用户名: 密码: 验证码:
黑龙江省内生金矿成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省位处兴蒙造山带东段,内生金矿成矿条件良好,但目前区内仅发现矿产地34处,矿床数量和规模与成矿条件极不匹配。本次工作以分析总结区域地质和地球物理资料为基础,结合与成矿有关岩浆岩的锆石年代学、岩石学和地球化学资料,认为黑龙江省内生金矿成矿地球动力学背景是古亚洲和环太平洋两大构造域的演化及其叠加、转换,受构造域转换及太平洋板块俯冲作用的影响,岩石圈经历了强烈的挤压增厚,进而发生了大规模的拆沉、伸展、减薄,引发了大规模构造岩浆活动和成矿作用,查明区域动力学演化与成矿耦合关系为:(1)海西晚期(260~250Ma)晚二叠世末古亚洲洋闭合额尔古纳-佳木斯地块与华北板块陆-陆碰撞,该体制下可形成老柞山、英城子等造山型金矿,且存在地壳连续成矿模式。(2)早燕山期(190~170Ma)中生代早-中侏罗世进入环太平洋构造域,太平洋板块强烈俯冲,区内大地构造体制发生根本变化,西太平洋大陆边缘由被动陆缘转化为活动陆缘,控制了霍吉河、鹿鸣等一系列规模巨大的细网脉型钼矿床、矽卡岩型钼多金属矿床和大安河矽卡岩型金矿,原认为属晚三叠世的花岗岩绝大多数为该期侵位。(3)晚燕山期(120~100Ma)早白垩世太平洋板块俯冲后岩石圈大规模拆沉、伸展、减薄,该体制下可形成东安、三道湾子等浅成低温热液型、砂宝斯等中低温热液脉型金矿床,成矿作用最强。
     本文系统地对晚古生代碰撞体制下形成的造山型金矿(老柞山、英城子)、中生代早-中侏罗世岩石圈挤压加厚体制下形成的矽卡岩型金矿床(大安河)、早白垩世岩石圈伸展减薄体制下形成的浅成低温热液型(三道湾子、东安和四平山)以及中低温热液脉型金矿床(砂宝斯)等各类典型矿床开展野外地质调研、成矿流体学以及成矿年代学等方面的研究,确定了主要的矿床成因类型,建立了内生金矿的成矿模式及成矿系列。并获得创新成果如下:(1)本次通过矿区有关侵入岩中锆石SHRIMP U-Pb定年以及首次在黑龙江选取与金属矿物密切共生的热液独居石进行SHRIMP U-Pb定年以及矿石中辉钼矿Re-Os测年等,明确厘定出老柞山金矿存在两期成矿。早成矿期成矿岩体片麻状花岗岩年龄256±3.1Ma,早成矿期辉钼矿Re-Os等时线年龄为256±1.3Ma,由此确定早成矿期的成矿年龄为海西晚期的256Ma,成矿与古亚洲洋闭合陆-陆碰撞体制有关;并准确确定晚成矿期成矿前闪长岩年龄106.8±1.0Ma、晚成矿期成矿后霏细岩年龄100.9±1.6Ma,晚成矿期热液成因独居石SHRIMP U-Pb法年龄为105.3±3.2Ma,从而确定晚成矿期的成矿年龄为燕山晚期的105Ma,成矿与早白垩世的岩石圈拆沉、伸展、减薄体制有关。热液成因的独居石在热液矿床中普遍发育,可应用于矿床直接定年,其前景广阔,值得大力推广。(2)浅成低温热液低硫化型金矿是省内规模最大、分布最广泛的一类金矿床,其标型蚀变矿物冰长石的形成时间可代表成矿年龄,而冰长石在东安、团结沟、金厂等大型矿床中普通发育。本论文首次选取东安金矿矿化蚀变过程中形成的冰长石进行Ar-Ar法测年,获得了105.14±0.7Ma的成矿年龄,其与东安成矿岩体石英斑岩的8个锆石206Pb/238U年龄平均值109.6±1.7Ma十分接近。该方法的成功应用,对研究区内规模大、分布广的浅成低温热液低硫化型金矿(如东安、团结沟、金厂等)的成矿年龄具有重要的参考价值。(3)前人多认为砂宝斯金矿等赋存于砂岩中的金矿为蚀变砂岩型、中低温热液型或造山型金矿床。本次研究认为:区内发育的早白垩世(133±5Ma和142.79±2.11Ma)闪长玢岩、闪长岩、煌斑岩、辉绿玢岩、流纹斑岩、花岗斑岩等双峰式岩脉,与金矿空间关系密切,是成矿前侵入岩,属伸展体制下产物;主要控矿构造为伸展状态下形成的、明显切层的一系列正断层,而非前人认为的逆冲推覆构造控矿,也不是有人认为的层间构造控矿;结合砂宝斯金矿成矿流体特点,确认矿床为受正断层控制的中低温热液脉型金矿床,成矿时代应与区内早白垩世(120-100Ma)大规模成矿的时代一致,矿化类型与老柞山第二期金矿化类型一致;最后,认为该类矿床存在浅部中低温热液脉型金矿和深部斑岩-矽卡岩金矿二套成矿系统,深部的斑岩-矽卡岩型金矿应是今后找矿勘探工作的重点方向。(4)通过对世界上极富的三道湾子金矿成矿动力学背景和地质特征研究,首次明确提出三道湾子金矿为幔源物质成矿。三道湾子金矿是与碱性岩有关的浅成低温热液低硫化型Au-Ag-Te矿床,矿石中发现的大量碲金硫化物为主要载金矿物,碲为深源来源,大量发育的碲化物是幔源成矿的重要矿物学标志,在早白垩世研究区岩石圈强烈伸展减薄的背景下,金与碲以地幔射气的方式迁移至地壳内并富集成矿;三道湾子与成矿关系密切的碱性岩也富含Te,而碱性岩通常来自上地幔;三道湾子矿石硫和铅同位素研究也表明硫和铅主要来自地幔。
     在前人资料基础上,系统地分析了黑龙江省区域金矿控矿条件,并总结了黑龙江省金矿的时空分布规律;尤其是通过对小兴安岭北西向上地幔凹陷、北西向深部重力异常低值带(可能为深部中酸性岩体引起)、北西向线性构造(重力异常)以及黑龙江追踪断裂的识别,进一步明确了小兴安岭北西向浅成低温热液型、中低温热液脉型金成矿带的存在。最后,针对内生金矿找矿指出今后应关注的关键问题是:(1)地球动力学背景是矿床形成的最根本的控制因素,是找矿选区的基础和必要条件,据此确定目标矿床类型最为重要;(2)区内主要类型金矿床为浅成低温热液型和造山型。前者形成深度浅,剥蚀(包括差异剥蚀)及保存情况的研究可有效指导找矿,目前黑龙江省发现的该类矿床均为LS型金矿,HS型金矿及LS型银铅锌矿在区内有良好的找矿前景,应引起高度重视;后者形成深度大,准确确定不同地壳层次造山型金矿成矿深度,可为区域找矿和深部资源预测提供可靠依据。(3)利用矿床类型特征和矿化富集规律,选用有效的勘查方法,是发现和勘查矿床的关键;利用矿体的群带规律、横向对应规律、等距分布规律、分段富集规律、侧伏规律等可有效地进行成矿预测。
Heilongjiang province is located in the eastern part of Hinggan-Mongoliaorogenic belt. But there are only34gold deposits in it, which do not match well with goodmetallogenic conditions of the region. Based on regional geology and geophysical data,combining material from zircon geochronology, petrology and geochemistry, it was thoughtthat endogenetic gold geodynamic settings of Heilongjiang province belongs to evolution,transition and superposition between Paleo-Asia tectonical domain and circum-Pacific one.Under the transition and subduction of Pacific oceanic plate, the lithosphere underwent strongcompression and thickening. Then a large scale of detachment, extending and thinninghappened, which resulted in a large scale of structural-magmatic activities and mineralization.The coupling relationship between regional geodynamic evolution and metallogenesis areconcluded as follows:(1) In the late Permian in the late hercynian (260-250Ma),Songnei-Jiamusi block collided with North China plate during closing of Paleo-Asia ocean inLate Permian. Orogenic gold deposits such as Laozuoshan and Yingchengzi etc. depositsdeveloped and crustal continuum model occurred.(2) In the early Yanshanian (190-170Ma),this region came into circum Pacific tectonic domain, strong subduction of Pacific plate andregional geotectonic settings changed basically. The continental margin of western Pacificocean transferred into active one, which controlled a series of large-scale veinlet-network-type Mo deposits such as Huojihe and Luming, skarn-type Mo polymetal deposits andDa’anhe skarn-type gold deposit. The granites that were thought to the late Triassic mostlyintruded in this era.(3) In late Yanshanian (120-100Ma), a large scale of detachment,extending and thinning of lithosphere happened after subduction of Pacific plate in the earlyCretaceous. Epithermal gold deposits like Dong’an, Sandaowanzi ones and Meso-epithermal vein type ones like Shabaosi deposit developed.
