SH-M-TiO_2were obtained after the M-TiO_2were respectivelymodified by3-aminopropyltriethoxysilane and3-mercaptopropyltrimethoxysilane.BG-SH-M-TiO_2showed better results than BG-NH2-M-TiO_2on the enzyme activity,activity recovery and operation stability. After M-TiO_2was functionalized with3-mercaptopropyltrimethoxysilane, SBETreduced from62.04m~2/g to53.50m~2/g,pore diameter (DBJH) changed from20.3nm to18.2nm, and Vpreduced from0.37cm~3/g to0.31cm~3/g. The elements Si and S were present on the energy dispersivespectrum of SH-M-TiO_2, whose mass fractions were1.78%and1.81%, respectively.Therefore the total mass fraction of mercapto group was about3.6%. Furthermore,there was a peak for the mercapto group loss at355℃on the thermogravimetryfigure of SH-M-TiO_2.
     6. The maximum apparent activity recovery of β-glucosidase immobilized ontoSH-M-TiO_2(BG-SH-M-TiO_2) was92.84%, while the apparent activity was10.99U/g.As the initial enzyme concentration was about18U/ml, the apparent activity of BG-SH-M-TiO_2was closed to the maximum value of21.3U/g. After reacted for30cycles of BG assay, the BG-SH-M-TiO_2remained the activity of about50%. In thebatch hydrolysis experiment, the conversions were stable over90%in the former8batches. The retained activity of BG-SH-M-TiO_2was80.5%after10batches ofreaction.
引文
[1] Saxena R.C., Adhikari D.K., Goya H.B. Biomass-based energy fuel through biochemicalroutes: A review[J]. Renewable and Sustainable Energy Reviews,2009,13:167-178.
    [2] Mustafa Balat, Havva Balat. Recent trends in global production and utilization ofbio-ethanol fuel[J]. Applied Energy,2009,86:2273-2282.
    [3] Wang G,Lixin Z,Yanli Z. Liquid biofuels for transporta-tion: Chinese potential andimplications for sustainable agricul-ture and energy in the21st century[C]. AssessmentStudy, Institute of Nuclear and New Energy Technology,2006,2.
    [4]洪浩.我国生物质能产业发展战略的思考[J].中国工程科学,2008,10(7):35-38.
    [5]姚国欣,王建明.第二代和第三代生物燃料发展现状及启示[J].2010,15(9):23-36.
    [6] Farrell, A.E., Plevin, R.J., Turner, B.T., et al. Ethanol can contribute to energy andenvironmental goals. Science,2006,311:506–508.
    [7]余世袁.林产资源的生物转化与利用[J].南京林业大学学报,2000,24(2): l.
    [8]张宁,蒋剑春,李翔宇等.我国非粮燃料乙醇产业发展现状及前景展望[J].生物质化学工程,2011,45(4):47-50.
    [9] Simone Brethauer, Charles E. Wyman. Review: Continuous hydrolysis and fermentationfor cellulosic ethanol production[J]. Bioresource Technology,2010(101):4862–4874.
    [10] Esterbauer H, Steiner W, Labudova I, Hermann A, et al. Production of Trichodermacellulase in laboratory and pilot scale[J]. Bioresource Technology,1991,36(1):51~65
    [11] Tangnu S K, Blanch H W, Charles R. Enhanced production of cellulase, hemicellulaseandβ-glucosidase by Trichoderma reesei (Rut C-30)[J]. Biotechnol Bioeng,1981,23:1837-1849.
    [12] Pavle Andri. Anne S. Meyer. Peter A. et al. Reactor design for minimizing productinhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism ofcellobiose and glucose inhibition on cellulolytic enzymes[J]. Biotechnology Advances,2010(28):308–324.
    [13] Knutsen J.S., Davis R.H.. Cellulase retention and sugar removal by membraneultrafiltration during lignocellulosic biomass hydrolysis[J]. Appl Biochem Biotechnol,2004,116:585–99.
    [14] Gan Q., Allen S.J., Taylor G. Design and operation of an integrated membrane reactor forenzymatic cellulose hydrolysis[J]. Biochem Eng J,2002,12:223–9.
