用户名: 密码: 验证码:
脾虚证物质能量代谢基因差异表达及其生物信息分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     中医“脾主运化”、脾为“后天之本,气血生化之源”之说,揭示脾对于饮食物具有消化吸收和输转的功能,同时脾通过营养物质在体内的代谢,为人体出生以后生长发育及生命活动提供能量和物质基础。物质能量代谢是生命活动的物质基础,它包括消化吸收、中间代谢和排泄三个阶段,中间代谢是机体内代谢的主体,包括糖、脂、蛋白质、核酸、微量元素和能量代谢等(本论文物质代谢特指糖、脂、蛋白质、核酸和微量元素代谢)。目前已有大量的研究证实脾虚动物存在消化吸收和营养代谢障碍,在中间代谢方面表现为糖原含量降低;血脂含量和生物膜结构异常;氨基酸和蛋白含量降低;组织DNA和RNA含量降低;线粒体结构异常,ATP含量降低;微量元素含量异常等,可见,脾与物质能量代谢在病理上也表现出高度的一致。
     目前脾虚证与物质能量代谢相关性研究主要以对某一代谢相关生化指标的测定为主,缺乏对脾虚证机体整个物质能量代谢的同步研究。基因芯片技术作为一个“组学”研究方法,与中医的“整体观”有很多相似之处,它可以反映机体某一状态所有基因的表达情况。因此,在本世纪初,基因芯片技术就已经广泛用于脾虚证动物模型的研究,但是由于我国利用基因芯片技术研究脾虚证的起步相对较晚,基因芯片数据的分析存在一些明显不足,如对芯片数据的预处理不够,对差异表达基因缺乏统计学检验,并且对于差异表达基因的功能注释也过于单一,最终导致对芯片数据的解读浮于表面,未能达到预期目的。随着分子生物学和生物信息学的发展,一些专业的生物信息学软件已经广泛用于基因芯片数据的分析,这大大提高了基因芯片数据的解读能力,并且随着大量基因芯片数据的积累,使得广泛利用现有基因芯片数据来解读脾虚证的发病机制比少量基因芯片实验本身更为重要。
     对此,在课题组应用基因芯片研究慢性浅表性胃炎脾气虚证(下称脾虚证)基因表达谱的工作基础上,本文利用BRB ArrayTools和IPA软件对慢性浅表性胃炎(下称慢性胃炎)脾虚证患者(分别以健康志愿者和脾胃湿热证患者作为对照)和非幽门螺杆菌(Helicobacter pylori, Hp)感染脾虚证患者(与Hp感染脾胃湿热证患者相比)基因芯片数据进行深入挖掘,通过对前者物质能量代谢相关差异表达基因分析,探讨脾虚证与物质能量代谢的相关性,从机体整个物质能量代谢水平认识脾的生理功能和脾虚证的发病机制;通过对后者差异表达基因分析,探讨Hp的致病机制,同时认识“慢性胃炎脾胃湿热证患者Hp感染率明显比脾虚证患者高”这一临床现象的遗传背景,为中医分型和Hp相关疾病的治疗提供理论依据。此外,论文还汇总了近10年气虚证或体质人和脾虚大鼠模型差异表达基因,通过对脾虚证患者、气虚证或体质人和脾虚大鼠模型物质能量代谢相关差异表达基因的相似性比较,探讨脾虚证基因表达谱的特征,并筛选出脾虚证特征性代谢基因和代谢途径,从基因组学的角度为中医脾基础理论的现代科学诠释和脾虚证临床辨证分型提供参考,并为脾虚证的病理生理研究提供线索。
     材料与方法:
     一、材料
     (一)基因芯片数据来源
     慢性胃炎脾虚证患者与健康志愿者比较和脾虚证患者与脾胃湿热证患者比较的基因芯片原始数据,以及慢性胃炎非Hp感染脾虚证患者与Hp感染脾胃湿热证患者比较的基因芯片原始数据全部来自于课题组脾虚证发病机理研究的前期数据,并已有相关论文发表。包括肺气虚证、气阴两虚证、气虚体质在内的气虚证或体质人差异表达基因全部来源于公开发表的学术论文和学位论文。包括不同建模方法和组织来源的脾虚大鼠模型差异表达基因全部来源于公开发表的学术论文和学位论文。
     (二)用于脾虚证与脾胃湿热证比较的差异表达基因验证的荧光定量PCR实验病例来源
