用户名: 密码: 验证码:
GaN紫外探测器材料的MOCVD生长及器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN基材料因具有直接宽带隙、热稳定性和化学稳定性好等优异的物理和化学性能是制备紫外探测器的理想材料。GaN基紫外探测器具有全固态、体积小、能耗低、抗辐照等独特优点,在紫外告警、空间紫外光通讯、火焰监测等军事和民用领域具有重要的应用价值,是目前国内外研究的热点之一。但是,由于GaN材料缺乏同质单晶衬底,所以异质外延GaN中存在高密度位错等缺陷,这就严重影响了GaN基紫外探测器的应用和进一步发展。本论文以提高GaN基紫外探测器性能为目标,从材料生长和器件结构两方面开展了深入、系统的研究。从提高GaN外延层质量的角度出发,提出了“应力诱导原位侧向外延”的方法,有效降低GaN外延层的缺陷密度;从缺陷调控的角度出发,揭示了不同种类位错对探测器性能影响,提出了SiO~2纳米粒子钝化位错提高GaN紫外探测器性能的新方法;从能带调控的角度出发,设计了非对称势垒的金属-半导体-金属(MSM)紫外探测器结构,首次研制成功了GaN基非对称势垒MSM探测器,实现了MSM结构探测器零偏压工作。本论文的主要研究成果如下:
     1、生长了低缺陷密度的GaN外延层材料
     提出“应力诱导原位侧向外延”的方法,采用MOCVD技术成功制备了高质量、低缺陷密度的GaN外延材料。首先利用金属有机化学气相沉积(MOCVD)“两步法”在蓝宝石上首先生长AlN/sapphire模板,然后在此模板上,利用AlN和GaN材料之间应力差异诱导GaN在AlN模板表面形成“岛”并侧向生长的原理,获得了低缺陷密度,高质量的GaN材料。研究了AlN/Spphire模板的生长机理和“应力诱导原位侧向外延”降低缺陷密度的机理。
     2、揭示了位错缺陷对GaN基探测器性能影响的规律,并提出SiO~2介电纳米粒子钝化缺陷、提高探测器性能的新思路。
     研究了不同种类位错对GaN基MSM紫外探测器性能的影响,获得如下规律:器件中的螺位错缺陷主要影响探测器的暗电流特性,而刃位错缺陷主要影响探测器的响应度特性。GaN基MSM探测器的暗电流随着螺位错密度的增加而增加,探测器的响应度随刃位错密度的增加而降低,阐明了GaN中不同种类位错对探测器性能影响成因。在此基础上,提出了SiO~2纳米粒子钝化位错的方法,尤其是螺位错,有效的降低了螺位错对探测器暗电流的影响,使探测器的暗电流降低了1个数量级以上。同时探测器的光响应度特性也有所提高。
     3、设计了一种非对称势垒的MSM探测器结构,研制成功了非对称势垒GaN-MSM紫外探测器,实现了MSM结构探测器零偏压工作。
     利用不同种类金属,如Ni和Au分别作为GaN中MSM结构探测器的不同肖特基接触电极材料,研制了非对称势垒GaN基MSM结构探测器。研究表明,非对称势垒的MSM结构探测器通过对能带的调控,实现了MSM结构探测器零偏压下工作,并且此种结构探测器的响应度与偏压具有依存关系.
