账户: 密码:
基于像斑统计分析的高分辨率遥感影像土地利用/覆盖变化检测方法研究
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
土地资源是人类在地球上赖以生存最重要的资源,它不仅能够反映出一个国家或地区的地表环境等基本地理信息,还能够在一定程度上反映地区经济发展、城镇化和军事布局等状况。近些年来,随着3S技术的不断发展,地理信息服务已经以各种形式深入到人们的日常生活中去,从而对地理信息的获取和快速更新提出了更高的要求。土地利用/覆盖情况是人类和土地相互作用的综合结果,同时作为各种资源管理和地理信息服务所需要的最基本数据,对土地利用/覆盖信息的获取、分析和更新,显得尤为重要。
     遥感影像数据以其宏观性、实时性,一直以来都是进行土地利用/覆盖及其变化检测的最重要手段。而本世纪以来,高分辨率遥感影像数据的获取成为可能,使得土地利用/覆盖的变化检测也有了进一步的发展。从研究现状来看,目前基于遥感影像的土地利用/覆盖变化检测方法多种多样,而各种方法的效果根据不同的变化检测需求和实验数据特点而各不相同,尚没有较为成熟的基于影像的变化检测框架和体系出现。目前主要的研究重点仍在变化检测方法的研究和变化检测流程的自动化两个方面。高分辨率遥感影像能够携带更多用于影像分析和变化检测的信息。然而一方面,影像数据量的增加和人工解译效率低成本高的矛盾更加突出;另一方面,由于高分辨率遥感影像本身具有的特点,使得传统的遥感影像分析和变化检测方法并不一定适用于高分辨率遥感数据的分析。可以说高分辨率遥感影像为土地利用/覆盖变化检测提供了更丰富信息的同时也带来了更多挑战。因此,本文应用高分辨率遥感影像,就变化检测方法研究、变化检测流程完整性和自动化方面,展开进一步的探讨和分析。
     多源数据的应用,有利于获取更多用于变化检测的信息,这些信息可以以先验知识的形式出现,直接参与到影像分析过程中;同时,变化检测的最终目的往往是用于对现有土地利用图的更新,因此本文首先提出了利用现有土地利用图和遥感影像进行配准套合的影像分析方法。针对高分辨率遥感影像的特性以及人工识别地物的机理,应用像斑代替像素作为影像分析的基本单位,通过矢量图和影像的配准套合,根据土地利用图图斑边界直接获取像斑,从而能够使像斑获取土地利用图中的部分属性信息,同时提取多种有利于影像解译的特征,以此为基础进行后续的影像分析。
     由于土地利用和土地覆盖存在类别的不一致性,使得直接通过配准套合获取的影像像斑,并不能保证其内部光谱的同质性,这为后续的基于像斑的影像分析带了的困难。本文探讨和研究了上述的类别不一致性,并通过应用土地利用图辅助的像斑多尺度分割、以及数据挖掘的方法,提出了进一步获取同质性较强的像斑的方法。
     接下来,本文将现有的基于遥感影像变化检测的方法分为了分类前比较和分类后处理两种流程,并对各种方法进行了归纳、讨论和实验。在分析各种变化检测方法的优劣势后,提出了一种考虑类别光谱变化规律的变化检测方法,并用实验证明了其可行性。同时提出将ROC曲线应用于分类前比较变化检测方法的阈值获取中去,用于提高变化检测方法的自动化程度。
     在此基础上,文章通过构建适用于像斑分析的马尔柯夫随机场图模型以及统计分析的方法,综合应用像斑的响应光谱特征、像斑与其邻域像斑具有的类别空间关系,以及像斑与其历史时期像斑具有的类别时序转移关系,提出了一种综合光谱、空间、时序信息进行变化像斑变化后类别判定的方法,并通过实验验证了其有效性,证实了空间关系和时序关系在影像分析中的重要作用。
     最后,本文介绍了基于像斑统计分析的高分辨率遥感影像土地利用变化检测方法系统框架,并对该系统中以实现的主要功能进行了简要介绍。
Land resources are the most important resource for human to live on the earth. It cannot only reflect a country or a region’s surface environment and geography basicsituation, but also can to a certain extent reflect regional economic development,urbanization and military layout and so on. In recent years, along with thedevelopment of3S technology, geographic information service has been engaged intothe people’s daily life in various styles, and the geographical information acquisition,quickly update have been put forward higher demand. Land use/cover situation is thecomprehensive result of the interaction between human and environment, and as thebasic data needed for resource management and geographic information services, theacquisition, analysis and updating of land use/cover information seems particularlyimportant.