     The author researches typical gold deposits such as the orogenic gold deposits(Laozuoshan, Yingchengzi) under late Paleozoic collision, Skarn type gold deposits (Da’anhe)under the Mesozoic to the early-middle Jurassic compression and thickening of lithosphere,epithermal gold deposits (Sandaowanzi, Dong’an and Sipingshan) and meso-epithemalvein-type gold deposits (Shabaosi) under the early Cretaceous extensional thinning oflithosphere by the methods of field survey, fluid inclusion researches and metallogenicgeochronologies. Then the author determines major genetic type of deposits and buildsendogenetic gold metallogenic models and series in the studying area. The creativeachievements have been got as follows:(1) According to SHRIMP U-Pb dating of zircons inintrusive rocks and hydrothermal monazites related to metal minerals and Re-Os dating ofmolybdenites in ores, it was the first time to consider that there are two stages ofmetallogenesis in Laozuoshan gold deposit. And the author determined that the age ofmetallogenic gneiss granite is256±3.1Ma, and the Re-Os isochron age is256±1.3Ma in theearly metallogenic stage. So it was thought that the early metallogenic stage is256Ma in thelate Hercynian, which is related with continental-continental collision during closing ofPaleo-Asian Ocean. The author also determined that the age of pre-mineralization diorite is106±1.0Ma, the age of post-mineraliztion felsite is100.9±1.6Ma, and the hydrothermalmonazites SHRIMP U-Pb age is105.3±3.2Ma. So it was considered that the late metallogenicstage is105Ma in late Yanshanian, which is related with the detachment, extending andthinning of the lithosphere in the early Cretaceous. Hydrothermal monazites developcommonly in hydrothermal deposit, so they can be used to date directly the metallogenic ageof mineral deposits. Then the monazite dating has a better prospect and is worth to popularizewidely.(2) LS-type of epithermal gold deposits is the most extensive and largest type of golddeposit in Heilongjiang province. The age of typomorphic adularia can representmetallogenic age, while adularias develop well in Dong’an, Tuanjiegou, Jinchang golddeposits. It was the first time to date Ar-Ar age of Adularia formed during mineralization andalteration process in Dong’an gold deposit as105.14±0.7Ma, which is consistent with the109.6±1.7Ma of eight zircon206Pb/238U age from metallogenic quartz porphyry. The successof adularia dating has important reference value to date the metallogenic ages of theepithermal gold deposits like Dong’an, Tuanjiegou and Jinchang.(3) The predecessors considered that Shabaosi gold deposit that is located among sandstone belongs to alterationrock-type, epithermal-mesothermal or orogenic gold deposits. The author thought that theearly Cretaceous (133±5Ma and142.79±2.11Ma) bimodal diorite porphyrite, diorite,lamprophyre, gabbroporphyrite, rhyolite porphyry and granite porphyry were related spatiallywith gold mineralization. They are pre-mineralization intrusive rocks formed underextensional regime. Major ore-controlling structures are normal faults formed in extensionaland strata-cutting conditions rather than thrust faults or interbeded ones thought by thepredecessors. Combing with the characteristics of fluid inclusions of Shabaosi gold deposit, itwas thought that the deposit belongs to meso-epithermal vein-type deposit controlled bynormal faults, and the metallogenic age of it is consistent with the early Cretaceous(120-100Ma) large scale mineralization, whose mineralized type match well with the secondstage of mineralization in Laozuoshan gold deposit. Then the author proposed that there aretwo series of metallogenic systems which consist of the shallow LS-type epithermal goldmineralization and deep porphyry-skarn-type mineralization. And the deepporphyry-skarn-type mineralization may be the further prospecting target.(4) According tostudy on the geodynamic settings and geological characteristics of Sandaowanzi gold depositthat is one of richest deposit of the world, it was the first time to propose that the origin offluid is primary mantle-derived fluids. Sandaowanzi gold deposit belongs to LS-typeepithermal Au-Ag-Te deposit. There are lots of Au-Te-bearing sulfides in ores. Te isdeep-source element, and lots of Te-bearing sulfides are important mineral symbols ofmantle-derived metallogenesis. Au and Te migrate and enriched up to the crust because ofmantle degassing while early lithosphere extending and thinning. The alkaline rocks, whichare often derived from upper mantle, related to Sandaowanzi gold deposit also contain Te.And the S and Pb isotopic compositions from this deposit also show that the sources of S andPb are derived from the upper mantle.