    [15] Srivastava S.K., Gopalkrishnan K.S., Ramachandran K.B. Kinetic characterization of acrude β-D-glucosidase from Aspergillus wentii Pt2804[J]. Enzyme and MicrobialTechnology,1984,6(11):508-512.
    [16] Wen Z.Y., Liao W, Chen S. Production of cellulose/β-glucosidase by the mixed fungiculture and on dairy manure[J]. Process Biochemistry,2005,40(9):3087-3094.
    [17] Vishnu M., Gyan P., Asmita P., et al. Biocatalytic approach for the utilization ofhemicellulose for ethanol production from agricultural residue using thermostable xylanaseand thermotolerant yeast[J]. Bioresource Technology,2010(101):5366–5373.
    [18] Shin H.J., Yang J.W. Galactooligosaccharide Synthesis from Lactose byPenicillium-Funiculosum Cellulase[J]. Biotechnology Letters,1996,18(2):143-144.
    [19]彭志英.食品生物技术[M].北京:中国轻工业出版社,1999.
    [20]杨静.木质纤维原料分段酶水解技术的研究[D].南京林业大学,2010。
    [21] Buehholz K. Kasehe V. Biocatalysatoren and Enzymtechnologie[M]. VCH, Weinheim.1997,7-1.
    [22]陈陶声,居乃虎.固定化酶理论与应用[M].北京:轻工业出版社,1987.
    [23] Akgol S, Kacar Y, Denizli A, Arica MY. Hydrolysis of sucrose by invertase immobilizedonto novel magnetic polyvinylalcohol microsoheres[J]. Food chemical,2001,74:281-288.
    [24] Wilson L, Illanes A, Pessela BC, Abian O, Fernandez-Lafuente R, Gusian JM.Encapsulation of crosslinked penicillin G acylase aggregates in lentkas: evaluaton of anovel biocatalyst in organic media[J]. Biotechnology Bioengineering,2004,86:558-562.
    [25]李晔.酶的固定化及其应用[J].分子催化,2008,22(1):86-96.
    [26] Tosa T, Mori T, Fuse N, Chibata I. Studies on continuous enzyme reactons Part V Kineticsand industrial application of aminoacylase column for continuous optical resolution ofacyl-dl amino acids[J]. Biotechnology Bioengineering,1967,9:603-615.
    [27] Sharma S, Yamazaki H. preparation of hydrophobic cotton cloth[J]. Biotechnology Lett,1984,6:301-306.
    [28] Ivanov A E, Schneider M P. Methods for the immobilization of lipases and their use forester synthesis[J]. J. Mol. Cat B: Enzymatic,1997,3:303-309.
    [29] Zarbosky O. Immobilized enzymes[M]. CRC Press, Cleveland.1973.
    [30] Reshimi R, Sanjay G, Sugunan S. Enhanced activity and stability of α-amylaseimmobilized on alumina[J]. Catal Commun,2006,7:460-465.
    [31]张军,徐家立.固定化假丝酵母1619脂肪酶催化油酸油醇醋的合成[J].生物工程学报,1995,11:325-331.
    [32] He J., Li X.F., Evans D.G., et al. A new support for the immobilization of penicillinacylase[J]. J. Mol. Cat B: Enzymatic,2000,11(1):45-53.
    [33]周晓云.酶学原理和酶工程[M].北京:轻工业出版社,2005.
    [34] EI-Masry M.M., Demaio A., Martino S. et al. Modulation of immobilized enzyme activityby altering the hydrophobicity of nylon-grafted membranes Part1: Isothermalconditions[J]. J. Mol. Cat B: Enzymatic,2000,9:219-230.
    [35] EI-Masry M.M., Demaio A., Martelli P.L., et al. Influence of the immobilization processon the activity of3-galactosidase bound the nylon membranes grafted with glycidylmethacrylate Part1. Isothermol behavior[J]. J. Mol. Cat B: Enzymatic,2001,16:175-189.
    [36] Betancor L., Lopez-Gallego F., Hidalgo A., et al. Different mechanisms of proteinimmobilization on glutaraldehyde activated supports: Effect of support activation andimmobilization conditions[J]. Enzyme Microb. Technol,2006,39:877-882.
    [37] Hicke H.G., Bohme P., Becker M. Immobilization of enzymes onto modifiedpolyacrylonitrile membranes: Application of the acyl azide method[J]. J. Appl. Polym. Sci,1996,60:1147-1161.