     The macro and real-time features of the remote sensing image data has always made itto be the most important data source for land use/cover and its change detection, andin this century, land use/cover change detection has a further development due to theavailable of the high resolution remote sensing image data. From the research currentsituation, there are several approaches for land use/cover change detection, and theefficiency of each method depends on the change detection requirements andexperimental data characteristics. Up till now there is not a mature framework orsystem for change detection. At present the research focuses are two aspects: themethod of change detection, and the automation of the method. More informationused for image analysis could be gotten from high resolution remote sensing image,compare to the low resolution images. However, on the one hand, the more prominentcontradiction occurs between the increased amount of image data and the lowefficiency, high cost artificial interpretation; on the other hand, the approaches usedfor analyze low resolution image data may not be appropriate for high resolutionimage analysis. So we can say high resolution remote sensing images bring both advantages and challenges for land use/cover change detection. Therefore, this papergo further researches on both methods of change detection and integrity, automationof change detection process using high resolution remote sensing images.
     More information could be extracted for land use/cover detection using multiplesource data, and these data can be regarded as the prior knowledge which can engageinto the process of image analysis directly. Meanwhile, the final purpose of changedetection using remote sensing data is always for updating existing land use map.Thus, this paper used both remote sensing images and existing land use map forchange detection. Image segments are used as the basic units for image analysisaccounting for the characteristics of high resolution images and the mechanism ofartificial objects identification. Through the matching between remote sensing imagesand the land use map, image segments could be gotten directly by the land use patches.Information contained in the attributes table of land use map can be used for thefollow-up image interpretation.
     Because of the inconsistence of the existing categories between land use and landcover, the image object obtained directly through matching process could not keep allthe pixels within it homogeneous, which would bring some difficulty to follow-upimage processing. This paper discussed this inconsistence mentioned above, usingmulti-scale image segmentation and data mining methods in order to improve thehomogeneity of the image segment.
     Next, this paper divided the change detection process into two methods: beforeclassification comparison and post classification and did a discussion, summarizationand experiments for each method. After analyzing both advantages and disadvantagesof these two methods, this paper gives an approach for land use/cover changedetection accounting for class spectral change rules and proves its validity by anexperiment. Meanwhile ROC curve was used for change detection threshold decisionso as to enhance the automation degree of change detection methods.
     On this basis, through the construction of Markov Random Field graph model andusing statistical method, spectral features of the image segments, spatial relationshipamong the image segments and their neighborhood segments, and timing relationship among segments on different period images are used comprehensively for decidingthe new class properties of changed image segments. The experiments proved theefficiency of this method and meanwhile confirmed the important role of spatial andtiming relationship using for remote sensing image interpretation.
     Finally, this paper introduced a system framework of high resolution remote sensingimage land use/cover change detection based on the statistical analysis of imagesegments, and also a brief introduction of the main function of this system which havealready achieved.
引文
[1]马万栋,张渊智,施平,等.海岸带土地利用/土地覆被变化研究进展[J].地理科学进展.2008(5):87-94.
    [2]路云阁,蔡运龙,许月卿.走向土地变化科学——土地利用/覆被变化研究的新进展[J].中国土地科学.2006(1):55-61.
    [3]陈怀亮,徐祥德,刘玉洁.土地利用与土地覆盖变化的遥感监测及环境影响研究综述[J].气象科技.2005(4):289-294.
    [4]吴秀芹,蔡运龙.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展.2003(6):576-584.
    [5]费鲜芸,赵庚星,高祥伟.土地利用/土地覆盖遥感分析研究综述[J].山东农业大学学报(自然科学版).2002(4):515-518.
    [6]李秀彬.全球环境变化研究的核心领域──土地利用/土地覆被变化的国际研究动向[J].地理学报.1996(6):553-558.