     Based on the previous researches, the author analyzed the gold metallogenic conditionsin Heilongjiang province and summarized the spatio-temporal regularities of gold deposits init. Especially discriminating NW-striked upper mantle depression, NW-striked low valuezone of gravity anomalies (possibly resulted from deep acid-intermediate rock bodies),NW-striked linear structures (from explaination of gravity anomalies) in Xiao Hinggan Lingand Heilongjiang tracing-tension-joint fault, the author ascertained that there is a NW-striked epithermal and meso-epithermal vein-type gold metallogenic belt in Xiao Hinggan Ling.Finally, in order to prospect endogenetic gold deposit, the following key problems must beconsidered further:(1) The geodynamic settings are the basic ore-controlling factors for oredeposits forming, which are the basic and necessary conditions for ore prospecting.According to these conditions, ascertaining genetic type of gold deposit in prospective area isthe most important mission.(2) The major genetic types of gold deposits are epithermal andorogenic ones. The former one has shallow metallogenic depth, so studying on denudation(including different denudation) and conservation may help instruct prospecting. And the typeof epithermal gold deposit in Heilongjiang province mostly belong to the LS-type golddeposit, so the HS-type gold and LS-type Ag deposit may have good prospecting potentials.The latter one has deep metallogenic depth, exactly calculating the metallogenic depth ofdifferent levels of orogenic gold deposits can provide reliable data for regional oreprospecting and deep mineral prospecting.(3) Choosing effective exploration methods basedon the basic geological characteristics of gold deposit and mineralized enrichment regularitiesis the key for found and exploration of them. And occurrence regularities of ore bodies likecluster, lateral corresponding, isometry distribution, segment enrichment, and pitch can beused effectively for ore prospecting.
引文
[1] Beaty R. D, Manuel O. K. Tellurium in rock[J]. Chemical Geology,1973,12:155-159.
    [2] Chappell B. W, White A. J. R. I-and S-type granites in the Lachlan Fold Belt[J]. Trans. R. Soc.Edinb. Earth Sci.,1992,83:1-26.
    [3] Chen Y. J, Bao J. X, Zhang Z. J, et al. Laumontitization as exploration indicator of epithermalgold deposits: A case study of the Axi and other epithermal systems in West Tianshan,China[J].Journal of Geochemistry,2003,22:289-301.
    [4] Cherniak D. J, Watson E. B, Grove M, et al. Pb diffusion in monazite:A combinedRBS/S1MS study[J]. Geochimica et Cosmochimica Acta,2004,68:829-840.
    [5] Collins W. J, Beams S. D. Nature and origin of A-type granites with particular reference toSoutheastern Australia: Contributions to Mineralogy and Petrology[J].1982,80:189-200.
    [6] Condie K. C. Mantle plume and their record in earth history[M]. London: Cambridge UniversityPress,2001.
    [7] Cooke D. R, Mcphall D. C. Epithermal Au-Ag-Te mineralization,Acupan,Baguio District,Philippines:Numerical simulations of mineral deposition[J]. Economic Geology,2001,96(1):109-131.
    [8] Davies G. A, Xu B, Zheng Y. D, et al. Indosinian extension in the Solonder suture zone:TheSonid Zuoqi metamorphic core complex[J]. Earth Science Frontiers,2004,11:135-144.
    [9] Deng J, Liu W, Sun Z. S, et al. Evidenee of mantle-rooted fluids and multi-level circulationore-forming dynamics:A case studyfrom the Xiadian gold deposit,Shandong provinee,China[J]. Science in China,Series D,2003,46(Supp):18-142.
    [10] Devaraju T. C, Halkoaho T. A, Laajoki K, et al. Ag-Bi-Tellurides from KudremukhBIF,Karnatak[J]. Journal of the Geological Society of India,1996,47:263.
    [11] Didier D, Barbarin B. Enclaves and Granite Petrology,Developments in Petrology[[J]. ElsevierScience Publications, Amsterdam,1991:1-625.
    [12] Fan W. M, Guo F, Wang Y. J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenicextension in the northern Da Hinggan Mountains, Northeastern China[J]. Volcano.Geotherm.Res.,2003,121:115-135.
    [13] Finger F, Roberts M. P, Haunschmid B, et al. Variscan granitoids of central Europe:theirtypology,potential sources and tectonothermal relations[J]. Mineral.Perol.,1997,61:67-96.
    [14] Garland F, Hawkeesworth C. J, Mantovani M. S. M. Description and petrogenessis of the ParanaRhyolites,Southern Brazil[J]. Petrol.,1995,36:1193-1227.
    [15] Giobanu C. L, Cook N. J, Pring A, et al. Invisible gold' in bismuth chalcogenides[J]. GeochimCosmochim Acta,2009,73:1790-1999.
    [16] Grove D. I, Condie K. C, Goldfarb R. J, et al. Secular changes in golobal tectonic processes andtheir in fluence on the temporal distribution of gold bearing mineral deposits[J]. EconomicGeology,2005,100th Anniversary Volume:20-224.