GaN based materials are the ideal candidates for ultraviolet (UV) detectorsbecause of their direct band gap, good thermal and chemical stability and excellentphysics property. Up to now, GaN based UV detectors has become one of the mostinteresting research field of the world since they are solid state, small size, lowenergy consumption and they can be widely used in UV warning, space ultravioletcommunication and fire monitoring. However, the performance of GaN based UVdetectors have been hindered by the high density threading dislocations in GaN dueto lack of GaN substrates. In this paper, we are focus on how to improve theperformance of GaN based detector including the GaN epilayer growth and detectorsfabrication. An idea of “Strain induced in situ laterial growth” has been proposed andinvestigated to reduce defects in GaN epilayer. Besides, the influence of thedisolations on the GaN UV detectors has been investigated and SiO~2nanoparticleshave been deposited on the surface of GaN epilayer to improve the performance ofGaN detectors. Furthermore, asymmetric Schottky barrier height GaNmetal-semiconductor-metal (MSM) detectors have been fabricated and theirperformance has been studied in detail. The main results are as follows:
     1. Growth of low-defect GaN epilayer by metalorganic phase vapor deposition(MOCVD)
     To obtain high-quality GaN epilayer, AlN templates are first grown on sapphire substrates by ‘two-step’ method by using MOCVD. The mechanism ofAlN templates are also clarified by in-situ monitoring system. Then GaN epilayersare growth on the AlN templates resulting in the reduction of disolation density inGaN epilayers because the strain difference between AlN template and GaNepilayer induce epitaxial laterial overgrowth of GaN. The mechanism of the defestsreduction has been investigated in detail.
     2. Clarified the influence of disolation on the performance of GaN baseddetector and proposed a new way, depositing SiO~2nanoparticles on GaN surface,to improve the performance of GaN based detectors by passivation effect.
     The influence of dislocations on the performance of GaN MSM detectors hasbeen investigated. The results show that the screw dislocations have a stronginfluence on the dark current of detectors, while edge dislocations have thepredominant effect on their responsivity. The dark current of the detectors increaseswith increasing screw dislocations. However, the responsivity of the detectorsdecreases with increasing edge dislocation density. The reason why theperformance of GaN detectors depend on the dislocations has been studied in detail.Based on above-mentioned study, a new way of depositing SiO~2nanoparticles onGaN surface are suggested, the performance of GaN MSM detectors have beenimproved by depositing SiO~2nanoparticles on a GaN surface. By the passivationeffect of SiO~2nanoparticles, the dark current of GaN detectors reduces more thanone order magnitude, while the responsivity of GaN detectors has also beenenhanced.
     3. Designed and fabricated asymmetric Schottky barrier height GaN MSMdetectors which have photon response under zero applied bias.
     Asymmetric Schottky barrier height GaN MSM detectors are fabricated withdifferent Schottky contact metals as the electrodes, such as Ni and Au. The recultsshow that the responsivity of this kind of detector depends on the bias and hasresponsivity at0V applied bias.
引文
[1] B. Goldenberg, J. D. Zook, and R. J. Ulmer. Ultraviolet and violet light‐emittingGaN diodes grown by low‐pressure metalorganic chemical vapor deposition [J].Appl. Phys. Lett.,1993,62(4),381-383.
    [2] D.H. Kim, C.O Cho, Y.G. Roh, et al. Enhanced light extraction from GaN-basedlight-emitting diodes with holographically generated two-dimensional photoniccrystal patterns [J], Appl. Phys. Lett.,2005,87(20),203508-203508-3.
    [3] S.Nakamura, M.Senoh, S.Nagahama,InGaN/GaN/AlGaN-based laser diodes withmodulation-doped strained-layer superlattices grown on an epitaxially laterallyovergrown GaN substrate [J], Appl. Phys. Lett.1998,72(2),211-213.
    [4] Y.D. Lin, M.T. Hardy, P.S. Hsu, et al. Blue-Green InGaN/GaN Laser Diodes onMiscut m-Plane GaN Substrate [J], Appl. Phys. Expr.,2009,2(8),082102-082102-3.
    [5] C.J. Neufeld, N.G. Toledo, S.C. Cruz, et al. High quantum efficiency InGaN/GaNsolar cells with2.95eV band gap [J], Appl. Phys. Lett.,2008,93(14),143502-143502-3.
    [6] R. Dahal, J. Li, K. Aryal, et al. InGaN/GaN multiple quantum well concentratorsolar cells [J], Appl. Phys. Lett.,2010,97(7),073115-073115-3.