    [38] Chiou S.H., Wu W.T. Immobilization of Candida rugosa lipase on chitosan with activationof the hydroxyl groups[J]. Biomaterials,2004,25:197-204.
    [39] Blanco R.M., Terreros P., Fernandez-Perez M., Otero C., Diaz-Gonzalez G.Functionalization of mesoporous silica for lipase immobilization characterization of thesupport and the catalysts[J]. J. Mol. Cat B: Enzymatic2004,30:83-93.
    [40] Lei C.H., Shin Y.S., Liu J., et al. Entrapping enzyme in a functionalized nanoporoussupport[J]. J. Am. Chem. Soc.,2002,124(38):11242–11243.
    [41]王奂玲,闫亮,赵睿等.氨丙基官能化SBA-15介孔分子筛的合成及催化性能的研究[J].分子催化,2005,19(1):1-6.
    [42] Asefa T., Kruk M., MacLachlan M.J. Sequential hydroboration-alcoholysis andepoxidation-ring opening reactions of vinyl groups in mesoporous vinylsilica[J]. AdvancedFunctional Materials.2001,11(6):447-456.
    [43]朱启忠.生物固定化技术及应用[M].化学工业出版社.2009.
    [44]杨晨,袁中一.载体固定化酶—原理、应用和设计[M].化学工业出版社.2008.
    [45] Janesik V., Beleznai Z., Keleti T. EnZyme immobilization by Poly(vinyl alcohol)gelentrapment[J]. J. Mol. Cat B: Enzymatic1982,14:297-306.
    [46] David A.E., Wang N.S., Yang V.C., et al. Chemically surface modified gel(CSMG): Anexcellent enzyme-immobilization matrix for industrial processes[J]. J. Biotechnol.2006,125:395-407.
    [47]张伟,杨秀山,酶的固定化技术及其应用[J].自然杂志,2000,22(5):282-286.
    [48]孙君社.酶与酶工程及其应用[M].化学工业出版社.2006.
    [49] Braun S., Rappoport S., Zusman R., et al. Biochemically active sol-gel glasses-the tappingof enzymes[J]. Mater. Lett.1990,10: l-8.
    [50] Unen D.J., Engbersen J.F.J., Reinhoudt D.N. Sol-Gel Immobilization of serine proteasesfor application in organic solvents[J]. Biotechno. Bioeng.2001,75:154-158.
    [51]周亚军,王淑杰,苏丹等.β一葡萄糖苷酶ACA微胶囊固定化实验研究[J].现代化工,2009,29(10):51-54.
    [52] Chang TM S, McIntosh FC, Mason FC. Semipermeable microcapsules: prepararion andproperities [J]. Can J physiol Pharmacol.1996,44:115-119.
    [53]黄磊,程振民.微孔陶瓷固定化酶载体的合成[J].化工学报,2006,57(4):912-918.
    [54]黄磊,程振民.无机材料在酶固定化中的应用[J].化工进展,2006,25(11):1245-1251.
    [55]陈亚.纳米改性陶粒固定化酶应用于厌氧滤池的研究[D].南昌大学,2007.
    [56] Masanobu K., Tsuyoshi H., Yoshitaka Y. Immobilization of lipase on a new inorganicceramics support, toyonite, and the reactivity and enantioselectivity of the immobilizedlipase[J]. Journal of Molecular Catalysis B:Enzymatic,2000,9(4-6):269–274.
    [57] Kaneno J., Kohama R., Miyazaki Masaya. A simple method for surface modification ofmicrochannels[J]. New J. Chem.,2003,27,1765–1768.
    [58] Jun-ichi I., Tatsushi M., Hideo Y. Immobilization of glucoamylase on ceramic membranesurfaces modified with a new method of tratment utilizing SPCP-CVD[J]. BiochemicalEngineering Journal,2000,5(3):179–184.
    [59] Saadoun L., Ayllon A., Jimenez B.J. Synthese and photoeatalytic activity of mesoporousanatase prepared from tetrabutylammonium-titaniae composites [J]. Mater.Res.Bull.2000,35(1):193-198.