    [17] Groves D, Goldfarb R. J, Gebre-Mariam M, et al. Orogenic gold deposits proposed classificationin the context their crustal distribution and relationship to the other gold deposit types[J]. OreGeology Reviews,1998,13:7-27.
    [18] Heald P, Foley N. K, Hayba D. O, et al. Comparative anatomy of volcanic hosted epithermaldeposits:Acid sulphate and adularia-spericite types[J]. Ecnomic Gelogy,1987,80:1-26.
    [19] Hedenquist J. W. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature,1994,370:519-527.
    [20] Hofmann A. W, Jochum K. P, Seufert M. Nb and Pb in oceanic basalts: New constraints onmantle evolution[J]. Earth Planet Sci Lett,1986,1/2(79):33-45.
    [21] Hong D. W, H. Z. Huang, Xiao Y. J. Permian alkaline granites in central Inner Mongolia andtheir geodynamies signifieanee[J]. Acta Geologica Sinica,1995,8:27-39.
    [22] Hou Z. Q, Ma H. W, Zaw K, et al. The Himalayan Yulong porphyry copper belt:Product oflarge-scale strike-slip faulting in Eastern[J]. Econ.Geol.,2003,98:125-145.
    [23] Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions[J].Journal of Geophysical,2006,111:B9305.
    [24] Kamenov G. D, Saunders J. A, Hames W. E, et al. Mafic magmas as sources gold in MiddleMiocene epithermal deposits of the of Northern Great Basin, United State:Evidencefrom Pbisotope compositions of native gold[J]. Econ.Geol.,2007,102:1191-1195.
    [25] Kerrich R, Cassidy K. F. Temporal relationships of lode-gold mineralization to accretionmagmatism metamorphism and deformation,Archean to present:a review[J]. Ore Geol Rev,1994,9:263-310.
    [26] Leach D. L, Sangster D. F, Kelley K. D, et al. Sediment-Hosted Lead-Zink Deposit: A GlobalPerspective [J]. Economic Geology,2005,100th Anniversary Volume:561-607.
    [27] Li J. Y. Permian geodynamic setting of northeast China and adjacent regions: closure of thePaleo-Asian ocean and subduction of the Paleo-pacific plate[J]. Asian Earth Sci,2006,26(3-4):207-224.
    [28] Liou J. G, Maruyama S. Precambrian blueschist terranes of the world[J]. Tectonophysics,1990,181:97-111.
    [29] McDonough W. F, Sun S. The composition of the Earth[J]. Chemical Geology,1995,120(3-4):223-253.
    [30] Meng Q. R. What drove Late Mesozoic extension of the northern China Mongolia tract?[J].Tectonophysics,2003,369:155-174.
    [31] Miao Laicheng, Fan Weiming, Liu Dunyi, et al. Geochronology and geochemistry of theHegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the InnerMongolia-Daxinganling Orogenic Belt,China[J]. Journal of Asian Earth Sciences,2008,32(5/6):370-378.
    [32] Parrish R. R. U-Pb dating of monazite and its application to geological problem[J].Canadian Journal of Earth Sciences,1990,27:1431-1450.
    [33] Pearce J. A, Haltis H. B. W, Tindele A. G. Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks[J]. Journal of Petrology,1984,25:956-981.
    [34] Petcher W. S. The Nature and Origin of Granite[M]. London: Blackie Acad.And Prof.Ed.,1993.
    [35] Picher W. S. Granite type and tectonic environment [A].Mountain Building Processes[M].London: Academic Press,1983.
    [36] Poitrasson F, Chenery S, Shepherd T. J. Electron microprobe and LA-ICP-MS study of monazitehydrothermal alteration implications for U-Th-Pb geochronology and muclear ceramics[J].Geochimica et Cosmochimica Acta,2000,64:3283-3297.
    [37] Ressel M. W, Noble D. C, Henry C. D, et al. Dike-hosted ores of the Beast Deposit and theimportance of Eocene magmatism in gold mineralization of the Carlin Trend,Nevada[J].Economic Geology,2000,95:1417-1444.
    [38] Robert Kerrich, Richard Goldfarb, David Groves, et al. The characteristics origins andgeodynamic settings of supergiant gold metallogenic provinces[J]. Science of Chines(series D),2000,43(supplement):1-68.
    [39] Rudnick R. L, Gao S. Composition of continental crust.In:Holl and HDand Turekian KK[J].Reading from the Treatise On Geochemistry,2010,6:131-195.
    [40] Salnikova E. B, Sergeev S. A, Kotov A. B, et al. U-Pb zircon dating of granulite metamorphismin the Sludyanskiy Complex, eastern Siberia[J]. Gondwana Res.,1998,1:195-205.
    [41] Salnikova E. B, Kozakov I. K, Kotov A. B, et al. Age of Palaeozoic granites and metamorphismin the Tuvino-Mongolian Massif of the Central Asian Mobile Belt:Loss of a Precambrianmicrocontinent[J]. Precambrian Res.,2001,110:143-164.
    [42] Schandl E. S, Gorton M. P. A textural and geochemical guide to the identification ofhydrothermal monazite criteria for selection of samples for dating epingenetic hydrothermal oredeposits[J]. Economic Geology,2004,99:1027-1035.
    [43] Seng r A. M. C, Natalin Burtman V. S. Evolution of the Altaid tectonic collage and Palaeozoiccrustal growth in Eurasia[J]. Nature,1993,363:299-307.
    [44] Shao J. A, Zang S. X, Mou B. L. Extensional tectonics and asthenospheric upwelling in theorogenic belt: a case study from Hinggan-Mongolia Orogenic belt[J]. Chin.Sci.Bull.,1994,39:522-537.
    [45] Sylvester P. J. Post-collisional alkaline granites[J]. Geol.,1989,97:261-280.
    [46] Tang K. D. Tectonic development of Palaeozoic fold belts at the north margin of the Sino-Koreancraton[J]. Tectonics,1990,9:249-260.
    [47] Tombros S, Seymour K. St, Williams-Jones A. E, et al. The genesis of epithermal Au-Ag-Temineralization,Panormos Bay,Tinos Island,Cyclades,Greece[J]. Economic Geology,2007,102:1269-1294.
