用户名: 密码: 验证码:
典型沿海城市暴雨内涝灾害风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变暖与海平面上升的背景下,随着城市化水平的不断提高,城市人口与财富不断积聚,各种建筑设施更加密集,城市系统自然灾害暴露性与脆弱性程度加大,其面临的自然灾害风险形势更加严峻。地处长江河口三角洲的上海市在我国社会经济发展建设中起着引领与示范作用,同时也与我国其他沿海城市一样近年来饱受暴雨内涝灾害困扰。本论文在国家自然科学基金重点项目“沿海城市自然灾害风险应急预案情景分析”(编号:40730526)和华东师范大学博士研究生学术新人奖项目(编号:XRZZ2010024)的资助下,综合考虑城市系统不同类型承灾体特征,构建城市暴雨内涝灾害风险评估的理论方法与流程范式,并以上海市为例开展实证研究。主要取得了以下研究成果:
     (1)在系统分析城市系统构成的基础上,对城市洪涝灾害类型、系统构成与特征进行了深入分析;基于对城市洪涝灾害风险概念的理解,系统梳理了城市洪涝灾害风险系统构成与特征,并针对城市具有不同特征的承灾体类型,分别提出了基于情景模拟分析的地上建筑暴雨内涝灾害风险评估方法与流程以及基于情景模拟分析的地下空间暴雨内涝灾害风险评估方法与流程。
     (2)宏观上,上海市洪灾发生率较高,发生不均匀,洪灾次数随时间推移呈不断增加趋势。上海市洪灾类型以内涝型为主,并且在新中国成立后表现更为突出;上海市内涝型洪灾和风暴潮型洪灾次数均随着时间变化呈较明显的上升趋势,并且内涝型洪灾次数曲线与洪灾总次数曲线走势最接近。
     (3)微观上,251-2000年间,除崇明县外,上海市其余各区洪灾类型均以内涝型为主;1949-2000年间上海市各区县洪灾类型均以内涝型为主。虽然各区县在不同时段表现的特征有所差异,但总体上均表现出洪灾发生不均匀的特征。此外,除闵行区洪灾次数曲线呈倒“U”型分布外,其余各区县洪灾次数均随时间的不断推移呈逐渐上升趋势。
     (4)从长时间尺度(251-2000年)上看,青浦区、浦东新区、闵行区、嘉定区、宝山区、松江区和奉贤区应该特别注意漫溢型洪灾的防治工作,金山区漫溢型洪灾风险处于中等水平,市区和崇明县漫溢型洪灾风险相对较小;浦东新区内涝型洪灾风险较高,闵行区、宝山区和青浦区内涝型洪灾风险处于中等水平,内涝型洪灾对嘉定区、市区、松江区、奉贤区、金山区和崇明县的影响相对较小;浦东新区风暴潮型洪灾风险最高,宝山区、闵行区和崇明县风暴潮型洪灾风险处于中等水平,风暴潮型洪灾对嘉定区、青浦区、松江区、市区、奉贤区和金山区影响较小;整体上,浦东新区和闵行区洪灾综合风险较高,宝山区、青浦区、嘉定区和松江区洪灾综合风险处于中等水平,奉贤区、金山区、市区和崇明县洪灾综合风险相对较小。
     (5)从短时间尺度(1949-2000年)上看,青浦区漫溢型洪灾风险最大,松江区、金山区、嘉定区、宝山区和崇明县漫溢型洪灾风险处于中等水平,奉贤区、浦东新区、闵行区和市区漫溢型洪灾风险最小;市区内涝型洪灾风险最大,其余各区县内涝型洪灾风险均较小;市区、浦东新区、宝山区风暴潮型洪灾风险处于相对较高的水平,松江区、金山区、奉贤区、闵行区和崇明县处于中等水平,风暴潮型洪灾对青浦区和嘉定区影响最小;整体上,市区、青浦区和宝山区洪灾综合风险相对较高,浦东新区、松江区、金山区处于中等水平,崇明县、嘉定区、奉贤区和闵行区则相对较小。市区应作为上海洪灾风险管理优先处置的对象。
     (6)以上海浦东新区为例对典型孕灾环境变化过程——土地利用/覆被变化对城市内涝灾害的影响进行实证研究发现,城市土地利用/覆被变化导致径流深度趋于增大,但在城市化不同时期土地利用/覆被变化对地表径流的影响呈现不同的特征。1994-2000年,地表径流深度大幅度增加;2000-2003年,地表径流深度虽然仍继续增加,但增幅很小;2003-2006年,地表径流深度继续保持增加的趋势,并且增幅比2000-2003年有所回升。随着城市化水平的不断提高,土地利用类型与结构的巨大变化不仅对城市暴雨内涝灾害的孕灾环境产生较大影响,还对致灾因子发生概率与强度以及承灾体的类型与结构产生一定影响。土地利用覆被变化带来的上述影响将导致城市暴雨内涝成灾的可能性大大增加。
     (7)根据城市系统独特的下垫面特征,充分考虑地表建筑对降雨径流的影响以及泵站排水为城市唯一的排水途径等特殊情况,构建了集城市地形模型、城市降雨径流模型、地形影响修正模型和GIS空间分析模块为一体的高精度综合模型——简化城市暴雨内涝模型,该模型具有计算简单、模拟耗时短的特点。
     (8)对中心城区地铁系统暴雨内涝灾害风险情景分析结果显示,上海市中心城区地铁暴雨内涝风险整体水平不高。存在潜在风险的地铁出口数为40个,仅占总数的11.6%。上海西站1号口和娄山关路3号口内涝风险水平较高,处于中等风险水平的地铁出口有18个,有20个地铁出口属于低风险出口。整体上,2号线和11号线内涝风险最高,需要引起灾害管理部门的重视;4号线、8号线和10号线处于中等内涝风险水平;1号线、7号线和9号线内涝风险最低。
     (9)上海中心城区暴雨内涝灾害危险性情景分析结果表明,上海市中心城区由不同概率的降水所导致的区域内涝危险性空间差异显著。不同概率的降水导致的区域内涝危险性不同,降雨强度越大,形成的内涝积水越深,区域内涝危险性也就越大;相同概率的降水引发的内涝危险性在不同区域亦不同,总体上,杨浦区、长宁区和虹口区内涝危险性最高;徐汇区、普陀区和闸北区内涝危险性处于中等水平;静安区、黄浦区和卢湾区内涝危险性最低。
     (10)中心城区住宅暴雨内涝灾害暴露性分析结果表明,在不同情境下,中心城区各区住宅在暴雨内涝中的暴露性大小存在一定的空间差异性。总体看来,区域住宅暴露性程度随着降雨强度的增大而增大;杨浦区、普陀区和徐汇区是暴雨内涝对区域住宅影响最严重的区域;影响中等的区域是长宁区、闸北区和虹口区;暴雨内涝对区域住宅影响较小的区域为黄浦区、静安区和卢湾区。此外,在不同情境下,上海市中心城区最易发生室内进水的住宅类型为旧式住宅与仓库。
     (11)中心城区住宅暴雨内涝灾害脆弱性分析结果显示:旧式住宅是建筑结构最易受损的住宅类型,其次是新式住宅,别墅式住宅建筑结构最不易受到内涝灾害的影响;整体上,随着降雨强度的增大,区域住宅灾损程度与室内财产受损程度也逐渐增大,受损住宅类型逐渐增多;暴雨内涝对区域住宅建筑结构影响最严重的区域为杨浦区、普陀区和徐汇区,影响中等的区域为长宁区、闸北区和虹口区,影响较小的区域为黄浦区、静安区和卢湾区;暴雨内涝对区域住宅室内财产影响最严重的区域为杨浦区和长宁区,影响中等的区域是普陀区、徐汇区、虹口区和闸北区,影响较小的区域为黄浦区、静安区和卢湾区;住宅室内地板与墙壁是最易受内涝灾害影响的居民财产类型。
     (12)中心城区住宅暴雨内涝灾害风险分析评估结果显示:中心城区住宅风险空间差异显著;随着降水强度的不断增大,暴雨内涝灾害给中心城区住宅造成的经济损失也从无到有,逐渐增大;上海市中心城区住宅暴雨内涝灾害年均损失约为22254166元,中心城区住宅暴雨内涝灾害风险大小排序为:杨浦区>普陀区>长宁区>虹口区>徐汇区>闸北区>静安区>卢湾区>黄浦区;由于全球气候变化与人类活动的影响,上海市降水强度与频率均可能发生变化,从而导致中心城区住宅暴雨内涝灾害风险(损失)处于一个动态的变化过程之中。
     (13)初步建立了上海市中心城区住宅灾损-暴雨年超越概率曲线与数学公式以及不同类型住宅灾损-暴雨年超越概率曲线与数学公式,并基于对各区不同情景下的住宅灾损状况,建立了中心城区9个行政区的住宅灾损-暴雨年超越概率曲线库与数学公式集。
Under the background of global climatic warming and rising sea level, urban population and wealth are accumulating, the urban infrastructure system is more complicated, and the urban system is becoming more exposure and vulnerable to natural hazards with the continuous promotion of urbanization. Due to the influence of global climate change and human activities, natural disaster in urban area is becoming more and more serious. Located in the Yangtze River Delta, Shanghai plays a leading and exemplary role in Chinese socio-economic development and construction. Like many other typical coastal cities in China, Shanghai has suffered the impacts of rainstorm waterlogging disasters in recent years. Supported by the National Natural Science Foundation of China "Scenario Analysis of Emergency Responses to Natural Disasters Risk in Coastal Cities" and East China Normal University Reward for Excellent Doctors in Academics, the framework and methodological procedure for rainstorm waterlogging risk assessment in the typical costal city was proposed with the consideration of hazard-affected bodies'characters in urban area. Then the present study takes Shanghai, which is deeply affected by rainstorm waterlogging disaster as research area to conduct the empirical study. The research results are as follows:
     (1)This paper analyzed the type, composition and characteristic of urban floods based on systematic analysis of the structure of urban system. Then, we discussed the composition and the characteristics of urban flood risk system based on the understanding of the concept of risk of urban flood disasters. Finally, this paper proposed the method and technological process of risk assessment of rainstorm waterlogging on the aboveground buildings and the underground facilities based on scenario analysis respectively, considering the characteristics of different hazard-bearing bodies in coastal city.
     (2)In macroscopic view, the occurring frequency of flood disasters in Shanghai was relatively high. Moreover, there was an imbalance in the time distribution of flood disasters occurrence. The number of flood disasters in Shanghai changes upward trend over time. The flood type within the range of Shanghai is dominated by waterlogging disaster, especially after the establishment of New China. There were increasing trends for both the number of waterlogging disaster and that of storm surge disaster. The shape of the frequency curve of waterlogging disaster was consistent with that of flood disaster.
     (3) From micro aspect, the flood disaster within each district and county of Shanghai is dominated by waterlogging disaster from251to2000except in Chongming County. In addition, the flood disaster within the range of Shanghai is dominated by waterlogging disaster from1949to2000. Although each district in Shanghai had its own characteristic of flood disaster in different times, there was an imbalance in the time distribution of flood disasters occurrence in each district and county in Shanghai. The frequency curve of flood disaster in Minhang District was inverted U curve. There was an increasing trend for the number of flood disaster in the rest of Shanghai.
     (4)The analysis results of flood disaster data in Shanghai from251to2000show that Qingpu, Pudong, Minhang, Jiading, Baoshan, Songjiang and Fengxian should pay more attention to the risk control of overflow-type flood, Jinshan has medium overflow-type flood risk, Shanghai central urban area and Chongmin County show low overflow-type flood risk. Pudong New Area belong to high waterlogging risk area, Minhang, Baoshan and Qingpu belong to medium waterlogging risk area, and Jiading, Shanghai central urban area, Songjiang, Fengxian, Jingshan and Chongming have low waterlogging risk rank. Pudong New Area has high-risk rank of storm surge; Baoshan, Minhang and Chongming belong to medium risk area of storm surge, and Jiading, Qingpu, Shanghai central urban area, Fengxian and Jinshan show low storm surge risk. Overall, Pudong and Minhang have high-integrated risk rank; Baoshan, Qingpu, Jiading and Songjiang belong to medium integrated risk area, and Fengxian, Jinshan, Shanghai central urban area and Chongming show low integrated risk.
     (5)The analysis results of flood disaster data in Shanghai from1949to2000show that Qingpu has high overflow-type flood risk rank, Songjiang, Jinshan, Jiading, Baoshan and Chongming belong to medium overflow-type flood risk area, and Fengxian, Pudong, Minhang and Shanghai central urban area show low overflow-type flood risk. Shanghai central urban area belongs to high waterlogging risk area, and the rest of Shanghai shows low waterlogging risk. Shanghai central urban area, Pudong and Baoshan have high storm surge risk rank, Songjiang, Jingshan, Fengxian, Minhang and Chongming belong to medium storm surge risk area, Qingpu and Jiading show low storm surge risk. Overall, Shanghai central urban area, Qingpu and Baoshan have high-integrated risk rank, Pudong, Songjiang and Jinshan belong to medium integrated risk area, and Chongming, Jiading, Fengxian and Minhang show low integrated risk. Flood risk control in Shanghai central urban area is indeed a priority item.
     (6)The impact of land use and land cover change, which is the typical dynamic change of urban waterlogging disaster formative environments in Shanghai Pudong New Area, was analyzed. The results show that the land use structure and pattern change increases surface runoff depth. Moreover, the changes of average depth of surface runoff induce by land use and land cover changes are different at various stages of rapid urbanization process. There was a significant increase of surface runoff depth from1994to2000. The surface runoff depth increased continuously from2000to2003, although not as high as it would has. The increase of surface runoff depth was apparent recovery from2003to2006. With the improvement of urbanization, the change of land use structure and pattern not only altered urban waterlogging disaster formative environments but also altered the structure and pattern of the hazard-bearing bodies of urban waterlogging disaster. The afore-mentioned effects brought by land use and land cover change increases the probability of urban waterlogging disasters take place.