    [7] Liverman D M. People and pixels: Linking remote sensing and social science[M]. NationalAcademies Press,1998.
    [8] Chen X, Zhao H, Li P, et al. Remote sensing image-based analysis of the relationship betweenurban heat island and land use/cover changes[J]. Remote Sensing of Environment.2006,104(2):133-146.
    [9] Diouf A, Lambin E F. Monitoring land-cover changes in semi-arid regions: remote sensing dataand field observations in the Ferlo, Senegal[J]. Journal of Arid Environments.2001,48(2):129-148.
    [10]何蔓,张军岩.全球土地利用与覆盖变化(LUCC)研究及其进展[J].国土资源.2005(9):22-25.
    [11]贺美利,周勇.我国土地利用规划实施评价的研究现状[J].国土资源科技管理.2008(2):41-44.
    [12]刘彦随,陈百明.中国可持续发展问题与土地利用/覆被变化研究[J].地理研究.2002(3):324-330.
    [13]崔伟,王尚义.浅析我国近20年土地利用/覆被变化研究进展[J].科技情报开发与经济.2007(11):168-170.
    [14]贾宇平.国内土地利用与土地覆被变化研究进展[J].太原师范学院学报(自然科学版).2007(3):22-26.
    [15]侯鹏程.经济快速增长区土地利用变化研究进展[J].现代农业科技.2008(21):288-289.
    [16]何旭开.土地利用变化研究进展述评及展望[J].经济研究导刊.2010(26):51-53.
    [17]王中华.中国土地利用与土地覆被变化的研究进展与前瞻[J].徐州教育学院学报.2007(4):32-35.
    [18] Xiao J, Shen Y, Ge J, et al. Evaluating urban expansion and land use change in Shijiazhuang,China, by using GIS and remote sensing[J]. Landscape and Urban Planning.2006,75(1-2):69-80.
    [19]于兴修,杨桂山.中国土地利用/覆被变化研究的现状与问题[J].地理科学进展.2002(1):51-57.
    [20]樊翔云,张秋义,傅桦.我国土地利用研究现状分析[J].首都师范大学学报(自然科学版).2004(S1):146-150.
    [21]许彦曦,陈凤,濮励杰.城市空间扩展与城市土地利用扩展的研究进展[J].经济地理.2007(2):296-301.
    [22]唐华俊,吴文斌,杨鹏,等.土地利用/土地覆被变化(LUCC)模型研究进展[J].地理学报.2009(4):456-468.
    [23]于洪苹,程朋根,夏友青.土地动态监测中3S技术的应用[J].安徽农业科学.2011(3):1844-1846.
    [24]李小娟,尹连旺,崔伟宏.土地利用动态监测中的时空数据模型研究[J].遥感学报.2002(5):370-375.
    [25]王兵,臧玲.我国土地利用/土地覆被变化研究近期进展[J].地域研究与开发.2006(2):86-91.
    [26] Kennedy R E, Townsend P A, Gross J E, et al. Remote sensing change detection tools for naturalresource managers: Understanding concepts and tradeoffs in the design of landscape monitoringprojects[J]. Remote Sensing of Environment.2009,113(7):1382-1396.
    [27]朱攀,廖明生,杨杰,等. M变换在NOAA/AVHRR数据变化检测中的应用[J].武汉测绘科技大学学报.2000(2).
    [28]阎福礼,李震,邵芸,等.基于NOAA/AVHRR数据的地表覆盖变化检测方法与监测[J].遥感信息.2003(3):15-18.
    [29]贺俊杰.基于NOAA/AVHRR遥感资料的锡林郭勒草地植被变化特征[J].中国农业气象.2011(3):417-422.
    [30]张发旺,程彦培,韩旭,等.基于NOAA数据的北亚冻土变化研究[J].南水北调与水利科技.2010(6):1-3.
    [31]王丹,姜小光.利用NOAA数据分析中国地区植被覆盖变化周期[J].中国图象图形学报.2006(4):516-520.
    [32]马明国,角媛梅,程国栋.利用NOAA-CHAIN监测近10a来中国西北土地覆盖的变化[J].冰川冻土.2002(1):68-72.