    [48] Tomurtogoo O, Windley B. F, Kroner A, et al. Zircon age and occurrence of the Adaatsagophiolite and Muron shear zone[J]. Geol.Soc.London,2005,162:125-134.
    [49] Tumer S. P, Foden J. D, Morrison R. S. Derivation of some A type magmas by fractionation ofbasaltic magma An example from the Padthaway Ridge South Austaliaa[J]. Lithos,1992,28:151-179.
    [50] Van der Voo R, Spakman W, Bijwaard H. Mesozoic subducted slabs under Siberia[J]. Nature,1999,397:246-249.
    [51] Wang F, Zhou X. H, Zhang L. C, et al. Late Mesozoic volcanism in the Great Xing'an Range(NEChina):Timing and implications for the dynamic setting of NE Asiae[J]. Earth And PlanetaryScience Letters,2006,251:179-198.
    [52] Wilde S, Wu F. Y, Zhang X. Z. Late Pan-African magmatism in Northeastern China SHRIMPU-Pb zircon evidence for igneous ages from the Mashan Complex[J]. Precambrian Res.,2003,122:11-27.
    [53] Wilde S. A,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,1:35-50.
    [54] Wilde S. A, Zhang X. Z, Wu F. Y. Extension of a newly-identified500Ma metamorphic terrain inNottheast China:Further U-Pb SHRIMP dating of the Mashan Complex,Heilongjiang Province,China.[J]. Tectonophysics,2000,328:115-130.
    [55] Wu F. Y, Jahn B, Wilde S, et al. Phanerozoie crustal growth;U-Pb and Sr-Nd isotoie evidencefrom the granites in northeastern China[J]. Tetonophysics,2000,328:89-113.
    [56] Wu F. Y, Sun D. Y, Li H. M, et al. The nature of basement beneath the Songliao Basin in NEChina:geochemical and isotopic constraints[J]. Phys.Chem.Earth,2001,26:793-803.
    [57] Wu F. Y, Sun D. Y, Li H. M, et al. A-type egranites in northeastern China age and geochemicalconstraints on their petrogenesis[J].2002,187:143-173.
    [58] Wu F. Y, Jahn B, Wilde S, et al. Highly fractionated I-type granites in NE China(Ⅰ):Geochronology and petrogenesis[J]. Lithos,2003,66:241-273.
    [59] Wu F. Y, Sun D. Y, Jahn B. M, et al. A Jurasssic garnet-bearing granitic pluton from NE Chinashowing tetrad REE patterns[J]. Asian Earth Sci.,2004,22:731-744.
    [60] Wu F. Y, Yang J. H, Wilde S. A, et al. Geochronology, petrogenesis and tectonic implications ofthe Jurassic granites in the Liaodong Peninsula, NE China[J]. Chem. Geol.,2005,221:127-156.
    [61] Wu F. Y, Yang J. H, Lo C. H, et al. The Heilongjiang Group:A Jurassic accretionary complex inthe Jiamusi Massif at the western Pacific margin of mortheastern China[J]. Island Arc,2007,16:156-172.
    [62] Wu G, Sun F. Y, Zhao C. S, et al. Discovery of the Early Paleozoic post-collisional granites innorthern margin of the Erguna massif and its geological significance[J]. Chinese Science Bulletin,2005,23(50):2733-2743.
    [63] Yan J. Y, Tang K. D, Bai J. W, et al. High pressure metamorphic rocks and their tectonicenvironment in northeastern China[J]. Jorrnal of Southeastern Asian Earth Sciences,1989,3:302-313.
    [64] Yang L. Q, Deng J, Wang J. G, et al. Control of deep tectonics on the super large deposits inChina[J]. Acta Geologica Sinica,2004,78(2):358-367.
    [65] Ying J. F, Zang L. C. Gcochronolosical framework of Mesozoic volcanic rocks in the GreatXing'an Range,NE China,and their geodynamic implications[J]. Journal Of Asian Earth Sciences,2010,39(6):786-793.
    [66] Zhang J. H, Ge W. C, Wu F. Y. Mesozoic bimodal suite and its geological significance inZhalantun of the Great Xing'an Range zircon U-Pb age and HF isotopic constraints[J]. ActaGeol.Sinica,2006,58-69(80):1.
    [67] Zhang J. H, Ge W. C, Wu F. Y, et al. Large-scale Early Cretaceous volcanic events in thenorthern Great Xing’an Range,Northeastern China[J]. Lithos,2008,102:138-157.
    [68] Zhang J. H, Gao S, Ge W. C, et al. Geochronology of the Mesozoic volcanic rocks in the GreatXing’an Range, Northeastern China:Implications for subduction-induced delamination[J].Chemical Geology,2010,276:144-165.
    [69] Zhang Y. B, Wu F. Y, Wilde S. A. Zircon U-Pb ages and tectonic implications of Early Paleozoicgranitoids at Yanbian.Jilin provinve,NE China[J]. Island Arc,2004,13:484-505.
    [70] Zhang Y. B, Wu J. Y, DING ZhaiXue. Tectonic setting of the Helong Block:Implications for thenorthern Boundary of the eastern North China Craton[J]. Sci. China (D),2005,48:1599-1612.
    [71] Zhang Y. P, Tang K. D. Pre-Jurassic tectonic evolution of intercontinental region and the suturezone between the North China and Siberian platforms[J]. SE Asian Earth Sci.,1989,3:47-55.
    [72] Zhao X. X, Coe R. S, Zhou Y. X, et al. New plaeomagnetic results from northern China;Collisionand suturing with Siberia and Kazakstan[J]. Tectonophysics,1990,181:43-81.
    [73] Zonenshain L. P, Kuzmin M. I, Kononov M. V. Absolute recomsteuctions of the Paleozoicoceans[J]. Earth Planet Sc Lett,1985,74:103-116.
    [74]表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999(1):28-33.
    [75]曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,1992.
    [76]陈静,孙丰月.黑龙江三道湾子金矿床锆石U-Pb年龄及其地质意义[J].黄金,2011,32(5):18-22.
    [77]陈静.黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用[D].吉林大学,2011.
    [78]陈雷.黑龙江宁安县英城子金矿床成矿作用与成矿模式研究[D].吉林大学,2008.