     (7) The paper established the simplified urban waterlogging model for the inundated water depth simulation through the combination of SCS model and GIS spatial analysis with the consideration of underlying surface characters in urban area. The model is effective and simple for calculation with less simulation time and less workload.
     (8)The analysis results of rainstorm waterlogging risk of subway in Shanghai central urban area show that the waterlogging risk of subway lines was not very high. The total number of subway station exit which affected by waterlogging disaster was only40, occupying11.6%of the total number. Shanghai West Railway Station exit1and Loushanguan Road Station exit3have high waterlogging risk rank. The number of subway station exits with medium waterlogging risk was18. There were20subway station exits, which have low waterlogging risk rank. Overall, Subway line2and line11belong to high waterlogging risk subway line, line4, line8and line10have medium waterlogging risk rank, and line1, line7and line9show low waterlogging risk.
     (9)The analysis results of rainstorm waterlogging in Shanghai central urban area show that the hazard caused by precipitation with different intensities presents spatial disparities evidently. The hazard of waterlogging caused by different precipitation is different. The hazard of waterlogging increased as the precipitation intensity increases. The hazard of waterlogging in different area in Shanghai central urban area caused by the same precipitation is different. Overall, Yangpu, Changning and Hongkou have high hazard rank; Xuhui, Putuo and Zhabei belong to medium hazard area, and Jing'an, Huangpu and Luwan show low hazard.
     (10)The analysis results of the exposure of residences to rainstorm waterlogging in central urban area of Shanghai based on scenario simulation show that the exposure of residences in different area presents spatial disparities evidently. The exposure of residences to waterlogging disaster increases as the rainstorm intensity increases. Overall, Yangpu, Putuo and Xuhui are the important regions for the government to carry out safety defense, Changning, Zhabei and Hongkou have medium exposure rank, and the waterlogging brings little effects in Huangpu, Jing'an and Luwan. The results indicate that the old-style residences and the warehousing are the most vulnerable building types when exposure to waterlogging disasters.
     (11)The vulnerability analysis results of residences to waterlogging in Shanghai central urban area show that the descending order of the vulnerability of residences' structure to waterlogging disasters is the old-style residence>the new-style residence>the villas-style residence. The disaster loss rate of residences'structure and content loss rate of residences increases as the rainstorm intensity increases. In addition, the type of damaged residence increases as the precipitation intensity increases. The rainstorm waterlogging disaster has serious effects on the residential structure in Yangpu, Putuo and Xuhui. The impact of waterlogging disaster on the residential structure in Changning, Zhabei and Hongkou stays on a middle level. The waterlogging brings little effects on the structure of residences in Huangpu, Jing'an and Luwan. The rainstorm waterlogging disaster has serious effects on the residential indoor property in Yangpu and Changning. The impact of waterlogging disaster on the residential indoor property in Putuo, Xuhui, Hongkou and Zhabei stays on a middle level. The waterlogging brings little effects on the indoor property of residences in Huangpu, Jing'an and Luwan. The results indicate that the residential indoor floor and the residential walls are the most vulnerable type of property when exposure to waterlogging disasters.
     (12)The analysis results of rainstorm waterlogging risk of residences in Shanghai central urban area show that the spatial difference of waterlogging risk of residences is very evident. The loss of residences increases as the rainstorm intensity increases. The average annual damage of residences in central urban area of Shanghai is22254166RMB. Moreover, the residence waterlogging risk in central urban area of Shanghai can be ranked as Yangpu>Putuo>Changning>Hongkou>Xuhui>Zhabei> Jing'an>Luwan>Huangpu. The frequency and intensity may change in the coming decades, which result in the waterlogging risk of residences in Shanghai central urban area always change due to global climate change and human activity.
     (13)The stage-damage curve and the functional relationship between the overall potential damages and the annual exceedance probability of rainstorm for the residences in central urban area of Shanghai were set up in the present research. In addition, we established the stage-damage curve and the functional relationship between the potential damages and the annual exceedance probability of rainstorm for the old-style residence, the new-style residence and the villas-style residence in central urban area of Shanghai respectively. This paper established the stage-damage curve and the functional relationship between the potential damages and the annual exceedance probability of rainstorm for the residence in each region of Shanghai central urban area based on the disaster situation in different scenarios.
引文
[1]Adger W N, Hughes T P, Folker C, et al.2005. Social-ecological resilience to coastal disasters. Science, (309):1036-1039.
    [2]ADRC.2005. Total disaster risk management-good practices. http://www.adrc.or.jp/publications/TDRM_Good_Practices/PDF/Chapterl_1.2.pdf.24 January 2006H.
    [3]Alexander D.2000. Confronting catastrophe-new perspectives on natural disasters. Oxford University Press, Oxford.
    [4]Alexander D.2006. Globalization of disaster:trends, problems and dilemmas. Journal of International Affairs,59(2):1-22.
    [5]Alley W M, Smith P E.1982. Multi-event urban runoff quantity model. U S Geological Survey, Openfile Report 82-764. Virginia:Richmond.
    [6]Ayalew L.2009. Analyzing the effects of historical and recent floods on channel pattern and the environment in the Lower Omo basin of Ethiopia using satellite images and GIS. Environmental Geology,58(8):1713-1726.
    [7]Bell F G.1999. Geological Hazards, Their Assessment, Avoidance and Mitigation. New York:Routledge.
    [8]Belong R.1996. Volcanic hazards risk assessment. Monitoring and mitigation of volcano hazards. Pp.675-698 in R. Scarpa and R.I.Tilling (eds.),1996. Monitoring and mitigation of volcano hazards, Springer-Verlag Berlin Heidelberg New York.
    [9]Benito G, Lang M. Barriendos M, et al.2004. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation, review of scientific methods. Natural Hazards,31:623-643.
    [10]Beven K J, Kirkby M J.1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin,24(1):43-69.
    [11]Beven K J.1986. Runoff production and flood frequency in catchment of order: an alternative approach in scale problem in hydrology, edited by V K Gupta, I Rodriguze-Iturbe and E F Wood, D Reidel, Hinham, Mass.
    [12]Birkmannn J.2006. Measuring vulnerability to hazards of national origin. Tokyo: UNU Press.
    [13]Boin A, and Hart P.2003. Public leadership in times of crisis:mission impossible? Public Administration Review,63(5):544-553.
    [14]Booysen H J, Viljoen M F, Villiers G.1999. Methodology for the calculation of industrial flood damage and its application to an industry in Vereeniging. Water S A,25(1):41-46.
    [15]Bryant E A, Young R W, Price D M, et al.1997. The impact of tsunami on the coastline of Jervis Bay, Southeastern Australia. Physical Geography,18:440-459.