    [33] Bontemps S, Bogaert P, Titeux N, et al. An object-based change detection method accounting fortemporal dependences in time series with medium to coarse spatial resolution[J]. Remote Sensing ofEnvironment.2008,112(6):3181-3191.
    [34] Mas J F. Monitoring land-cover changes: a comparison of change detection techniques[J].International Journal of Remote Sensing.1999,20(1):139-152.
    [35] Yuan F, Sawaya K E, Loeffelholz B C, et al. Land cover classification and change analysis of theTwin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing[J]. RemoteSensing of Environment.2005,98(2-3):317-328.
    [36] Kai A N, Jinshui Z, Yu X. Object-oriented Urban Dynamic Monitoring——A Case Study ofHaidian District of Beijing[J].中国地理科学(英文版).2007,17(3).
    [37] Olson G A, Cheriyadat A, Mali P, et al. Detecting and managing change in spatial data-land useand infrastructure change analysis and detection[Z]. Geoscience and Remote Sensing Symposium,2004. IGARSS '04. Proceedings.2004IEEE International.2004:729-734.
    [38] Nielsen E M, Prince S D, Koeln G T. Wetland change mapping for the U.S. mid-Atlantic regionusing an outlier detection technique[J]. Remote Sensing of Environment.2008,112(11):4061-4074.
    [39] Berberoglu S, Akin A. Assessing different remote sensing techniques to detect land use/coverchanges in the eastern Mediterranean[J]. International Journal of Applied Earth Observation andGeoinformation.2009,11(1):46-53.
    [40] Jin C, Xuehong C, Xihong C, et al. Change Vector Analysis in Posterior Probability Space: ANew Method for Land Cover Change Detection[J]. Geoscience and Remote Sensing Letters, IEEE.2011,8(2):317-321.
    [41]曹雪,柯长青.基于TM影像的南京市土地利用遥感动态监测[J].武汉大学学报(信息科学版).2006(11):958-961.
    [42]金石柱,刘志锋.基于TM影像的延吉市土地利用动态变化研究[J].地理科学.2011(10):1249-1253.
    [43]王琳,卢小凤.基于TM影像的盐城市土地利用时空变化研究[J].中国农学通报.2011(4):464-468.
    [44]贺奋琴,胡振琪,尹建忠,等. ASTER和TM/ETM+遥感数据融合监测土地覆盖变化[J].测绘科学.2007(1):96-97.
    [45]李居亮,都金康,张友水.用基于相对辐射校正的TM影像监测绍兴土地覆盖变化[J].遥感信息.2004(4):22-25.
    [46]牟凤云,张增祥,刘斌,等.基于TM影像和“北京一号”小卫星的北京市土地利用变化遥感监测[J].生态环境.2007(1):94-101.
    [47] Conchedda G, Durieux L, Mayaux P. An object-based method for mapping and change analysisin mangrove ecosystems[J]. ISPRS Journal of Photogrammetry and Remote Sensing.2008,63(5):578-589.
    [48] Rymasheuskaya M. Comparison of Several Change Detection Methods for Monitoring LandCover Dynamics in Belarus[Z]. Analysis of Multi-temporal Remote Sensing Images,2007. MultiTemp2007. International Workshop on the.2007:1-3.
    [49]邓劲松,李君,王珂.基于多时相PCA光谱增强和多源光谱分类器的SPOT影像土地利用变化检测[J].光谱学与光谱分析.2009(6):1627-1631.
    [50]张京红,申双和,李秉柏.用SPOT图像进行土地利用调查和动态监测研究[J].南京气象学院学报.2001(1):99-105.
    [51]吴荣涛,詹莉,朱嘉伟. SPOT-5遥感数据在土地利用更新调查中的几何精度分析[J].测绘科学.2006(5).
    [52]吴喜慧,李卫忠.基于QuickBird遥感影像的土地利用变化及驱动力研究[J].西北林学院学报.2010(6):216-221.
    [53]周家香,朱建军. IKONOS数据在大比例尺土地利用动态监测中的应用[J].国土资源导刊.2005(5):41-42.