    [60] Dai, H.N., Guo Y. High photocatalytic activity of pure TiO_2mesoporous molecular sievesfor the degradation of2,4,6-triehlorophenol[J]. Chem.Lett.1998,11(3):1113-1116.
    [61] Saadoun L., Ayllon A., Jimenez B.J. Synthese and photoeatalytic activity of mesoporousanatase prepared from tetrabutylammonium-titaniae composites [J]. Mater. Res. Bull,2000,35(1):193-198.
    [62] Cosnier S., Gondran C., Senillou A., et al. Mesoporous TiO_2films:new, catalytic electrodematerials for fabricating aperometric biosensors based on oxidases[J]. Electroanalysis.1997,9(18):1387-1392.
    [63] Mekenzie K.J., Marken F. Quartz crystal microbalance monitoring of density changes inmesoporous TiO_2phytate films during redox and ion exchange proeesses[J]. Langmuir.2003,19:4327-4331.
    [64]宋京城,蔡健.交联壳聚糖固定化β一葡萄糖苷酶的稳定性研究[J].食品璐究与开发,2011,39(2):129-132.
    [65]赵林果. β-葡萄糖苷酶的制备与回收利用及其基因的克隆表达[D].南京林业大学,2007.
    [66]黄家贤,丁伦汉.聚碳酸乙酰酯与双端氨基聚乙二醇交联体系固定化酶载体的合成与表征[J].高等学校化学学报,2001,22(4):678-682.
    [67]钱军民,李旭祥. HEC/SiO2凝胶复合物包埋固定化葡萄糖氧化酶的研究[J].应用化学,2002,19(2):153-157.
    [68]袁勤生,赵健.酶与酶工程[M].华东理工大学出版社,2005.
    [69] Powell L.W. Developments in immobilized-enzyme technology[J]. Biotechnology andGenetic Engineering Reviews.1984,2:409-438.
    [70]千烟一郎著.胡宝华译.固定化酶[M].河北人民出版社,1981.
    [71]罗九甫.酶和酶工程[M].上海交大出版社,1996.
    [72] Prazeres D.M.F., Cabral J.M.S. Enyzmatic membrane bioreactors and their applications[J].Enzyme and Microbial Technology1994;16:738-75.
    [73]许晶,张永忠,孙艳梅. β-葡萄糖苷酶的研究进展[J].食品研究与开发,2005,26(6):183-186.
    [74] Kengen S.W., Luesink E.J., Stams A.J., et al. Purification and characterization of anextremely thermostable beta-glucosidase from the hyper thermophilic archaeon pyrococcusfuriosus[J]. European Journal of Biochemistry,1993,213:305-312.
    [75]曹建,郭德宪,曾实.里氏木霉纤维素酶的纯化和性质[J].食品科学,2003,24(5):72-75.
    [76]陈向东,藤尾雄策.日本根霉IF05318胞外β-葡萄糖苷酶的纯化及部分特性[J].微生物学报,1997,37(5):368-373.
    [77]曾宇成,张树政.海枣曲霉β-葡萄糖苷酶的提纯与性质[J].微生物学报.1989,29(3):195-199.
    [78]王沁.黑曲霉β-葡萄糖苷酶的纯化与性质[J].厦门大学学报(自然科学版).1992,31(6):687-691.
    [79]张喆,赵红,周兴旺.福寿螺β-葡萄糖苷酶的分离纯化及性质的初步研究[J].厦门大学学报(自然科学版),1999,38(2):287-291.
    [80] Himmel M.E., Adney W.S., Fox J.W., et al. Isolation and characterization of two forms ofbeta-D-glucosidase from Aspergollus niger[J]. Appl Biochem Biotechol,1993,39-40:213-225
    [81] Singhania R.R., Sukumaran R.K., Rajasree K.P., et al. Properties of a majorβ-glucosidase-BGL1from Aspergillus niger NII-08121expressed differentially in responseto carbon sources[J]. Process Biochemistry,2011,46:1521–1524.
    [82] Paavilainen S., Hillman J. Purification characterization gene cloning and sequencing of anew beta-glucosidase from Bacillus circulans subsp. Alkalophilus[J]. Appl EnvironMicrobiol,1993,59:927-932.
    [83] Engel K.H., Tressl R. Formation of aroma components form on volatile precursors inpassion fruit[J]. J Agric Food chem.,1983,31:998-1002.