    [16]Bryant E A.2005. Natural hazards.2nd edn. Hong Kong:Cambridge University Press.
    [17]Cardona O D, Hurtado J E, Chardon A C, et al.2005. Indicators of disaster risk and risk management Summary report for WCDR. Program for Latin America and the Caribbean, IADB-UNC/IDEA.
    [18]Chapman D.1999. Natural hazards,2nd edn. Singapore:Oxford University Press.
    [19]Crichton D.1999. The risk triangle.pp.102-103 in Ingleton, J. (ed.), Natural disaster management. Tudor Rose, London.
    [20]De La Cruz-Reyna S.1996. Long-term probabilistic of future explosive eruptions. pp.599-629 in R. Scarpa and R.I.Tilling (eds.),1996. Monitoring and mitigation of volcano hazards, Springer-Verlag Berlin Heidelberg New York.
    [21]Dilley M, Chen R S, Deichmann U, et al.2005. Natural Disaster Hotspots:A Global Risk Analysis. Washington D C, Hazard and Management Unit, World Bank.
    [22]Disaster Recovery Journal.2005. Business continuity glossary, http://www.drj. com/glossary/glossleft.htm.
    [23]Downing T E, Butterfield, Cohen R, et al.2001. Indices:climate change impacts and adaptation. UNEP Policy Series, UNEP, Nairobi.
    [24]Dutta D, Herath S, Musiake K.2001. Direct flood damage modeling towards urban flood risk management. Urban Safety Engineering, ICUS/INCEDE Report 1, Bangkok.
    [25]Dutta D, Herath S, Musiake.2003. A mathematical model for flood loss estimation. Journal of Hydrology,277:24-49.
    [26]Dutta D, Takamura H, Herath S.2003. Understanding flood behavior in underground facilities for urban flood risk management. The Second International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, Tokyo,Japan.
    [27]Einstein H H.1988. Landslide risk assessment procedure. Pro. Fifth Int. Symp. On Landslide, Lausanne.
    [28]Emergency Management Australia (EMA).2002. Australian emergency manuals series part Ⅲ-emergency management practice volume 3-guidelines:disaster loss assessment guidelines. Lllycroft Pty Ltd, Brisbane and PenUltimate, Canberra (Eds.), Australia:Paragon Printers Australasia Pty Ltd.
    [29]Erickson J.2001. Quakes, eruptions, and other geologic cataclysms:revealing in the Earth's hazards. New York:Facts on Flie.
    [30]European Environment Agency.2005. Multilingual environmental glossary. http://glossary.eea.eu.int/.
    [31]EEAGlossary. Fischhoff B.1995. Risk perception and communication unplugged: twenty years of process. Risk Analysis,15(2):137-145.
    [32]Garatwa W, Bollin C.2002. Disaster risk management-a working concept. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), Eschborn. http://wwww2.gtz.de/dokumente/bib/02-5001.pdf.
    [33]Granger K T, Jones M L, Scott G.1999. Community risk in Cairns:a multi-hazard risk assessment. AGSO (Australian Geological Survey Organization) Cities Project, Department of Industry, Science and Resources, Australia.
    [34]Grunthal G, Thieken A H, Schwarz J, et al.2006. Comparative risk assessment for the city of Cologne-storms, floods, earthquake. Natural Hazards,38:21-44.
    [35]Guha-Sapir D, Vos F, Bleow R, et al.2011. Annual disaster statistical review 2010:the numbers and trends. Brussels:CRED.
    [36]Helm P.1996. Integrated risk management for natural and technological disasters. Tepra,15(1):4-13.
    [37]Hori T, Zhang J, Tatano H, et al.2002. Micro-zonation-based flood risk assessment in urbanized floodplain. Second Annual IISA-DPRI meeting integrated disaster risk management megacity vulnerability and resilience. Laxenburg, Austria,29-31.
    [38]Howard L.1818. The climate of London. London:Joseph Richerby Printer.
    [39]Hsu M H, Chen S, Chang.2000. Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology,234(1-2):21-37.
    [40]Huang D, Liu C, Fang H, et al.2008. Assessment of waterlogging risk in Lixiahe Region of Jiangsu Province based on AVHRR and MODIS image. China Geographic Science,18(2):178-183.
    [41]IHDP.2010. Integrated risk governance project science plan. IHDP, Germany, Bonn.
    [42]IPCC.2001. Third assessment report:climate change 2001:synthesis report. IPCC, Geneva, Switzerland.
    [43]IPCC.2007. Forth assessment report:climate change 2007:Synthesis report. IPCC, Geneva, Switzerland.
    [44]IRGC.2006. White paper on managing and reducing social vulnerabilities from coupled critical infrastructures. International Risk Governance Council, Geneva.
    [45]Islam M M, Sado K.2000. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrological Process, 14:605-620.
    [46]Islam M M, Sado K.2002. Development priority map for flood countermeasures by remote sensing data with geographic information system. Journal of Hydrologic Engineering,7(5):346-355.
    [47]Jaeger C C, Jaeger J.2011. Three views of two degrees. Regional Environmental Change,11(Suppl 1):S15-S26.
    [48]Jakeman A J, Littlewood L G, Whitehead P G.1990. Computation of the instantaneous unit hydrograph and identifiable component flows with application to small upland catchments. Journal of Hydrology,117:75-:200.
    [49]Johnston R J, Gregory D, Smith D M.1994. The dictionary of human geography. Oxford:Blackwell Publishers Ltd.
    [50]Jones J A.2002. The physical cause and characteristics of floods. In Floods, vol. II, ed. D J Parker, London:Routledge.
    [51]Karimi I, Eyke H.2007. Risk assessment system of natural hazards:a new approach based on fuzzy probability. Fuzzy sets and systems,158:987-999.
    [52]Kasperson R E, Renn O, Slovic P, et al.1988. The social amplification of risk:a conceptual framework. Risk Analysis,8(2):177-187.
    [53]Keiichi T, Shinri I, Shinji, A, et al.2005. A study of risk by inundation in underground spaces in urban flood. Proceedings of the symposium on Underground Space,11:163-170.
    [54]Lorenzoni I, Pidgeon N F, O'Connor R E.2005. Dangerous climate change:the role for risk research. Risk Analysis,25(6):1387-1398.
    [55]Ma X, Yang P, Yang Q, et al.2007. The characteristics of dike-break flood in different scenarios of Yellow River based on numerical simulations. Journal of Geographical Sciences,17(1):85-100.
    [56]Mercad A.1994. On the use of NOAA's storm surge model, SLOSH, in managing coastal hazards-the experience in Puerto Rico. Natural Hazards,10(3):235-256.
    [57]Merz B, Thieken A H.2009. Flood risk curve and uncertainty bounds. Natural Hazards,51:437-458.
    [58]Messner F, Meyer V.2005. Flood risk management-hazards, vulnerability and mitigation measures. Schanze J, Zeman E, Marsalek J (eds.), NATO Science Series, Springer Publisher.