    [54]杨清华,齐建伟,孙永军.高分辨率卫星遥感数据在土地利用动态监测中的应用研究[J].国土资源遥感.2001(4):20-27.
    [55] Im J, Jensen J R, Tullis J A. Object‐based change detection using correlation image analysisand image segmentation[J]. International Journal of Remote Sensing.2008,29(2):399-423.
    [56] Bouziani M, Go ta K, He D. Automatic change detection of buildings in urban environment fromvery high spatial resolution images using existing geodatabase and prior knowledge[J]. ISPRS Journalof Photogrammetry and Remote Sensing.2010,65(1):143-153.
    [57]叶明,杨晓平,蒋刚毅.基于TM遥感图像的宁波土地利用动态监测[J].宁波大学学报(理工版).2003(1):30-34.
    [58]贾凌,都金康,赵萍,等.基于TM的海南省土地利用/覆盖动态变化的遥感监测和分析[J].遥感信息.2003(1):22-25.
    [59]程昌秀,严泰来,朱德海. GIS辅助下的图斑地类识别方法研究——以土地利用动态监测为例[J].中国农业大学学报.2001(3):55-59.
    [60]程昌秀,严泰来,朱德海,等.土地利用动态监测中GIS与RS一体化的变更地块判别方法[J].自然资源学报.2001(4):386-389.
    [61]李磊,李小娟,崔伟宏.基于GIS和RS的县级土地利用动态监测系统研究[J].地理学与国土研究.2001(2):28-32.
    [62]程学军,李仁东,薛怀平.武汉市近期土地利用的动态监测研究[J].华中师范大学学报(自然科学版).2001(1):111-114.
    [63] Welter V. Automatic classification of remote sensing data for GIS database revision[J].International Archives of Photogrammetry and Remote Sensing.1998,32:641-648.
    [64]冯秀丽,王珂,张苏红.基于SPOT5多光谱影像和近期航摄影像的土地利用动态监测方法研究[J].农业工程学报.2005(S1):188-191.
    [65]术洪磊,毛赞猷. GIS辅助下的基于知识的遥感影像分类方法研究——以土地覆盖/土地利用类型为例[J].测绘学报.1997(4):49-57.
    [66] Dewan A M, Yamaguchi Y. Land use and land cover change in Greater Dhaka, Bangladesh:Using remote sensing to promote sustainable urbanization[J]. Applied Geography.2009,29(3):390-401.
    [67] Zhan X, Defries R, Townshend J, et al. The250m global land cover change product from theModerate Resolution Imaging Spectroradiometer of NASA's Earth Observing System[J]. InternationalJournal of Remote Sensing.2000,21(6-7):1433-1460.
    [68]陈宇,杜培军,唐伟成,等.基于BJ-1小卫星遥感数据的矿区土地覆盖变化检测[J].国土资源遥感.2011(3):146-150.
    [69]张晓祥,严长清,刘斯琦,等.基于Landsat TM数据的江苏海岸带土地利用/覆被变化检测方法比较研究[J].遥感信息.2011(3):82-87.
    [70]秦永,孔维华,曹俊茹,等.基于SVM的遥感影像土地利用变化检测方法[J].济南大学学报(自然科学版).2010(1):88-90.
    [71] Blaschke T, Lang S, Hay G. Object-Based Image Analysis[M]. Springer,2008.
    [72]林丽群.基于像斑的高光谱影像跨尺度分类研究[D].武汉大学,2008.
    [73] Blaschke T, Strobl J. What’s wrong with pixels? Some recent developments interfacing remotesensing and GIS[J]. GeoBIT/GIS.2001,6:12-17.
    [74] Addink E A, Van Coillie F M B, De Jong S M. Introduction to the GEOBIA2010special issue:From pixels to geographic objects in remote sensing image analysis[J]. International Journal of AppliedEarth Observation and Geoinformation.2012,15:1-6.
    [75] Chen G, Hay G J, Carvalho L M T, et al. Object-based change detection[J]. International Journalof Remote Sensing.2012,33(14):4434-4457.
    [76] Desclée B, Bogaert P, Defourny P. Forest change detection by statistical object-based method[J].Remote Sensing of Environment.2006,102(1-2):1-11.