    [7] G. Y. Xu, A. Salvador,W. Kim, et al. High speed, low noise ultravioletphotodetectors based on GaN p-i–n and AlGaN(p)-GaN(i)-GaN(n)structures [J], Appl.Phys. Lett.,1997,71(15),2154-2156.
    [8] Y. Huang, D. J. Chen, H. Lu, et al. Photocurrent characteristics oftwo-dimensional-electron-gas-based AlGaN/GaN metal-semiconductor-metalphotodetectors [J], Appl. Phys. Lett.,2010,96(24),243503-243503-3..
    [9] K. Radhakrishnan, N. Dharmarasu, Z. Sun, et al. Demonstration of AlGaN/GaNhigh-electron-mobility transistors on100mm diameter Si(111) by plasma-assistedmolecular beam epitaxy [J], Appl. Phys. Lett.,2010,97(23),232107-232107-3.
    [10]C. F. Lo, C. Y. Chang, B. H. Chu, Effect of humidity on hydrogen sensitivity ofPt-gated AlGaN/GaN high electron mobility transistor based sensors [J], Appl. Phys.Lett.,2010,96(23),232106-232106-3.
    [11]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The completeStory [M], New York: Springer,2000,12
    [12]T. Matsuoka, H. Tanaka, Y. Sasaki, et al., Gallium Arsenide and relatedCompounds.1989,106,141-146.
    [13]R. Juza, and H. Hahn, über die Kristallstrukturen von Cu3N, GaN und InNMetallamide und Metallnitride[J],Zeitschrift für anorganische und allgemeineChemie,1938,239(3),282-287.
    [14]H. P. Maruska, and J. J. Tietjen, The Preparation and properties ofvapor-deposited single-crystal-line GaN[J], Appl. Phys. Lett.,1969,15(10),327-329.
    [15]S. Yoshida, S. Misawa, and S. Gonda, Improvements on the electrical andluminescent properties of reactive molecular beam epitaxially grown GaN films byusing AlN‐coated sapphire substrates [J], Appl. Phys. Lett.,,1983,42(5),427-429.
    [16]H.Amano, N. Sawaki, I. Akasaki, et al., Metalorganic vapor phase epitaxialgrowth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett.,1986,48(5),353-355.
    [17]S. Nakamura, GaN Growth Using GaN Buffer Layer [J], Jpn. J. Appl. Phys.1991,30, L1705-L1707.
    [18]H. Amano, M. Kito, K. Hiramatsu, et al., P-Type Conduction in Mg-Doped GaNTreated with Low-Energy Electron Beam Irradiation (LEEBI)[J], Jpn. J. Appl.Phys.,1989,28,2112-2114.
    [19]I. Akasaki, H. Amano, M. Kito, et al., Photoluminescence of Mg-doped p-typeGaN and electroluminescence of GaN p-n junction LED [J], Journal of Luminescence1991,48–49(2),666-670.
    [20]S. Nakamura, T. Mukai, M. Senoh, et al., Thermal Annealing Effects on P-TypeMg-Doped GaN Films [J], Jpn. J. Appl. Phys.,1992,31,139-142.
    [21]C.I. H. Ashby, C. C. Mitchell, J. Han, et al., Low-dislocation-density GaN from asingle growth on a textured substrate [J], Appl. Phys. Lett.,2000,77,3233.
    [22]B. A. Haskell, T. J. Baker, M. B. McLaurin, et al., Defect reduction in (100)m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phaseepitaxy [J], Appl. Phys. Lett.,2005,86(11),111917.
    [23]M. A. Khan, J. N.Kuznia, D. T. Olson, et al. High‐responsivity photoconductiveultraviolet sensors based on insulating single-crystal GaN epilayers [J], Appl. Phys.Lett.,1992,60(23),2917-2919.
    [24]T. Y. Lin, H. C. Yang, and Y. F. Chen, Optical quenching of the photoconductivityin n-type GaN [J], J. Appl. Phys.,2000,87(7),3404-3408.