    [59]Morgan M G, Henrion M.1990. Uncertainty:a guide to dealing with uncertainty in quantitative risk and policy analysis. London:Cambridge University Press.
    [60]Morgan M G, Dowlatabadi H, Henrion M, et al.2009. U.S. climate change science program-synthesis and assessment product 5.2:best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in climate decision making. http://www.climatescience.gov/Library/sap/sap5-2/final-report/sap5-2-final-repor t-all.pdf.
    [61]Nott J.2006. Extreme events:a physical reconstruction and risk assessment. Cambridge:Cambridge University Press.
    [62]Office of Science and Technology.2004. Foresight future flooding scientific summary volume I:future risk and their drivers. London:Thomas Telford.
    [63]Parkhill K A, Pidgeon N F, Henwood K L, et al.2009. From the familiar to the extraordinary:local residents'perceptions of risk when living with nuclear power in the UK. Transactions of the Institute of British Geographers,35:39-58.
    [64]Penning-Rowsell E C, Chaterton J B.1977. The benefits of flood alleviation:a manual of assessment techniques. Gower, Aldershot England.
    [65]Pelling M, Maskrey A, Ruiz P, et al.2004. United Nations development programme:a global report "reducing disaster risk-A challenge for development". UNDP, New York.
    [66]Pelling M.2004. Visions of Risk:a review of international Indicators of disaster risk and its management. ISDR/UNDP. Kings College, University of London.
    [67]Perrow C.2007. The next catastrophe:reducing our vulnerabilities to natural, industrial and terrorist disasters. Princeton:Princeton University Press.
    [68]Pidgeon N F, Lorenzoni I, Poortinga W.2008. Climate change or nuclear power-no thanks! A quantitive study of public perceptions and risk framing in Britain. Global Environmental Change,18:69-85.
    [69]Pidgeon N. Fischhoff B.2011. The role of social and decision sciences in communicating uncertain climate risks. Nature Climate Change, DOI: 10.1038/NCIMATE1080.
    [70]Poortinga W, Pidgeon N F.2003. Exploring the dimensionality of trust in risk regulation. Risk Analysis,23(5):961-972.
    [71]Quan R, Liu M, Lu M, et al.2010. Waterlogging risk assessment based on land use/cover change:a case study in Pudong New Area, Shanghai. Environmental Earth Science,61(6):1113-1121.
    [72]Quan R, Zhang L, Liu M, et al.2011. Risk assessment of rainstorm waterlogging on subway in central urban area of Shanghai, China based on scenario simulation. The 19th International Conference on Geoinformatics.
    [73]Rahn P H.1996. Engineering geology-an environmental approach.2nd. ed. Upper Saddler River:Prentice Hall.
    [74]Rashed T, Weeks J.2003. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. International Journal of Geographical Information Science,17(6):547-576.
    [75]Renn O.2008. Risk governance:coping with uncertainty in complex world. London:Earthscan.
    [76]Renn O, Schweizer P.2009. Inclusive risk governance:concepts and application to environmental policy making. Environmental Policy and Governance, 19:174-185.
    [77]Renn O, Sellke P.2011. Risk, society and policy making:risk governance in a complex world. International Journal of Performability Engineering,7(4): 341-158.
    [78]Rinaldi S M, Peerenboom J P, Kelly T K.2001. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine, (12):11-25.
    [79]Sanyal J, Lu X.2005. Remote sensing and GIS-based flood vulnerability assessment of human settlements:a case study of Gangetic West Bengal, India. Hydrological Process, (19):3699-3716.
    [80]Sayers P B, Gouldby J D, Simm I, et al.2002. Risk, performance and uncertainty in flood and coastal defence-a review. R&D Technical report FD 2302/TR19 (HR Wallingford Report SR587), Crown copyright, London, UK.
    [81]Schneider P J, Schauer B A.2006. HAZUS-Its development and its future. Natural Hazards Review,7(2):40-44.
    [82]Scheuren J M, Waeoux O le Polain de, Below R, et al.2008. Annual disaster statistical review:the numbers and trends 2007. Melin, Belgium:Center for Research on the Epidemiology of disasters (CRED).
    [83]Shi P, Li N, Ye Q, et al.2010. Research on integrated disaster risk governance in the context of global environmental change. International Journal of Disaster Risk Science,1(1):17-23.
    [84]Shi Y, Shi C, Xu S, Sun A, et al.2009. Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation. Natural Hazards,53(2):259-272.
    [85]Small C, Nicholls R J.2003. A global analysis of human settlement in coastal zones. Journal of Coastal Resources,19(3):584-599.
    [86]Smith D I.1994. Flood damage estimation-a review of urban stage-damage curves and loss function. Water SA,20(3):231-236.
    [87]Smith K.1996. Environmental hazards:assessing risk and reducing disaster,2nd ed. Routledge, London/U.S.A./Canada.
    [88]Smith K, Ward R.1998. Floods physical processes and human impacts. New York:John Wiley and Sons.
    [89]Smith K.2001. Environmental Hazards, Assessing Risk and Reducing Disaster. London:Routledge.
    [90]Stenchion P.1997. Development and disaster management. The Australian Journal of Emergency Management,12(3):40-44.
    [91]Suarez P, Anderson W, Mahal V, et al.2005. Impacts of flooding and climate change on urban transportation:a systemwide performance assessment of the Boston Metro Area. Transportation Research Part D:Transport and Environment, 10(3):231-244.
    [92]Spence A, Pootinga W, Butler C, et al.2011. Perceptions of climate change and willingness to save energy related to flood experience. Nature Climate Change, DOI:10.1038/NCLIMATE1059.
    [93]Tanavud C, Yongchalermchai C, Bennui A, et al.2004. Assessment of flood risk in Hat Yai Municipality, Southern Thailand, using GIS. Journal of Natural Disaster Science,26(1):1-14.
    [94]Thywissen K.2006. Components of risk:a comparative glossary. Report No.2/2006, Institute for Environment and Human Security, United Nations University, Bonn, Germany.
    [95]Tokar S A, Paulson R, Sponberg K, et al.2006. Asia flood network: USAID/OFDA flood mitigation and preparedness program in Asia.4th Annual Mekong Flood Forum. Siem Reap, Cambodia.
    [96]Tanavud C, Yongchalermchai C, Bennui A, et al.2004. Assessment of flood risk in Hat Yai Municipality, Southern.
    [97]UN DHA.1992. Internationally agreed glossary of basic terms related to disaster management. UN DHA (United Nations Department of Humanitarian Affairs), Geneva.
    [98]UNDP.2004. Reducing disaster risk:a challenge for development. A global report. Pelling M, Maskrey A, Ruiz P, et al (Eds.). John S. Swift Co., USA.
    [99]UNEP.2002. Global environment outlook 3-past, present and future perspectives. Earthscan Publications Ltd, London, United Kingdom.
    [100]UN ISDR.2009. Terminology on disaster risk reduction. United Nations International strategy for disaster reduction. Geneva, Switzerland. http://www.unisdr.org/eng/terminology/terminology-2009-eng.html.