    [77]龚浩,张景雄,申邵洪.基于对象的对应分析在高分辨率遥感影像变化检测中的应用[J].武汉大学学报(信息科学版).2009(5):544-547.
    [78]申晋利,张军龙.基于面向对象分类方法的查干湖地区生态环境变化遥感分析[J].地球科学与环境学报.2009(2):212-215.
    [79]刘浩,胡卓玮,赵文慧.基于面向对象的重大工程土地利用变化信息提取——以国家体育场(鸟巢)建设工程为例[J].国土资源遥感.2009(4):86-89.
    [80]王文杰,赵忠明,朱海青.面向对象特征融合的高分辨率遥感图像变化检测方法[J].计算机应用研究.2009(8):3149-3151.
    [81]韩闪闪,李海涛,顾海燕.面向对象的土地利用变化检测方法研究[J].遥感信息.2009(3):23-29.
    [82]王文宇,李静.面向对象的高分辨率遥感影像土地覆盖信息提取[J].测绘科学.2008(S3):196-197.
    [83] Stuckens J, Coppin P R, Bauer M E. Integrating Contextual Information with per-PixelClassification for Improved Land Cover Classification[J]. Remote Sensing of Environment.2000,71(3):282-296.
    [84] Willhauck G, Schneider T, De Kok R, et al. Comparison of object oriented classificationtechniques and standard image analysis for the use of change detection between SPOT multispectralsatellite images and aerial photos[J]. International Archives of Photogrammetry and Remote Sensing,Amsterdam, The Netherlands.2000,33:35-42.
    [85] Volker W. Object-based classification of remote sensing data for change detection[J]. ISPRSJournal of Photogrammetry and Remote Sensing.2004,58(3–4):225-238.
    [86] T. B. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry andRemote Sensing.2010,65(1):2-16.
    [87] Niemeyer I, Bachmann F, John A, et al. Object-based change detection and classification[C].Proceedings of SPIE-The International Society for Optical Engineering, Image and Signal Processingfor Remote Sensing XV2009, v7477.
    [88] Guindon B, Zhang Y, Dillabaugh C. Landsat urban mapping based on a combined spectral–spatial methodology[J]. Remote Sensing of Environment.2004,92(2):218-232.
    [89] Blaschke T, Lang S. Object based image analysis for automated information extraction--asynthesis[C] Measuring the Earth II ASPRS Fall Conference,2006.
    [90] Darwish A, Leukert K, Reinhardt W. Urban land-cover classification: an object basedperspective[Z]. Remote Sensing and Data Fusion over Urban Areas,2003.2nd GRSS/ISPRS JointWorkshop on.2003:278-282.
    [91] Mallinis G, Koutsias N, Tsakiri-Strati M, et al. Object-based classification using Quickbirdimagery for delineating forest vegetation polygons in a Mediterranean test site[J]. ISPRS Journal ofPhotogrammetry and Remote Sensing.2008,63(2):237-250.
    [92] Jacquin A, Misakova L, Gay M. A hybrid object-based classification approach for mappingurban sprawl in periurban environment[J]. Landscape and Urban Planning.2008,84(2):152-165.
    [93] Durieux L, Lagabrielle E, Nelson A. A method for monitoring building construction in urbansprawl areas using object-based analysis of Spot5images and existing GIS data[J]. ISPRS Journal ofPhotogrammetry and Remote Sensing.2008,63(4):399-408.
    [94] Stow D, Hamada Y, Coulter L, et al. Monitoring shrubland habitat changes through object-basedchange identification with airborne multispectral imagery[J]. Remote Sensing of Environment.2008,112(3):1051-1061.
    [95] Liu Y, Guo Q, Kelly M. A framework of region-based spatial relations for non-overlappingfeatures and its application in object based image analysis[J]. ISPRS Journal of Photogrammetry andRemote Sensing.2008,63(4):461-475.
    [96] Kalaycilar F, Kale A, Zamalieva D, et al. Mining of Remote Sensing Image Archives usingSpatial Relationship Histograms[Z]. Geoscience and Remote Sensing Symposium,2008. IGARSS2008. IEEE International.2008:589-592.