    [79]陈雷,孙景贵,陈行时,等.张广才岭东侧英城子金矿区花岗岩锆石U-Pb年龄及地质意义[J].地质学报,2009,83(9):1327-1334.
    [80]陈美勇,刘俊来,胡建江,等.大兴安岭北段三道湾子碲化物型金矿床的发现及意义[J].地质通报,2008,27(4):584-587.
    [81]陈行时,张朋,孙景贵,等.张广才岭英城子金矿区早古生代花岗岩的元素地球化学特征、岩石成因及构造意义[J].吉林大学学报(地球科学版),2011,41(2):440-447.
    [82]陈衍景,秦善,李欣.中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式[J].北京大学学报(自然科学版),1997,33(4):50-60.
    [83]程瑞玉,吴福元,葛文春,等.黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化[J].岩石学报,2006(2):353-376.
    [84]褚少雄,刘建明,徐九华,等.黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义[J].岩石学报,2012,28(2):433-450.
    [85]崔根,王金益,张景仙,等.黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义[J].世界地质,2008,27(4):387-394.
    [86]邓胜徽,万传彪,杨建国.黑龙江阿城晚二叠世安加拉-华夏混生植物群——兼述古亚洲洋的关闭问题[J].中国科学(D辑:地球科学),2009,13(12):1744-1752.
    [87]段吉业,安素兰.黑龙江伊春早寒武世西伯利亚型动物群[J].古生物学报,20010,40(3):362-370.
    [88]高阳,张招崇,杨铁铮.黑龙江宝山一带海西晚期强过铝花岗岩地质地球化学及岩石成因[J].岩石矿物学杂志,2009,28(5):433-449.
    [89]葛良胜.滇西北富碱岩浆活动与金多金属成矿系统[D].中国地质大学(北京),2007.
    [90]葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):396-407.
    [91]葛文春,林强,李献华,等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石,2000,20(3):14-18.
    [92]葛文春,李献华,林强,等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183.
    [93]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005,50(12):1239-1247.
    [94]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007,23(2):423-440.
    [95]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(20):2407-2417.
    [96]郭奎城,张文龙,杨晓平,等.黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版),2011,41(4):1077-1083.
    [97]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004.
    [98]黑龙江省地质调查研究总院齐齐哈尔分院.1:5万砂宝斯林场、老沟林场幅区域地质调查报告[R].2003.
    [99]黑龙江省地质调查研究总院齐齐哈尔分院.1:25万乌云镇、嘉荫县、太平沟幅区域地质调查报告[R].2006.
    [100]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [101]黑龙江省地质矿产局.黑龙江省岩石地层[M].北京:中国地质大学出版社,1997.
    [102]黑龙江省地质矿产局第三地质勘查所.黑龙江多宝山及其邻区寻找大型斑岩铜矿的研究[R].1995.
    [103]黑龙江省地质矿产局第一区域地质调查队.1:20万霍龙门公社幅区域地质调查报告[R].1984.
    [104]侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿[J].现代地质,2007,21(2):332-351.
    [105]侯增谦.大陆碰撞成矿论[J].地质学报,2010,84(1):30-58.
    [106]胡受奚,叶瑛,赵懿英,等.华北地台中生代热液成矿的构造环境[J].高校地质学报,1995,1(1):58-66.
    [107]胡受奚,孙景贵,凌洪飞,等.中生代苏鲁活动大陆边缘榴辉岩煌斑岩金矿及富集地慢间的成因联系.[J].岩石学报,2001,17(3):425-435.
    [108]黄宝春,周烑秀,朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘,2008,15(3):348-359.
    [109]黄映聪.佳木斯地块古生代变质作用与构造演化[D].吉林大学,2009.
    [110]贾伟光,王晓勇,张春辉,等.黑龙江省砂宝斯金矿床成矿流体性质研究[J].地质与资源,2004,13(3):148-151.
    [111]颉颃强,张福勤,苗来成,等.东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义[J].岩石学报,2008,24(6):1237-1250.
    [112]孔凡梅,李旭平,李守军,等.黑龙江杂岩带的形成演化及地质意义[J].地质论评,2011,57(5):623-631.
    [113]李春昱,王荃,刘雪亚,等.亚洲大地构造图说明书[M].北京:地质出版社,1982.
    [114]李红霞,郭锋,李超文,等.晚古生代古亚洲洋俯冲作用:来自珲春前山镁铁质侵入岩的年代学和地球化学记录[J].岩石学报,2010,26(5):1530-1540.
    [115]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999.
    [116]李景春.中国东北部中生代区域成矿与动力学背景[D].东北大学,2004.
    [117]李廷栋.中国岩石圈的基本特征[J].地学前缘,2010,17(3):1-13.
    [118]李旭平,焦丽香,郑庆道,等.黑龙江桦南地区黑龙江杂岩锆石U-Pb定年[J].岩石学报,2009,25(8):1909-1916.
    [119]李旭平,孔凡梅,郑庆道,等.黑龙江萝北地区黑龙江杂岩年代学研究[J].岩石学报,2010,26(7):2015-2024.
    [120]连长云,尹冰川.大兴安岭西坡中生代火山岩形成机制[J].地质地球化学,2000,28(2):26-37.
    [121]林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2):3-13.
    [122]林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3):208-222.
    [123]刘殿秘.松辽盆地及其周围典型盆地部分地球物理特征[D].吉林大学,2008.
    [124]刘国兴,张志厚,韩江涛,等.兴蒙、吉黑地区岩石圈电性结构特征[J].中国地质,2006,33(4):824-831.
    [125]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[D].吉林大学,2006.
    [126]刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    [127]路凤香,吴其发.中国东部典型地区下部岩石圈组成、结构和圈层相互作用[M].武汉:中国地质大学出版社,2005.
    [128]路凤香,郑建平,张瑞生,等.地壳与弱化岩石圈地幔的相互作用:以燕山造山带为例[J].地球科学-中国地质大学学报,2006,31(1):1-7.
    [129]吕军,王建民,岳帮江,等.三道湾子金矿床流体包裹体及稳定同位素地球化学特征[J].地质与勘探,2005,41(3):33-37.
    [130]罗毅,王正邦,周德安.额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J].华东地质学院学报,1997,20(1):1-10.