    [84] Delcroix A., Günata Z., Sapis J.C., et al. Glycosidase activities of three enological yeaststrains during wine making: Effect on the terpenol content of Muscat wine[J]. AmericanJournal of Enology and Viticulture,1994,45:291-296.
    [85]顾卫民.葡萄糖苷酶的特性及其在食品工业中的应用[J].江苏食品与发酵,2003(1):5-7.
    [86]陶宁萍.苦杏仁苷酶在纯天然青梅果汁中的应用[D].南京农业大学硕士论文,1993.
    [87] Bhat M.K. Cellulase and related enzymes in biotechnology[J]. Biotechnology Advances,2000(18):355-383.
    [88]孙艳梅,张永忠.水解制备大豆异黄酮苷元研究进展[J].食品研究与开发,2002(3):6-9.
    [89] Driskill L.E., Bauer M.W., Kelly R.M. Biotechnology and Bioengineering[J].1999,66(1):51-60.
    [90] BHAT M.K., BHAT S. Cellulose degrading enzymes and their potential industrialapplications[J]. Biotechnology Advances,1997,15:583-620.
    [91] Kousparou C.A., Epenetos A.A., Deonarain M.P. Antibody-guided enzyme therapy ofcancer producing cyanide results in necrosis of targeted cells[J]. Int. J. Cancer,2002,99(1):138-148.
    [92]姚国欣,王建明.第二代和第三代生物燃料发展现状及启示[J].2010,15(9):23-36.
    [93] Wocken C., Aulich T., Pansgrau P. Renewable hydroprocessing T echnology and RefineryInteg ration Options[C]. NPRA Annual Meeting,March21-23,2010, Phoenix AZ, USA.
    [94]高培基,曲音波,王祖农.纤维素酶解过程的分析和测定[J].生物工程学报,1988,4(4):321-326.
    [95] Han S.T., Yoo Y.J., Kang H.S. Characteristics of a bifunctional cellulose and its structuralgene[J]. J Biol. Chem.,1995,270(43):26012-26019.
    [96] Abdel-Fattah A.F., Osman M.Y., Abdel-Naby M.A. Production and immobilization ofcellobiase from Aspergillus niger A20[J]. Chemical Engineering Journal,1997,68:189-196.
    [97]瞿丽莉, β-葡萄糖苷酶的分离纯化及在纤维素水解上的应用[D].南京林业大学,2008.
    [98] Chen M., Zhao J., Xia L.M. Enzymatic hydrolysis of maize straw polysaccharides for theproduction of reducing sugars [J]. Carbohydr Polym.2008,71:411-415.
    [99]朱均均. β-葡萄糖苷酶的固定化及纤维素辅助水解技术[D].南京林业大学,2006.
    [100] Atkinson B., Mavituna F. Biochemical Engineering and Biotechnology Handbook[M].The Natural Press, HongKang, China.1985.
    [101] Ahmed F.AbdelFattah, Mona Y.O., Mohamed A.A.N. Production and immobilization ofcellobiase from Aspergillus niger A20[J]. Chemical Engineering Journal,1997,68:189-196.
    [102] Martino A., Durante M., Pifferi P.G. Immobilization of β-glucosidase from a commercialpreparation. Part1. A Comparative Study of Natural Supports[J]. Process Biochemistry,1996,31(3):281-285.
    [103] Natividad O., Maria D.B., Manuel P.M. Stabilisation of β-glucosidase entrapped inalginate and polyacrylamide gels towards thermal and proteolytic deactivation[J]. J. Chem.Technol. Biotechnol.1998,73:7-12.
    [104]王梦亮,李万丽.固定化β-葡萄糖苷酶催化合成红景天甙的研究[J].生物技术,2009,19(1):68-70.
    [105] Marcelo F.V., Angélica M.S.V., Gisella M.Z. β-Glucosidase immobilized and stabilizedon agarose matrix functionalized with distinct reactive groups[J]. Journal of MolecularCatalysis B: Enzymatic,2011,69:47-53.
    [106] Gargouri M., Smaali I., Maugard T., et al. Fungus β-glucosidases: immobilization and usein alkyl-β-glucoside synthesis[J]. Journal of Molecular Catalysis B: Enzymeatic.2004,29:8-94.