    [101]UN ISDR.2009. Terminology on disaster risk reduction. http://www.unisdr.org/eng/terminology/terminology-2009-eng.html.
    [102]UN ISDR.2005. Draft programme outcome document. Building the resilience of nations and communities to disasters:Hyogo framework for action 2005-2015, World Conference on Disaster Reduction, Kobo and Hyogo, Japan.
    [103]U. S. Soil Conservation Service.1972. National engineering handbook. Supplement A, Section 4, Chapter 10, Washington D C:Water Resources Publications.
    [104]Van Der Knijff J M, Younis J, De Roo A P J.2010. LISFLOOD:a GIS-based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science,24(2):189-212.
    [105]Vogel C, Moser S C, Kasperson R E, et al.2007. Linking vulnerability, adaption, and resilience science to practice:pathways, players, and partnerships. Global Environmental Change,17:349-364.
    [106]Weichselgartner J, Kasperson R.2010. Barriers in the science-policy-practice interface:toward a knowledge-action-system in global environmental change research. Global Environmental Change,20(2):266-277.
    [107]White G F, Kates R W, Burton I.2001. Knowing better and losing even more:the use knowledge in hazards management. Environmental Hazards,3:81-92.
    [108]Wisner B.2001. Risk and the neoliberal state:why post-mitch lessons didn't reduce El Salvador's earthquake losses. Disasters,25(3):251-268.
    [109]Wohl E E.2000. Inland flood hazards:human, riparian, and aquatic communities. Cambridge:Cambridge University Press.
    [110]World Bank.2006. Hazard of nature, risk to development:an IEG evaluation of World Bank assistance for natural disaster. Washington DC:World Bank.
    [111]Yanai T.2000. The actual situations and measures of floods in underground spaces, Fukuoka City. Rainwater Technical Report,37:19-23.
    [112]Yurkovich E.2004. A needs assessment focused on defining health and health seeking behaviors of Native American Indians experiencing severe and persistent mental illness. Phase II:Preliminary findings. Grand Forks, ND:University of North Dakota.
    [113]Zhai G, Fukuzono T, Ikeda S.2005. Modeling flood damage:case of Tokai flood 2000. Journal of the American Water Resources association,41(1):77-92.
    [114]Zerger A.2002. Examining GIS decision utility for natural hazard risk modeling. Environmental Modelling and Software,17:287-294.
    [115]柏春.2009.城市气候设计——城市空间形态气候合理性实现的途径.北京:中国建筑工业出版社.
    [116]鲍世行,顾孟潮.1994.钱学森论城市学与山水城市.北京:中国建筑工业出版社.
    [117]曹慧,杨浩,赵其国.2001.长江三角洲地区土壤质量退化的类型、驱动力与对策.中国人口·资源与环境,11(52):47-48.
    [118]陈波.2007.武汉城市强降水内涝仿真模拟系统研究.南京信息工程大学.
    [119]陈浮,濮励杰,曹惠,等.2002.近20年太湖流域典型区土壤养分时空变化及驱动机理研究.土壤学报,39(2):236-245.
    [120]陈香,陈静.2002.福建台风灾害风险分布的初步估计.自然灾害学报,11(3):34-43.
    [121]陈泉生.2000.当前环境危机的主要特征及其原因.福州大学学报(哲学社会科学版),14(2):40-42.
    [122]程根伟,陈桂蓉.1996.长江上游洪涝灾害分析及防灾减灾措施.长江流域资 源与环境,5(1):74-79.
    [123]戴天兴.2002.城市环境生态学.北京:中国建材工业出版社.
    [124]邓清华.2001.城市系统控制与城市规划.经济地理,21(增刊):96-100.
    [125]丁文峰,张平仓,陈杰.2006.城市化过程中的水环境问题研究综述.长江科学院院报,23(4):21-24.
    [126]丁一汇,张建云,等.2009.暴雨内涝.北京:气象出版社.
    [127]丁燕,史培军.2002.台风灾害的模糊风险评估模型.自然灾害学报,11(1):34-43.
    [128]杜鹃,何飞,史培军.2006.湘江流域洪水灾害综合风险评估.自然灾害学报,15(6):38-44.
    [129]杜鹏,李世奎.1998.农业气象灾害风险分析初探.地理学报,53(3):202-208.
    [130]段华明.2010.城市灾害社会学.北京:人民出版社.
    [131]方修琦.1989.内蒙古呼和浩特及邻区历史灾情序列的初步研究.干旱区资源与环境,3(3):204-213.
    [132]高建华,朱晓东.1999.我国沿海地区台风灾害影响研究.灾害学,14(2):73-77.
    [133]高静,侯双双,姜会飞,等.2011.湖北省棉花洪涝灾害风险分析.中国农业大学学报,16(3):60-66.
    [134]高庆华,马宗晋,张业成,等.2007.自然灾害评估.北京:气象出版社.
    [135]葛全胜,邹铭,郑景云.2008.中国自然灾害风险综合评估初步研究.北京:科学出版社.
    [136]耿艳芬.2006.城市雨洪的水动力耦合模型研究.大连理工大学.
    [137]龚士良,杨世纶.2008.地面沉降对上海黄浦江防汛工程的影响分析.地理科学,28(4):543-547.
    [138]郭涛.1991.四川城市水灾的历史特征.灾害学,6(1):72-79.
    [139]何仲秀,曾涤.1988.城市科学.杭州:浙江教育出版社.
    [140]郝璐,王静爱,史培军,等.2003.草地畜牧业雪灾脆弱性评价——以内蒙古牧区为例.自然灾害学报,1(2):51-57.
    [141]黄崇福,史培军.1995.城市地震灾害风险评价的数学模型.自然灾害学报, 4(2):30-37.
    [142]黄崇福,刘新立,周国贤,等.1998.以历史灾情资料为依据的农业自然灾害风险评估方法.自然灾害学报,7(2):1-9.
    [143]霍治国,李世奎,王素艳,等.2003.自然资源学报,18(6):692-702.
    [144]蒋卫国,李京,陈云浩,等.2008.区域洪水灾害风险评估体系(Ⅰ)——原理与方法.自然灾害学报,17(6):53-59.
    [145]蒋卫国,李京,武建军,等.2008.区域洪水灾害风险评估体系(Ⅱ)——模型与应用.自然灾害学报,17(6):105-109.
    [146]江治强.2008.我国自然灾害风险管理体系建设研究.中国公共安全,(1):48-51.
    [147]来红州.2005.亚洲备灾中心灾害管理培训模式.中国减灾,(3):49-50.
    [148]李吉顺,冯强,王昂生.1996.我国暴雨洪涝灾害的危险性评估.北京:气象出版社.
    [149]李军玲,刘忠阳,邹春辉.2010.基于GIS的河南省洪涝灾害风险评估与区划研究.气象,36(2):87-92.
    [150]李娜,仇劲卫,程晓陶,等.2002.天津市城区暴雨沥涝仿真模拟系统的研究.自然灾害学报,11(2):112-118.