    [25]V. V. Ursaki, I. M. Tiginyanu, P. C.Ricci, etal., Persistent photoconductivity andoptical quenching of photocurrent in GaN layers under dual excitation [J],J. Appl.Phys.,2003,94,(6),3875-3882.
    [26]J. Xu, D. You, Y. Tang et al., Electric-field effects on persistent photoconductivityin undoped n-type epitaxial GaN [J], Appl. Phys. Lett.,2006,88,(7).72106.
    [27]J. C. Carrano, P. A. Grudowski, C. J. Eiting, et al., Very low dark currentmetal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystalGaN epitaxial layers [J], Appl. Phys. Lett.,1997,70(15),1992.
    [28]J. C. Carrano, T. Li, P. A. Grudowski, et al., Comprehensive characterization ofmetal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystalGaN [J], J. Appl. Phys.,1998,83,6148.
    [29]J. C. Carrano, T. Li, D. L. Brown,et al., Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN [J], Appl. Phys. Lett.,1998,73(17),2405–2407.
    [30]J. K. Kim, H. W. Jang, C. M. Jeon, et al., GaN metal–semiconductor–metalultraviolet photodetector with IrO2Schottky contact [J], Appl. Phys. Lett.,2002,81(24),4655-4655-3.
    [31]W. Y. Weng, S. J. Chang, W. C. Lai, et al., GaN MSM Photodetectors With aSemi-Insulating Mg-Doped AlInN Cap Layer [J], Phot. Tech. Lett., IEEE,2009,21(8),504-506.
    [32]C. H. Chen, Y. H. Tsai, S.Y. Tsai, et al., GaN-Based Metal-Semiconductor-MetalUltraviolet Photodetectors with the ZrO2Insulating Layer [J], Jpn J. Appl. Phys.,2011,50,04DG19.
    [33]H.Srour, J.P.Salvestrini, A.Ahaitouf, et al., Solar blind metal-semiconductor-metalultraviolet photodetectors using quasi-alloy of BGaN/GaN superlattices [J], Appl.Phys. Lett.,2011,99(22),221101-221101-3.
    [34]M. A. Khan, J. N. Kuznia, D. T. Olson, et al., Schottky barrier photodetectorbased on Mg‐doped p‐type GaN films, Appl. Phys. Lett.,1993,63(18),2455-2456.
    [35]L. Wang, M. I. Nathan, T.H. Lim, et al., High barrier height GaN Schottky diodes:Pt/GaN and Pd/GaN [J], Appl. Phys. Lett.,1996,68(9),1267-1269.
    [36]Q. Chen, J. W. Yang, A. Osinsky, et al., Schottky barrier detectors on GaN forvisible–blind ultraviolet detection [J], Appl. Phys. Lett.,1997,70,(17),2277-2279.
    [37]W. P. Hsu, M. J. Manfra, D. V. Lang, et al., Inhomogeneous spatial distribution ofreverse bias leakage in GaN Schottky diodes [J], Appl. Phys. Lett.,2001,78(12),1685-1687.
    [38]E. Northrup, Screw dislocations in GaN: The Ga-filled core model [J], Appl. Phys.Lett..2001,78(16),2288-2290.
    [39]W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, Appl. Phys.Lett.,2002,81,79.
    [40]D.G. Zhao, S. Zhang, W.B. Liu, Role of Ga vacancies in enhancing the leakagecurrent of GaN Schottky barrier ultraviolet photodetectors [J], Chin. Phys. B,2010,19(5),057802-057802-4.
    [41]Y. Zhou, C. Ahyi, C. C. Tin, et al., Fabrication and device characteristics ofSchottky-type bulk GaN-based “visible-blind” ultraviolet photodetectors [J], Appl.Phys. Lett.,2007,90(12),121118-121118-3.
    [42]K. H. Lee, S. J. Chang, P. C. Chang, et al., High quality GaN-based Schottkybarrier diodes [J], Appl. Phys. Lett.,2008,93(13),132110-132110-3.