    [107] Sardar M., Agarwal R., Kumar A. Noncovalent immobilized of enzymes on an entericpolymer Eudragit S-100[J]. Enzyme and Microbial Technology,1997,20:361-367.
    [108]梁华正,杨水平,丁志刚等.弱碱性大孔树脂固定化硫磺菌β-葡萄糖苷酶的实验研究[J].食品开发与机械,2008,2:8-11.
    [109]宛晓春,徐新颜,檀华蓉.丝素膜固定β-葡萄糖苷酶性质的研究[J].高技术通讯,1998,8:41-44.
    [110] Józef S., Sylwia W. Immobilization of thermostable β-glucosidase from Sulfolobusshibatae by cross-linking with transglutaminase[J]. Enzyme and Microbial Technology,2006,39:1417-1422.
    [111] Gomez J.M. Immobilization of β-glucosidase on carbon nanotubes[J]. Catalysis Letters,2005,101(3):275-278.
    [112]黄哲,张涛,林章凛.纳米SiO2固定化β-葡萄糖苷酶及其在双相体系中水解大豆异黄酮的工艺研究[J].中国生物工程杂志,2008,28(6):71-76.
    [113] Yan J.L., Pan G., Li L.Q., et al. Adsorption, immobilization, and activity of β-glucosidaseon different soil colloids[J]. Journal of Colloid and Interface Science,2010(348):565-570.
    [114] Klei H.E., Sundstrom D.W., Coughlin R.W., et al. Hollow-fiber enzyme reactors incellulose hydrolysis[J]. Biotechnology and Bioengineering Symposium,1981,11:593–601.
    [115] Mazzei R., Giornoa, L., Piacentini E., et al. Kinetic study of a biocatalytic membranereactor containing immobilized β-glucosidase for the hydrolysis of oleuropein[J]. Journalof Membrane Science,2009,339:215–223.
    [116]沈雪亮,夏黎明.固定化纤维二糖酶在纤维原料水解中的应用[J].浙江大学学报,2005,39(2):287-291
    [117]沈雪亮,夏黎明.利用纤维原料在串联式生物反应器中协同酶解发酵乳酸[J].高校化学工程学报,2005,19(3):356-361.
    [118] Drobnik J., Saudek V., Svec F., et al. Enzyme immobilization techniques on poly(glycidylmethacrylate-co-ethylene dimethacryate carrier with penicillin amidase as model[J].Biotechnol. Bioeng.,1979,21:1317-1332.
    [119] Triantfyllou A.O., Wehtje E., Adlercreutz P., et al. Effcets of sorbitol addition on theaction of free and immobilized hydrolytic enzymes in organic media[J]. Biotechnol.Bioeng.,1995,54:67-76.
    [120] Piskin K., Chang T.M.S. A new combined enzyme-charcoal system formed by enzymeadsorption on charcoal followed by polymer coating[J]. Int J Artif Organs,1980,3:344-346.
    [121] Ghose T. K., Measurement of cellulase activities[J]. Pure Appl Chem.1987,59:257-268.
    [122] Ghose T.K. Measurement of cellulase activities[J]. Pure&Appl. Chem.,1987,59:257-268
    [123]戚以政、汪叔雄.生化反应动力学与反应器[M].化学工业出版社,2005.
    [124] Yadav G.D., Jadhav S.R. Synthesis of reusable lipases by immobilization on hexagonalmesoporous silica and encapsulation incalcium alginate transesterification in nonaqueousmedium[J]. M icroporous and Mesoporous Materials,2005,86:215-222.
    [125]黄磊,程振民.微孔陶瓷固定化酶载体的合成[J].化工学报,2006,57(4):912-918.
    [126]曾清平,王超萍,崔灏等.多孔陶瓷球固定α-淀粉酶研究[J].粮食与油脂,2011,3:12-14.
    [127] Walt D.R., Agayn V.I. The chemistry of enzyme and protein immobilization withglutaraldehyde[J]. Trends in Analytical Chemistry,1994,13(10):425-430.
    [128]方开泰,马长兴.正交与均匀试验设计[M].科学出版社,2001.
    [129] Busto M.D., Ortega N., Perez-Mateos M. Effect of immobilization on the stability ofbacterial and fungal β-D-glucosidase[J]. Process Biochemistry,1997,32(5):441-449.