    [131]毛景文,张作衡,杨建民,等.甘肃鹰嘴山金矿床地质和成矿地球化学[J].矿床地质,1998,17(4):297-306.
    [132]毛景文,魏家秀.大水沟碲矿床流体包裹体的He、Ar同位素组成及其示踪成矿流体的来源[J].地球学报,2000,21(1):58-61.
    [133]毛景文,李荫清.河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系[J].矿床地质,2001(1):23-36.
    [134]毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学D辑,2003,33(4):289-299.
    [135]毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [136]苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2003,48(22):2315-2323.
    [137]彭聪.中国大陆主要成矿域地壳上地幔结构:第七届全国矿床会议,西安,2002[C].
    [138]祁进平,陈衍景, PIRAJNO, Franco.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59.
    [139]齐金忠,李莉,郭晓东.大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征[J].矿床地质,2000,19(2):116-125.
    [140]秦秀峰,尹志刚,汪岩,等.大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义[J].岩石学报,2007,23(6):1501-1511.
    [141]邱殿明,张兴洲,俞保祥,等.黑龙江砂宝斯金矿构造控矿特征及找矿方向[J].黄金,2004,25(11):13-17.
    [142]曲晖,李成禄,赵忠海,等.大兴安岭东北部多宝山地区花岗岩锆石U-Pb年龄及岩石地球化学特征[J].中国地质,2011,38(2):292-300.
    [143]邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J].中国科学(D辑:地球科学),1997,27(5):390-394.
    [144]邵济安,刘福田,陈辉,等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报,2001,75(1):56-63.
    [145]邵济安,张履桥,肖庆辉,等.中生代大兴安岭的隆起--一种可能的陆内造山机制[J].岩石学报,2005,21(3):789-794.
    [146]佘宏全,李进文,向安平,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报,2012,28(2):571-594.
    [147]申玉科,邓军,徐叶兵.煌斑岩在玲珑金矿田形成过程中的地质意义[J].地质与勘探,2005,41(3):45-49.
    [148]石宝林,刘万崧,吴燕冈.满洲里-绥芬河地学断面内重力场特征及深部构造解释;中国满洲里-绥芬河地学断面地球物理场及深部构造特征研究[M].北京:地震出版社,1994.
    [149]宋彪,牛宝贵,李锦轶,等.牡丹江-鸡西花岗岩类同位素地质年代学研究[J].岩石矿物学杂志,1994,13(3):204-213.
    [150]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].吉林大学,2007.
    [151]隋振民,葛文春,徐学纯,等.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报,2009,25(10):2679-2686.
    [152]隋振民,陈跃军.大兴安岭东部花岗岩类锆石饱和温度及其地质意义[J].世界地质,2011,30(2):162-172.
    [153]孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
    [154]孙德有,吴福元,林强,等.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001,17(2):227-235.
    [155]孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间--来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004,34(2):174-181.
    [156]孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    [157]孙丰月,石淮立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿[M].长春:吉林人民出版社,1995.
    [158]孙丰月,金巍,李碧乐,等.关于脉状热液金矿成矿深度的思考[J].长春科技大学学报,2000,30(专辑):27-30.
    [159]孙贵斌.黑龙江省漠河县老沟西金矿成矿条件及找矿潜力分析[D].中国地质大学(武汉)地质工程,2008.
    [160]孙忠实,冯本智,青晓.吉林夹皮沟金矿稳定同位素地质及找矿方向[J].长春科技大学学报,1998,28(2):142-147.
    [161]谭成印.黑龙江省主要金属矿产构造-成矿系统基本特征[D].中国地质大学,2009.
    [162]唐臣,柴鹏,孙景贵,等.黑龙江伊春大安河金矿床区辉长岩的锆石U-Pb年龄及其地质意义[J].世界地质,2011,30(2):173-179.
    [163]唐克东.中朝板块北侧褶皱带构造演化及成矿规律[M].北京:北京大学出版社,1992.
    [164]滕吉文,姚敬金,江昌洲,等.地壳深部岩浆岩岩基体与大型、超大型金属矿床的形成及找矿效应[J].岩石学报,2009,25(5):1009-1038.
    [165]涂光炽,高振敏.分散元素成矿机制研究获重大进展[J].中国科学院院刊,2003,5:358-361.
    [166]王长水,孙福生,王秀华.黑龙江省前寒武纪基底及金矿成矿系列研究[J].黄金,2007,28(3):15-21.
    [167]王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008(2):119-136.
    [168]王荃,刘雪亚,李锦轶.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社,1991.
    [169]王献忠,王晓勇,石书校.黑龙江省老沟-二根河成矿带金矿床地质特征及找矿方向[J].矿床地质,2010,29(增刊):123-132.
    [170]王晓勇,贾伟光,张春辉,等.黑龙江砂宝斯金矿床成矿物理化学环境研究[J].黄金,2005,26(2):8-11.
    [171]王友勤,苏养正,刘尔义.东北区区域地层发育与地壳演化[M].武汉:中国地质大学出版社,1997.
    [172]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,35(1):60-71.
    [173]王跃,张兴洲,宋海峰,等.牡丹江地区黑龙江杂岩的变质变形特征[J].吉林大学学报(地球科学版),2009,39(6):1066-1072.
    [174]吴才来,陈安泽,高前明,等.东北伊春地区桃山古元古代花岗岩的发现[J].地质学报,2010,84(9):1324-1332.
    [175]吴福元, WILDE, S.,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [176]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    [177]吴根耀.白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质,2006,33(1):64-77.
    [178]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    [179]武广.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D].吉林大学,2006.
    [180]武广,李忠权,糜梅,等.大兴安岭北部砂宝斯金矿床成矿流体特征及矿床成因[J].矿物岩石,2008,28(1):31-38.
    [181]武子玉,王洪波,徐东海,等.黑龙江黑河三道湾子金矿床地质地球化学研究[J].地质论评,2005(3):264-267.
    [182]肖庆辉,邓福晋.花岗岩研究思维与方法[M].北京:地质出版社,2002.
    [183]肖庆辉,王涛,邓晋福,等.中国典型造山带花岗岩与大陆地壳生长研究[M].北京:地质出版社,2009.