    [43]G.Y. Xu, A. Salvador, W. Kim, et al., High speed, low noise ultravioletphotodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n)structures[J], Appl.Phys. Lett.,1997,71(15),2154-2156.
    [44]Q. Chen, M.A.Khan, C.J. Sun, et al., Visible-blind ultraviolet photodetectorsbased on GaN p-n junctions [J],Elec. Lett.,1995,31(20),1781-1782.
    [45]J. M. V. Hove1, R. Hickman1, J. J. Klaassen, et al., Ultraviolet-sensitive,visible-blind GaN photodiodes fabricated by molecular beam epitaxy [J], Appl. Phys.Lett.,1997,70(17),2282-2284.
    [46]B. Butun, T. Tut, E. Ulker, et al., High-performance visible-blind GaN-basedp-i-n photodetectors [J], Appl. Phys. Lett.,2008,92(3),033507-033507-3.
    [47]J. L. Pau, R. McClintock, K. Minder, et al., Geiger-mode operation ofback-illuminated GaN avalanche photodiodes [J], Appl. Phys. Lett.,2007,91(4),041104-041104-3.
    [48]C. Bayram, J. L. Pau, R. McClintock, et al., High quantum efficiencyback-illuminated GaN avalanche photodiodes [J], Appl. Phys. Lett.,2008,93(21),211107-211107-3.
    [49]J. B. Limb, D. Yoo, J. H. Ryou, et al., GaN ultraviolet avalanche photodiodes withoptical gain greater than1000grown on GaN substrates by metal-organic chemicalvapor deposition [J], Appl. Phys. Lett.,2006,89(1),011112-011112-3.
    [50]L. Sun, J. Chen, J. Li, et al., AlGaN solar-blind avalanche photodiodes with highmultiplication gain [J], Appl. Phys. Lett.,2010,97(19),191103-191103-3.
    [51]P. J. Hansen, Y. E. Strausser, A. N. Erickson et al., Scanning capacitancemicroscopy imaging of threading dislocations in GaN films grown on (0001) sapphireby metalorganic chemical vapor deposition [J], Appl. Phys. Lett.,1998,72(18),2247-2249.
    [52]R. Datta, M. J. Kappers, J. S. Barnard, et al., Revealing all types of threadingdislocations in GaN with improved contrast in a single plan view image [J], Appl.Phys. Lett.,2004,85(16),3411-3413.
    [53]M. Albrecht, J. L. Weyher, B. Lucznik, et al., Nonradiative recombination atthreading dislocations in n-type GaN: Studied by cathodoluminescence and defectselective etching, Appl. Phys. Lett.,2008,92(23),231909-231909-3.
    [54]D. S. Li, H. Chen, H. B. Yu, et al.,Dependence of leakage current on dislocationsin GaN-based light-emitting diodes [J], J. Appl. Phys.,2004,96(2),1111-1114S.
    [55]S. Hautakangas, J. Oila, M. Alatalo, et al., Vacancy Defects as CompensatingCenters in Mg-Doped GaN [J], Phys. Rev. Lett.,2003,90(13),137402-137405.
    [56]W. G tz, N. M. Johnson, D. P. Bour, et al., Local vibrational modes of the Mg–Hacceptor complex in GaN [J], Appl. Phys. Lett.,1996,69(24),3725-3727.
    [57]D.S. Sizov, R. Bhat, A. Heberle, et al., Internal Optical Waveguide Loss andp-Type Absorption in Blue and Green InGaN Quantum Well Laser Diodes [J], Appl.Phys. Expr.,2010,3,122104-122104-3.
    [58]陆大成,段树坤,金属有机化合物气相外延基础及应用[M],北京:科学出版社,2009,1-8.
    [59]黎大兵.(In,Al)GaN材料的MOCVD生长及其物性研究[D],[博士学位论文],北京:中科院北京半导体研究所,2004。
    [60]陈长乐,固体物理学[M],西北工业大学出版社,2000,27-28.
    [61]许振嘉,半导体的检测与分析[M],第2版,北京:科学出版社,2007,21-22,101-102.