    [130]董颖超,齐涛,秦玉昌等.介孔材料SBA-15固定化胰蛋白酶的研究[J].现代食品科技,2007,23(11):19-26.
    [131]徐龙乾,文湘华,丁杭军.木质素过氧化物酶在球型介孔材料上的固定化特性研究[J].环境科学,2010,31(10):2493-2499.
    [132]高振源,吕勇军,郭杨龙. MCFs介孔分子筛的环氧化及其固定化酶性能[J].中国科技论文在线,2009,4(6):423-430.
    [133] Yiu H.H.P., Wright P.A., Botting N.P. Enzyme immobilisation using SBA-15mesoporousmolecular sieves with functionalised surfaces[J]. Journal of Molecular Catalysis B:Enzymatic,2001,15:81-92.
    [134] Arica M.Y., Alaeddino N.G., Hasirci V. Immobilization of glucoamylase onto activatedpHEMA/EGDMA microspheres: properties and application to a packed-bed reactor[J].Enzyme and Microbial Technology,1998,22:152-157.
    [135]邹泽昌,韦奇,纳薇等.氧化硅介孔泡沫材料固定木瓜蛋白酶的研究[J].无机材料学报,2009,24(4):702-706.
    [136]侯雪丹,张毅,刘欢等.5-氟尿苷5'-棕榈酸酯的酶法合成[J].催化学报,2011,32(11):1733-1738.
    [137] Sing K.S.W., Everett D.H., Haul R.A.W., et al. Reporting physisorption data for gas/solidsystems with special reference to the determination of surface area and porosity[J]. Pureand Applied Chemistry,1985,57:603-619.
    [138] Kersge C.T., Leonowiez M.E., Roth W.J., et al. Ordered mesoporous molecular一sievessynthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712.
    [139]张金刚.非硅基介孔二氧化钛材料及其复合体系的研究[D].上海大学,2005.
    [140] Chaijitrsakool T., Tonanon N., Tanthapanichakoon W., et al. Effects of pore characters ofmesoporous resorcinola formaldehyde carbon gels on enzyme immobilization[J]. J. Mol.Catal. B: Enzyme,2008,55(3/4):137-141
    [141]王炎,郑旭翰,赵敏.漆酶在介孔分子筛MCM-41上的固定化研究[J].高校化学工程学报,2008,22(1):83-87.
    [142] Antonelli, D.M., Ying, J.Y. Synthesis of Hexagonally Packed Mesoporous TiO_2by amodified sol-gel method[J]. Angew. Chem. Int. Ed.,1995,34:2014-2017.
    [143]秦丹华,姚忠,王浩琦等.介孔二氧化钛固载γ-谷氨酰转肽酶的制备及性质[J].化工学报,2011,62(2):378-385.
    [144] Ravindra R., Zhao S., Gies H., et al. Protein encapsulation in mesoporous silicate: theeffects of confinement on protein stability, hydration, and volumetric properties[J]. J. Am.Chem. Soc.,2004,126(39):12224–12225
    [145] Deere J., Magner E., Wall J.G., et al. Adsorption and activity of cytochrome c onmesoporous silicates[J]. Chem. Commun.,2001,465-466.
    [146] Vinu A., Murugesan V., Hartmann M. Adsorption of lysozyme over mesoporousmolecular sieves MCM-41and SBA-15: influence of pH and aluminum incorporation[J]. J.Phys. Chem. B.,2004,108:7323-7330.
    [147]陆小华,周亚新,刘畅等,一种快速制备易控微孔—介孔结构氧化钛或其前躯体的方法,国际PCT发明专利,申请号:PCT/CN2007/070428;中国发明专利,公开号:CN101139109.
    [148]陆小华,何明,杨祝红等.一种高比表面积的氧化钛合成方法[P].中国发明专利:ZL03158274.5,2005.
    [149] Barrett E.P., Joyner L.G., Halenda P.R. The determination of pore volume and areadistributions in porous substances. I. computations from nitrogen isotherms[J]. J. Am.Chem. Soc.,1951,73:373一380.
    [150]赵炳超.介孔分子筛固定化酶的研究[D].北京工业大学,2005.