    [151]李谢辉,王磊,谢灵芝,等.2009.渭河下游河流沿线区域洪水灾害风险评价.地理科学,29(5):33-39.
    [152]李新,年福华,等.2007.城市化过程中的生态风险与环境管理.北京:化学工业出版社.
    [153]廖永丰,聂承静.2011.流域性暴雨洪涝灾害风险预警模型与应用分析.地球信息科学学报,13(3):354-360.
    [154]刘兰芳,彭蝶飞,邹君.2006.湖南省农业洪涝灾害易损性分析与评价.资源科学,28(6):60-67.
    [155]刘敏,方如康.2009.现代地理科学词典.北京:科学出版社.
    [156]刘少军,张京红,蔡大鑫,等.2010.台风过程引发洪涝灾害的风险评估——以海南岛为例.自然灾害学报,19(3):146-150.
    [157]刘新立,史培军.2001.区域水灾风险评估模型研究的理论与实践.自然灾害学报,10(2):66-72.
    [158]刘耀龙.2011.多尺度自然灾害情景风险评估与区划——以浙江省温州市为例.上海:华东师范大学.
    [159]陆敏,刘敏,权瑞松,等.2010.上海暴雨灾害的系统特征与脆弱性分析.华东师范大学学报(自然科学版),(2):9-15.
    [160]陆敏,刘敏,侯立军,等.2010.上海降雨特征及其对城市水情灾害的影响.自然灾害学报,19(3):7-12.
    [161]罗 培.2007.GIS支持下的气象灾害风险评估模型——以重庆地区冰雹灾害为例.自然灾害学报,16(1):38-44.
    [162]罗元华,张梁,张业成.1998.地质灾害风险评估方法.北京:地质出版社.
    [163]马寅生,张业成,张春山,等.2006.地质灾害风险评价的理论与方法,10(1):7-18.
    [164]马世骏,王如松.1984.社会-经济-自然复合生态系统.生态学报,4(1):1-9.
    [165]马世骏.1991.中国生态发展战略研究.北京:中国环境科学出版社.
    [166]民政部国家减灾中心.2004.灾害管理培训教材:洪涝灾害管理教程.
    [167]牛志仁.1990.关于灾害系统的若干问题.灾害学,4(3):1-5.
    [168]钱维宏.2009.全球气候系统.北京:北京大学出版社.
    [169]秦年秀,姜彤.2005.基于GIS的长江中下游地区洪灾风险分区及评价.自然灾害学报,14(5):1-7.
    [170]仇劲卫,李娜,程晓陶,等.2000.天津市城区暴雨沥涝仿真模拟系统.水利学报,(11):34-42.
    [171]权瑞松,刘敏,侯立军,等.2009.土地利用动态变化对地表径流的影响——以上海浦东新区为例.灾害学,24(1):44-49.
    [172]权瑞松,刘敏,陆敏,等.2010.基于简化内涝模型的上海城区内涝危险性评价.人民长江,41(2):32-37.
    [173]权瑞松,刘敏,张丽佳,等.2011.基于情景模拟的上海中心城区建筑暴雨内涝暴露性评价.地理科学,31(2):148-152.
    [174]权瑞松,刘敏,张丽佳.2011.上海市轨道交通暴雨内涝脆弱性评价.人民长江,42(15):13-17.
    [175]任国玉,吴虹,陈正洪.2000.我国降水变化趋势的空间特征.应用气象学报,11(3):322-330.
    [176]任启平.2007.人地关系地域系统要素及结构研究.北京:中国财政经济出版社.
    [177]商彦蕊,史培军.1998.人为因素在农业旱灾形成过程中所起作用的探讨——以河北省旱灾脆弱性研究为例.自然灾害学报,7(4):35-43.
    [178]商彦蕊.2000.干旱农业旱灾与农户旱灾脆弱性分析:以邢台县典型农户为例.自然灾害学报,9(2):55-66.
    [179]盛绍学,石磊,刘家福,等.2010.沿淮湖泊洼地区域暴雨洪涝灾害风险评估.地理研究,29(3):416-422.
    [180]史培军,虞立红,张素娟.1989.国内外自然灾害研究综述及我国近期对策.干旱区资源与环境,3(3):163-172.
    [181]史培军.1991.论灾害研究的理论与实践.南京大学学报(自然科学版),(11):37-42.
    [182]史培军.2005.四论灾害系统研究的理论与实践.自然灾害学报,14(6):1-7.
    [183]史培军.2009.五论灾害系统研究的理论与实践.自然灾害学报,18(5):1-9.
    [184]石勇.2010.灾害情景下城市脆弱性评估研究——以上海市为例.上海:华东师范大学.
    [185]宋雅杰,李健.2008.城市环境危机管理.北京:科学出版社.
    [186]宋俊岭,吴建华,王登斌译.1987.城市社会学.北京:华夏出版社.
    [187]宋永昌,由文辉,王祥荣.1998.城市生态学.上海:华东师范大学出版社.
    [188]孙阿丽.2011.基于情景模拟的城市暴雨内涝风险评估.上海:华东师范大学.
    [189]孙健,王昂生,翟盘茂.2004.重大天气气候灾害防御.中国气象事业发展战略研究第三卷.http://220.168.210.66/fzzl/3_3.html.
    [190]田井涛.2009.城市系统发展模式的复杂性理论与应用.天津大学.
    [191]唐川,师玉娥.2006.城市山洪灾害多目标评估方法探讨.地理科学进展,25(4):14-21.
    [192]唐恢一.2001.城市学.哈尔滨:哈尔滨工业大学出版社.
    [193]唐晓春,刘会平,潘安定,等.2003.广东沿海地区近50年登陆台风灾害特征分析.地理科学,23(2):182-187.
    [194]唐小丽.2007.模糊网络分析法及其在大型工程项目风险评价中的应用研究.南京:南京理工大学.
    [195]王汉杰,刘健文.2008.全球变化与人类适应.北京:中国林业出版社.
    [196]王宏伟.2008.从南方雪灾谈我国应急管理的未来发展.安全,(3):1-5.
    [197]王建鹏,薛春芳,解以扬,等.2008.基于内涝模型的西安市区强降水内涝成因分析.气象科技,36(6):772-775.
    [198]王静爱,商彦蕊,苏筠,等.2005.中国农业旱灾承灾体脆弱性诊断与区域可持续发展.北京师范大学学报(社会科学版),(3):130-137.
    [199]王如松.1988.高效、和谐——城市生态调控原则和方法.长沙:中国环境科学出版社.
    [200]王绍玉,冯百侠.2005.城市灾害应急与管理.重庆:重庆出版社.
    [201]王铮.1995.论人地关系的现代意义.人文地理,10(2):1-5.
    [202]温克刚.2006.中国气象灾害大典·上海卷.北京:气象出版社.
    [203]吴庆洲.1998.我国21世纪城市水灾风险减灾对策.灾害学,13(2):89-94.