    [62]彭昌盛,宋少先,谷庆宝,扫面探针显微技术理论与应用[M],化学工业出版社,2007,53-83.
    [63]许振嘉,半导体的检测与分析[M],第2版,北京:科学出版社,2007,19,290-299.
    [64]张树霖,拉曼光谱散射与低维纳米半导体[M],北京:科学出版社,2008,9-15.
    [65]叶良修,半导体物理学[M],上册,第2版,北京:高等教育出版社,2007,236-248。
    [66]刘恩科,朱秉升,罗晋生等,半导体物理学[M],第4版,北京:国防工业出版社,2004,120-131。
    [67]M.A. Khan, M. Shatalov, H. P. Maruska,et al., III–Nitride UV Devices [J], Jpn JAppl. Phys.,2005,44,7191-7206.
    [68]R. G. Banal, M. Funato, and Y. Kawakami, Initial nucleation of AlN growndirectly on sapphire substrates by metal-organic vapor phase epitaxy [J], Appl. Phys.Lett.,2008,92(24),241905-241905-3.
    [69]M. Takeuchi, S. Ooishi, T. Ohtsuka, et al., Improvement of Al-Polar AIN LayerQuality by Three-Stage Flow-Modulation Metalorganic Chemical Vapor Deposition[J], Appl. Phys. Express,2008,1(2),021102-021102-3.
    [70]H. Hirayama, T. Yatabe, N. Noguchi, et al.,231–261nm AlGaN deep-ultravioletlight-emitting diodes fabricated on AlN multilayer buffers grown by ammoniapulse-flow method on sapphire [J], Appl. Phys. Lett.,2007,91(7),071901-071901-3.
    [71]E. J. Tarsa, B. Heying, X. H. Wu, et al., Homoepitaxial growth of GaN underGa-stable and N-stable conditions by plasma-assisted molecular beam epitaxy [J], J.Appl. Phys.1997,82(11),5472-
    [72]Landolt-Bo¨rnstein: Numerical Data and Functional Relationships in Science andTechnology, New Series, Group III: Crystal and Solid State Physics Vol.17,Semiconductors~Springer, New York,1982
    [73]T. Zywietz, J. Neugebauer, and M. Scheffler, Adatom diffusion at GaN (0001)and (0001) surfaces [J],Appl. Phys. Lett.,1998,73(4),487-489.
    [74]W. P. Hsu, M. J. Manfra, D. V. Lang, et al., Inhomogeneous spatial distribution ofreverse bias leakage in GaN Schottky diodes [J], Appl. Phys. Lett.,2001,78(12)1685-1687.
    [75]J. E. Northrup, Screw dislocations in GaN: The Ga-filled core model [J], Appl.Phys. Lett.,2001,78(16),2288-2290.
    [76]W. P. Hsu, M. J. Manfra, R. J. Molnar, et al., Direct imaging of reverse-biasleakage through pure screw dislocations in GaN films grown by molecular beamepitaxy on GaN templates [J], Appl. Phys. Lett.,2002,81(1),79-81.
    [77]H. Zhang, E. J. Miller, and E. T. Yu, Analysis of leakage current mechanisms inSchottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy[J], J. Appl. Phys.,2006,99(2),023703-023703-3.
    [78]E. Arslan, S. Bütün, and E. Ozbay, Leakage current by Frenkel–Poole emission inNi/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures Appl. Phys.Lett.,2009,94(14),142106-142106-3.
    [79]W. Chikhaoui, J.-M. Bluet, M.-A. Poisson, et al., Current deep level transientspectroscopy analysis of AlInN/GaN high electron mobility transistors: Mechanism ofgate leakage [J], Appl. Phys. Lett.2010,96(7),072107-072107-3.
    [80]J. C. Zhang, D. G. Zhao, J. F. Wang, et al., The influence of AlN buffer layerthickness on the properties of GaN epilayer [J], J.Cryst. Growth,2004,268(1-2),24-29(2004)
    [81]W. B. Liu, D. G. Zhao, X. Sun, et al., Stable multiplication gain in GaN p–i–navalanche photodiodes with large device area [J], J. Phys. D: Appl. Phys.,2009,42(1),015108.