    [97] Kong C, Xu K, Wu C. Classification and extraction of urban land-use information fromhigh-resolution image based on object multi-features[J]. Journal of China University of Geosciences.2006,17(2):151-157.
    [98]吴静,尹涛.多尺度空间关系相似性研究[J].测绘科学.2011(4):69-71.
    [99]郑玥,龙毅,明小娜,等.多种空间关系组合的地理位置自然语言描述方法[J].地球信息科学学报.2011(4):465-471.
    [100]沈敬伟,闾国年,温永宁,等.拓扑和方向空间关系组合描述及其相互约束[J].武汉大学学报(信息科学版).2011(11):1305-1308.
    [101]陈生,王宏,沈占锋,等.面向对象的高分辨率遥感影像桥梁提取研究[J].中国图象图形学报.2009(4):585-590.
    [102]吴均平,毛志华,陈建裕,等.一种加入空间关系的海岸带遥感图像分类方法[J].国土资源遥感.2006(3):10-14.
    [103]董占杰,毛政元.基于道路绿地特征的遥感影像道路信息提取方法研究[J].国土资源遥感.2011(5).
    [104]乔程,沈占锋,吴宁,等.空间邻接支持下的遥感影像分类[J].遥感学报.2011(1):88-99.
    [105]程环环,王润生.利用贝叶斯网络融合空间上下文的高分辨遥感图像分类[J].计算机工程与科学.2011(1):70-76.
    [106]蔡晓斌,陈晓玲,王涛,等.基于图斑空间关系的遥感专家分类方法研究[J].武汉大学学报(信息科学版).2006(4):321-324.
    [107]尤淑撑,刘顺喜,李小文,等.基于空间约束关系的土地利用/覆被遥感分类方法研究[J].农业工程学报.2005(9):51-55.
    [108] Singh A. Review Article Digital change detection techniques using remotely-sensed data[J].International Journal of Remote Sensing.1989,10(6):989-1003.
    [109] Lu D, Mausel P, Brondizio E, et al. Change detection techniques[J]. International Journal ofRemote Sensing.2004,25(12):2365-2401.
    [110] Civco D L, Hurd J D, Wilson E H, et al. A comparison of land use and land cover changedetection methods[C]. ASPRS-ACSM Annual Conference and FIG XXII Congress,22--26April,2002.
    [111] Ridd M K, Liu J. A Comparison of Four Algorithms for Change Detection in an UrbanEnvironment[J]. Remote Sensing of Environment.1998,63(2):95-100.
    [112]陈春希,祝晓坤,张海涛.应用遥感技术开展土地动态监测方法评述与定量评价研究[J].北京测绘.2009(2):23-25.
    [113]张振龙,曾志远,李硕,等.遥感变化检测方法研究综述[J].遥感信息.2005(5):64-66.
    [114]关元秀,程晓阳编著.高分辨率卫星影像处理指南[M].北京:科学出版社,2008:268.
    [115]周成虎,骆剑承等著.高分辨率卫星遥感影像地学计算[M].北京:科学出版社,2009:303.
    [116] Meyer W B. Changes in land use and land cover: a global perspective[M]. Cambridge Univ Pr,1994.
    [117] Lambin E F, Geist H. Land-use and land-cover change: local processes and global impacts[M].Springer Verlag,2006.
    [118] Di Gregorio A, Jansen L J M, de Las Naciones Unidas Para La Agricultura Y La Alimentaci O N.Departamento De Desarrollo Sostenible O O N. Land cover classification system: LCCS: classificationconcepts and user manual[M]. Food and Agriculture Organization of the United Nations Rome,2000.
    [119] Blaschke T. A framework for change detection based on image objects[J]. G ttingerGeographische Abhandlungen.2005,113:1-9.
    [120] Jansen L J M, Di Gregorio A. Land-use data collection using the “land cover classificationsystem”: results from a case study in Kenya[J]. Land Use Policy.2003,20(2):131-148.
    [121] Dekker R J. Object-based updating of land-use maps of urban areas using satellite remotesensing[D]. Citeseer,2003.
    [122] Fisher P F, Comber A J, Wadsworth R. Land use and Land cover: Contradiction orComplement[J]. Re-presenting GIS.2005:85-98.