    [204]吴晓军.2005.复杂性理论及其在城市系统研究中的应用.西北工业大学.
    [205]夏富强,康相武,吴绍洪,等.2008.黄河下游不同情境决溢风险评价.地理研究,27(1):229-240.
    [206]夏伟生.1984.人类生态学初探.兰州:甘肃人民出版社.
    [207]向立云.2004.洪水风险评价指标体系研究.水利发展研究,(8):25-29.
    [208]肖盛燮,周小平,张学富,等.2006.灾变链式理论及应用.北京:科学出版社.
    [209]谢文惠,邓卫.1996.城市经济学.北京:清华大学出版社.
    [210]解以扬,李大鸣,沈树勤,等.2004.“030704"南京市特大暴雨内涝灾害的仿真模拟.长江科学院报,21(6):73-76.
    [211]解以扬,李大鸣,李培彦,等.2005.城市暴雨内涝数学模型的研究与应用.水科学进展,16(3):384-390.
    [212]徐国利.2003.清代中叶安徽省淮河流域的自然灾害及其危害.安徽大学学报(哲学社会科学版),27(6):20-26.
    [213]许学强,周一星,宁越敏.1997.城市地理学.北京:高等教育出版社.
    [214]许世远.2004.上海城市自然地理图集.上海:中华地图学社.
    [215]许世远,王军,石纯,等.2006.沿海城市自然灾害风险研究.地理学报,61(2):127-138.
    [216]许学强,周一星,宁越敏.1997.城市地理学.北京:高等教育出版社.
    [217]徐扬,姜敏.2004.大城市进入“城市危机高发期”:中国“城市危机处理系统”亟待建立.科学咨询,(23):42.
    [218]薛昌颖,霍治国,李世奎,等.2003.华北北部冬小麦干旱和产量灾损的风险评估.自然灾害学报.12(1):131-139.
    [219]薛惠锋,寇世东,秦丕栋.2007.城市系统工程探索.北京:国防工业出版社.
    [220]杨佩国,杨琴业,吴绍洪,等.2007.基于数值模拟的黄河下游不同情境溃堤洪水特性.地理研究,26(2):328-337.
    [221]杨青生,黎夏.2007.多智能体与元胞自动机结合及城市用地扩张模拟.地理科学,27(4):542-548.
    [222]杨郁华.1983.国外国土整治经验介绍——美国田纳西河是怎样变害为利的.地球科学进展,3:3-7.
    [223]尹占娥.2009.城市自然灾害风险评估与实证研究.上海:华东师范大学.
    [224]袁艺,史培军.2001.土地利用对流域降雨径流关系的影响—SCS模型在深圳地区的应用.北京师范大学学报(自然科学版),37(1):131-136.
    [225]袁志伦.1999.上海水旱灾害.南京:河海大学出版社.
    [226]于兴修,杨桂山,梁涛.2002.西苕溪流域土地利用对氮素径流流失过程的影响.农业环境保护,21(5):424-427.
    [227]张国胜,伏洋,颜亮东,等.2009.三江源地区雪灾风险预警指标体系及风险管理研究.草业科学,(5):144-150.
    [228]张继权,冈田宪夫,多多纳裕一.2006.综合自然灾害风险管理——全面整合的模式与中国的战略选择.自然灾害学报,15(1):29-37.
    [229]张继权,张会,冈田宪夫.2007.综合城市灾害风险管理:创新的途径和新世纪的挑战.人文地理,(5):19-23.
    [230]张会,张继权,韩俊山.2005.基于GIS技术的洪涝灾害风险评估与区划研究——以辽河中下游地区为例.自然灾害学报,14(6):141-146.
    [231]张犁.1995.城市洪水分析与模拟的G1S方法研究.地理学报,50(Sup.):76-91.
    [232]张丽佳,刘敏,权瑞松,等.2009.中国东南沿海地区热带气旋特点与灾情评估.华东师范大学学报(自然科学版),(2):41-49.
    [233]张丽佳,刘敏,陆敏,等.2010.中国东南沿海地区台风危险性评价.人民长江,41(6):81-83.
    [234]张丽佳.2010.上海市地下轨道交通暴雨内涝脆弱性研究.上海:华东师范大学.
    [235]张丽娟,李文亮,张冬有.2009.基于信息扩散理论的气象灾害风险评估方法.地理科学,29(2):250-254.
    [236]张启人.1992.通俗控制论.北京:中国建筑工业出版社.
    [237]张业成,张梁.1996.论地质灾害风险评价.地质灾害与环境保护,7(3):1-6.
    [238]张游,王绍强,葛全胜,等.2011.基于GIS的江西省洪涝灾害风险评估.长江流域资源与环境,20(Z1):166-172.
    [239]章友德.2004.城市灾害学.上海:上海大学出版社.
    [240]赵 君,张晓民,陈雅倩,等.2011.区域洪涝灾害风险估算模型及其应用.河海大学学报(自然科学版),39(1):9-13.
    [241]赵庆良.2009.沿海山地丘陵型城市洪灾风险评估与区划研究——以温州龙湾区为例.上海:华东师范大学.
    [242]赵思健,陈志远,熊利亚.2004.利用空间分析建立简化的城市内涝模型.自然灾害学报,13(6):8-14.
    [243]赵思键,黄崇福.2010.情景驱动的淮河流域水稻灾害流域水稻洪涝灾害风险评价.中国灾害防御协会风险分析专业委员会第四届年会论文集,中国,长春.
    [244]郑伟,刘 闯,曹云刚,等.2007.基于Asar与TM图像的洪水淹没范围提取.测绘科学,32(5):180-181.
    [245]中国统计局,1997-2010.中国统计年鉴.北京:中国统计出版社.
    [246]周成虎.1992.洪水灾害系统分析.中国减灾,2(3):19-21.
    [247]周成虎,孙站利,谢一春.1999.地理元胞自动机研究.北京:科学出版社.
    [248]周成虎,万庆,黄诗峰,等.2000.基于GIS的洪水灾害风险区划研究.地理学报,55(1):15-24.
    [249]周干峙.2009.城市及其区域——一个典型的开放的复杂巨系统.城市轨道交通研究,(12):1-3.
    [250]周洪建,史培军,王静爱,等.2008.近30年来深圳河网变化及其生态效应 分析.地理学报,63(9):969-980.
    [251]周乃晟,贺宝根译.1995.城市水文学概论.上海:华东师范大学出版社.
    [252]周淑贞,张超.1985.城市气候学导论.上海:华东师范大学出版社.
    [253]周淑贞,束炯.1994.城市气候学.北京:气象出版社.
    [254]周淑贞.1997.气象学与气候学.北京:高等教育出版社.
    [255]朱静.2010.城市山洪灾害风险评价——以云南省文山县城为例.地理研究,29(4):655-664.
    [256]朱良峰,殷坤龙,张梁,等.2002.地质灾害风险分析与GIS技术应用研究.地理学与国土探究,18(4):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700