    [82]E. G. Brazel, M. A. Chin, and V. Narayanamurti, Direct observation of localizedhigh current densities in GaN films [J], Appl. Phys. Lett.,1999,74(16),2367-2369
    [83]N. G. Weimann, L. F. Eastman, D. Doppalapudi, et al., J.Appl. Phys.1998,83,3656(1998
    [84]P. J. Hansen, Y. E. Strausser, A. N. Erickson, et al., Appl. Phys. Lett.,1998,72,2247-2249.
    [85]J. W. P. Hsu, H. M. Ng, A. M. Sergent, et al., Scanning Kelvin force microscopyimaging of surface potential variations near threading dislocations in GaN, Appl. Phys.Lett.2002,81(19),3579-3581.
    [86]S. A. Chevtchenko, M. A.Reshchikov, Q. Fan, et al., Study of SiNx and SiO2passivation of GaN surfaces [J], J. Appl. Phys.,2007,101(11),113709.
    [87]O. Weidemann, E. Monroy, E. Hahn, et al., Influence of thermal oxidation on theelectronic properties of Pt Schottky contacts on GaN grown by molecular-beamepitaxy [J], Appl. Phys. Lett.,2005,86(8),083507-083507-3.
    [88]E. J. Miller, D. M. Schaadt, E. T. Yu, et al., Reduction of reverse-bias leakagecurrent in Schottky diodes on GaN grown by molecular-beam epitaxy using surfacemodification with an atomic force microscope [J], J. Appl. Phys.,2002,91(12),9821-9826.
    [89]M.Herrera, M.Chi, M.Bonds, et al., Atomic scale analysis of the effect of theSiO2passivation treatment on InAs/GaSb superlattice mesa sidewall, Appl. Phys.Lett.,2008,93(9),093106-093106-3.
    [90]B. Heying, E. J. Tarsa, C. R. Elsass, et al., Dislocation mediated surfacemorphology of GaN [J], J.Appl. Phys.,1999,85(9),6470-6476.
    [91]J. R. Yeargan and H. L. Taylor, The Poole‐Frenkel Effect with CompensationPresent [J],J. Appl. Phys.,1968,39(12),5600-5604.
    [92]F. A. Ponce, D. Cherns, W. T. Young, et al.,Characterization of dislocations inGaN by transmission electron diffraction and microscopy techniques [J], Appl. Phys.Lett.,1996,69(6),770-772.
    [93]D. M. Follstaedt, N. A. Missert, D. D. Koleske,et al.,Plan-view image contrast ofdislocations in GaN [J],Appl. Phys. Lett.,200383(23),4797-4799.
    [94]J. Zhao, A. Wang, M. A. Green, et al.,19.8%efficient “honeycomb” texturedmulticrystalline and24.4%monocrystalline silicon solar cells [J], Appl. Phys. Lett.,1998,73(14)1991-1993.
    [95]L. L. Ma, Y. C. Zhou, N. Jiang, et al.,Wide-band “black silicon” based on poroussilicon [J], Appl. Phys. Lett.,2006,88(17),171907-171907-3.
    [96]史常忻,金属-半导体-金属光电探测器[M].上海交通大学出版社.2000,16-24
    [97]M. Razeghi and A. Rogalski, Semiconductor ultraviolet detectors [J], J. Appl.Phys.,1996,79(10),7433-7473.
    [98]J. S. Liu, C. X. Shan, B. H. Li, et al., High responsivity ultraviolet photodetectorrealized via a carrier-trapping process [J], Appl. Phys. Lett.,2010,97(25),251102-251102-3.
    [99]O. Katz,G. Bahir, and J. Salzman,Persistent photocurrent and surface trapping inGaN Schottky ultraviolet detectors,Appl. Phys. Lett.,2004,84(20),4092-4094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700