    [123]潘家文,朱德海,严泰来,等.遥感影像空间分辨率与成图比例尺的关系应用研究[J].农业工程学报.2005(9):124-128.
    [124] Benz U C, Hofmann P, Willhauck G, et al. Multi-resolution, object-oriented fuzzy analysis ofremote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and RemoteSensing.2004,58(3-4):239-258.
    [125] Duda R. O.,Peterehart D. G. S.,李宏东,等.模式分类[Z].北京:机械工业出版社,2003.
    [126] Quinlan J R. Induction of decision trees[J]. Machine Learning.1986,1(1):81-106.
    [127] Is C5.0Better Than C4.5?[Z]. http://www.rulequest.com/see5-comparison.html2012:2012.
    [128] Definiens eCognition8.0.1ReferenceBook,Document Version1.2.1[EB/OL]. DefiniensAG,Trappentreustr.1,D-80339München,Germany,2009.
    [129] Definiens eCognition Developer8User Guide,Document Version1.2.0[EB/OL]. DefiniensAG,Trappentreustr.1,D-80339München,Germany,2009.
    [130]毛政元,李霖.空间模式的测度及其应用[M].北京:科学出版社,2004.
    [131]张剑清,潘励,王树根.摄影测量学[M].武汉:武汉大学出版社,2003.
    [132] Cheng H D, Shi X J, Min R, et al. Approaches for automated detection and classification ofmasses in mammograms[J]. Pattern Recognition.2006,39(4):646-668.
    [133] Yitzhaky Y, Peli E. A method for objective edge detection evaluation and detector parameterselection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2003,25(8):1027-1033.
    [134]杨朝辉,陈鹰.基于ROC融合准则的SAR边缘检测算法[J].光电子.激光.2010(7):1053-1057.
    [135] Chen Z Q, Hutchinson T C, Others. Urban damage estimation using statistical processing ofsatellite images[J]. Journal of computing in civil engineering.2007,21:187.
    [136]张红.基于图斑的基础地类特征库的土地利用/覆盖变化监测方法研究[D].武汉大学.2007.
    [137]郑肇葆.图像分析的马尔柯夫随机场方法[M].武汉:武汉测绘科技大学出版社,2000:278.
    [138] Maria Petrou P G S. Image Processing: Dealing with Texture[M]. John Wiley&Sons Inc.,2006:618.
    [139] Wang L, Liu J. Texture classification using multiresolution Markov random field models[J].Pattern Recognition Letters.1999,20(2):171-182.
    [140] Le Hégarat-Mascle S, André C. Use of Markov Random Fields for automatic cloud/shadowdetection on high resolution optical images[J]. ISPRS Journal of Photogrammetry and Remote Sensing.2009,64(4):351-366.
    [141] Liu D, Kelly M, Gong P. A spatial–temporal approach to monitoring forest disease spread usingmulti-temporal high spatial resolution imagery[J]. Remote Sensing of Environment.2006,101(2):167-180.
    [142] Keuchel J, Naumann S, Heiler M, et al. Automatic land cover analysis for Tenerife by supervisedclassification using remotely sensed data[J]. Remote Sensing of Environment.2003,86(4):530-541.
    [143]余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报.2006(3):224-228.
    [144]王文辉,冯前进,刘磊,等.基于类自适应高斯-马尔可夫随机场模型和EM算法的MR图像分割[J].中国图象图形学报.2008(3):488-493.
    [145]张菊,何小海,陶青川,等.基于Markov随机场的自适应正则化三维显微图像复原[J].光子学报.2008(6):1272-1276.
    [146]岑杰,赵杰煜.基于马尔可夫随机场的嘴唇特征提取方法[J].计算机应用研究.2007(7):300-302.
    [147]舒坚,胡茂林.基于Markov随机场模型的纹理图像的缺陷检测[J].计算机技术与发展.2006(5):65-67.
    [148]张强,吴艳.基于上下文和隐类属的小波域马尔可夫随机场SAR图像分割[J].电子与信息学报.2008(1):211-215.
    [149]舒宁,马洪超,孙和利.模式识别的理论与方法[M].武汉:武汉大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700