    [184]谢家东,钱汉东,李永徽.山东省平邑归来庄碲型金矿床碲元素地球化学特征及成矿机制探讨[J].地质找矿论丛,2000,15(2):133-141.
    [185]徐备, Charvet, J.,张福勤.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J].地质科学,2001,36(4):424-434.
    [186]许文良,葛文春,裴福萍,等.东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报,2008,27(z1):286-287.
    [187]许志琴,杨经绥,嵇少丞,等.中国大陆构造及动力学若干问题的认识[J].地质学报,2010,84(1):1-29.
    [188]薛明轩,刘明,双宝.黑龙江大安河金矿控矿条件及成矿机理分析[J].世界地质,2001,20(1):34-39.
    [189]薛明轩.黑龙江东安金矿及外围成矿地质条件与成矿预测[D].吉林大学,2001.
    [190]杨经绥,吴才来,夏林圻,等.火成岩的10年研究进展和未来的挑战[J].地质论评,2009,55(3):406-419.
    [191]杨天奇,魏仪方,何高文.中国陆相火山岩区特大型金矿床模型[M].北京:冶金工业出版社,1992.
    [192]杨铁铮.小兴安岭地区东安金矿区火山岩及其与金矿关系研究[D].中国地质大学(北京),2008.
    [193]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006.
    [194]尹西君,连永牢,潘超.黑龙江省逊克县高松山金矿区岩石地球化学特征[J].黄金,2010,31(10):22-26.
    [195]张凤旭,张兴洲,张凤琴,等.中国东北地区重力场研究——利用改进的三方向小子域滤波划分主构造线及大地构造单元[J].地球物理学报,2010,53(6):1475-1485.
    [196]张凤旭,邰振华,张兴洲,等.中国东北地区重力场研究——剩余重力场与重点油气勘探盆地的关系及油气勘探新领域[J].地球物理学进展,2011,26(2):424-432.
    [197]张立亚.黑龙江老柞山金矿矿床地质特征及矿化富集规律研究[D].吉林大学,2008.
    [198]张佩华,赵振华,包志伟等.东坪金矿矿石碲、金分布及其相关性[J].地质与勘探.2001,37(3):24-28.
    [199]张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景[J].地学前缘,2003,10(4):385-400.
    [200]张旗,金惟俊,李承东,等.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J].地学前缘,2009,16(2):21-51.
    [201]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [202]张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22(增刊):94-101.
    [203]张兴洲,穆石敏,杨宝俊,等.拼合的大陆板块[M].北京:地质出版社,1999.
    [204]张兴洲,乔德武,迟效国,等.东北地区晚古生代构造演化及其石油地质意义[J].地质通报,2011,30(2-3):205-213.
    [205]张彦龙,葛文春,高妍,等.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010,26(4):1059-1073.
    [206]张宇,赖勇,卿敏,等.黑龙江省金厂金矿床J0矿体流体地球化学研究[J].岩石学报,2008,24(5):1131-1144.
    [207]张玉涛,张连昌,英基丰,等.大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J].岩石学报,2007,23(11):2811-2822.
    [208]张昱.黑龙江省东部早中生代火成岩构造组合及其大地构造演化[D].中国地质大学,2008.
    [209]张志华.黑龙江省三道湾子金矿矿床地质特征及成矿模式研究[D].吉林大学,2009.
    [210]赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996.
    [211]赵春荣,赵淑华,梁海军.黑龙江砂宝斯金矿地质特征及找矿方向[J].黄金地质,2000,6(4):28-32.
    [212]赵寒冬,刘勇,邓晋福,等.小兴安岭伊春地区环斑花岗岩组合特征及其地质意义[J].中国地质,2009,36(3):658-668.
    [213]赵寒冬.东北地区小兴安岭南段-张广才岭北段古生代火成岩组合与构造演化[D].中国地质大学(北京),2009.
    [214]赵焕利,刘旭光,刘海洋,等.黑龙江多宝山古生代海盆闭合的岩石学证据[J].世界地质,2011,30(1):18-27.
    [215]赵洁心,冯波,谭俊,等.黑龙江老柞山金矿地球化学特征及成因模式[J].资源环境与工程,2006,20(2):116-120.
    [216]赵胜金,刘俊来,白相东,等.黑龙江三道湾子碲化物型金矿床流体包裹体及硫同位素研究[J].矿床地质,2010(3):476-488.
    [217]赵羽军,崔培龙,王清海,等.黑龙江宁安英城子热液金矿床流体包裹体的氩同位素激光探针定年与成矿时代讨论[J].世界地质,2010,29(2):203-210.
    [218]赵玉锁,杨立强,陈永福,等.黑龙江金厂铜金矿床闪长玢岩地球化学及锆石U-Pb年代学[J].岩石学报,2012,28(2):451-467.
    [219]赵院冬.东宁地区早中生代花岗岩地球化学特征及大地构造背景[D].吉林大学,2007.
    [220]赵院冬,迟效国,车继英,等.延边-东宁地区晚三叠世花岗岩地球化学特征及其大地构造背景[J].吉林大学学报(地球科学版),2009,39(3):425-434.
    [221]赵芝,迟效国,刘建峰,等.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报,2010,26(11):3245-3258.
    [222]中国地质大学.黑龙江老柞山金矿床研究报告[R].2003.
    [223]周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,2005,21(3):763-775.
    [224]周建波,张兴洲, WILDE, Simon A.,等.黑龙江杂岩的碎屑锆石年代及其大地构造意义[J].岩石学报,2009,25(8):1924-1936.
    [225]周建波,韩杰,张兴洲,等.牡丹江地区蓝片岩的地球化学特征及其大地构造意义[J].吉林大学学报(地球科学版),2010,40(1):93-103.
    [226]周建波,张兴洲, WILDE, Simon A.,等.中国东北~500Ma泛非期孔兹岩带的确定及其意义[J].岩石学报,2011,27(4):1235-1245.
    [227]周起凤,李胜荣,陈海燕,等.胶东乳山英格庄金矿碲化物的发现及其意义[J].岩石学报,2011,27(6):1847-1856.
    [228]朱介寿.欧亚大陆及边缘海岩石圈的结构特性[J].地学前缘,2007,14(3):1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700