    [151]杨光.脂肪酶固定化的新方法研究及其应用[D].浙江大学,2009.
    [152] Matsuyama H., Yamamoto T., Furuyoshi S., et al. Spectral changes of lysozyme adsorbedon ultrafine silica particles[J]. Biosci Biotechnol Biochem,1993,57(6):992-993.
    [153] Zou B., Hu Y., Yu D.h., et al. Immobilization of porcine pancreatic lipase onto ionicliquid modified mesoporous silica SBA-15[J].. Biochemical Engineering Journal,2010,53:150-153.
    [154] Humphrey H.P.Y., Paul A.W., Nigel P.B. Enzyme immobilisation using SBA-15mesoporous molecular sieves with functionalised surfaces[J]. J. Mol. Cat B: Enzymatic,2001,15:81-92.
    [155] Yiu H.H.P., Wright P.A., Botting N.P. Enzyme immobilisation using siliceous mesoporousmolecular sieves[J]. Microporous and Mesoporous Materials.2001,44/45:763-768.
    [156] Corma A., Fornés V., Jordá J.L., et al. Electrostatic and covalent immobilisation ofenzymes on ITQ-6delaminated zeolitic materials[J]. Chem. Commun.,2001,419-420.
    [157] Lu Y., Lu G., Wang Y., et al. Functionalization of cubic Ia3d mesoporous silica forimmobilization of penicillin G acylase+[J]. Advanced Functional Materials.2007,17(13):2160-2166.
    [158] Chong A.S.M., Zhao X.S. Functionalized nanoporous silicas for the immobilization ofpenicillin acylase[J]. Appl. Surf. Sci.,2004,237:398-404.
    [159] Humphrey H.P., Yiu C.H., Botting N.P.B., et al. Size selective protein adsorption onthiol-functionalised SBA-15mesoporous molecular sieve[J]. Phys. Chem. Chem. Phys.,2001,3(15):2983-2985.
    [160]刘健,杨启华,张磊等.有机-无机杂化氧化硅基介孔材料[J].化学进展,2005,17(5):809-817.
    [161] Szymańska K., Bryjak J., Mrowiec-Bia oń J., et al. Application and properties ofsiliceous mesostructured cellular foams as enzymes carriers to obtain efficientbiocatalysts[J]. Microporous and Mesoporous Materials.2007,99(1-2):167-175.
    [162] He J., Xu Y., Ma H., et al. Effect of surface hydrophobicity/hydrophilicity of mesoporoussupports on the activity of immobilized lipase[J]. J. Colloid Interface Sci.,2006,298:780-786.
    [163] Galarneau A., Mureseanu M., Atger S., et al. Immobilization of lipase on silicasrelevance of textural and interfacial properties on activity and selectivity[J]. New J. Chem.,2006,30:562-571.
    [164]赵会玲,胡军,汪建军等.介孔材料氨基表面修饰及其对CO_2的吸附性能[J].物理化学学报,2007,23(6):801-806.
    [165] Bai W., Yang Y.J., Tao X., et al. Immobilization of lipase on aminopropyl-graftedmesoporous silica nanotubes the resolution of (R, S)-1-phenylethanol[J]. J. Mol. Catal.B: Enzymatic,2012,76:82-88.
    [166]张翠,周玮,路平等.巯丙基官能团化MCM-41对Pb(Ⅱ)的吸附[J].化学通报,2006,7:529-531.
    [167]张大同.扫描电镜和能谱仪分析技术[M].华南理工大学出版社,2008.
    [168]邓启刚,张哲,宋伟明.苄基磺酸化MCM-41介孔分子筛的合成、表征及催化酯化性能[J].精细化工,2011,28(7):689-692.
    [169]曹水良,周天祥,莫珊珊等.介孔炭负载二氧化锰复合材料电化学的性能[J].暨南大学学报,2011,32(1):57-60.
    [170] D az I., Márquez-Alvarez C., Mohino F., et al. Combined alkyl and sulfonic acidfunctionalization of MCM-41-type silica: part1. synthesis and characterization[J]. J.Catal.,2002,193(2):283-294.
    [171]马雪慧,赵彦保,肖高峰.巯丙基功能化介孔纳米二氧化硅的合成[J].物理化学学报,2008,24(3):492-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700