     1.诊断标准及辨证分型标准
     慢性胃炎西医诊断和辨证分型标准以及Hp诊断标准全部采用课题组原实验设计标准(王颖芳,广州中医药大学2006届博士学位论文),具体如下:
     (1)慢性胃炎诊断标准参照《中药新药临床研究指导原则》。
     (2)脾气虚证辨证标准主症:①舌质淡、舌体胖或有齿印,苔薄白;②胃纳减少或食欲差;③腹胀;④大便溏或腹泻。次症:①消瘦;②体倦乏力;③脉细弱。判断:a)主症①必备。b)兼具主症②、③、④之二;或兼具主症②、③、④之一,同时兼具2个以上次症,诊断可成立。
     (3)脾胃湿热证辨证标准主症:①舌苔黄腻;②胸闷;③胃脘痞满或胀痛;④食欲不振。次症:①口苦而黏;②口渴少饮,或喜热饮;③大便溏,或有黏液;④恶心;⑤身困乏力;⑥脉濡缓,或滑。判断:a)主症①必备。b)兼具主症②、③、④之
     二,或兼具主症②、③、④之一,同时兼具2个以上次症;或兼具3个以上次症,诊断可成立。
     (4)Hp诊断标准
     患者近一个月内未服用抗生素类药物。病理切片染色与快速尿素酶试验二者均为阳性即为Hp感染。两者均为阴性即为非Hp感染。
     2.纳入及排除标准
     同时符合慢性胃炎非Hp感染脾虚证或Hp感染脾胃湿热证,并同意签署由学术道德委员会批准的《知情同意书》的患者纳入。年龄在18岁以下或65岁以上,妊娠或哺乳妇女,过敏体质者,或存在消化道其它器质性病变、心、脑、肝、肾、造血系统等严重原发性疾病及精神性疾病等患者被排除。
     二、方法
     (一)脾虚证患者差异表达基因分析
     慢性胃炎脾虚证患者与健康志愿者比较和脾虚证患者与脾胃湿热证患者比较的基因芯片原始数据,以及慢性胃炎非Hp感染脾虚证患者与Hp感染脾胃湿热证患者比较的基因芯片原始数据,采用下述方法进行分析处理:
     1.基因芯片数据的预处理和数据筛选
     对Cy5和Cy3信号值进行均一化处理,消除两标记体系间的系统误差。参与均一化处理的有效基因点的条件:(1)该基因点的Cy3和Cy5信号值都大于200,或者其中之一大于800;(2)该基因点的Cy5信号值/Cy3信号值的比值在0.1-10之间。均一化系数计算方法:计算每个有效基因点Cy5信号值/Cy3信号值的比值,求出其相应的自然对数值r=ln(Cy5/Cy3),算出全部有效基因点r值的平均值R,那么实验的均一化系数就等于R的倒数即(1/R)。将所有基因点的Cy3信号值乘上均一化系数,得出调整后的Cy3*,即Cy3*=Cy3×(1/R),并将所有小于200的Cy3*值以200取代,所有小于200的Cy5信号值用200替代。将Cy5和Cy3*信号值输入芯片分析软件BRBArrayTools4.1.0Beta2进行数据筛选,包括对数转换、中位值标准化和基因筛选。其中某个基因被保留用于后续分析的基因筛选条件是:该基因的Cy5/Cy3*比值必须有超过20%的样本大于1.5,且不能有超过50%的数据缺失。对筛选后的数据进行功能注释和进一步分析。
     2.GO和KEGG基因集分析
     对筛选后的芯片数据进行GO和KEGG基因集分析。基因芯片分析时,将健康志愿者或脾胃湿热证患者作为对照组,将脾虚证患者作为实验组。Hp分析时,将非Hp感染脾虚证患者作为对照组,Hp感染脾胃湿热证患者作为实验组。采用配对t检验的方法,显著性检验方法为LS/KS排列检验和Efron-Tibshirani's基因集分析最大均值检验(GSA maxmean test), P<0.005。
     3.芯片间分类对比分析
     (1)差异表达基因筛选
     对筛选后的数据进行芯片间的分类对比分析。基因芯片分析时,实验组和对照组设置同上。采用配对t检验的统计方法,将同时满足P<0.05或p<0.01或p<0.001和表达倍数>2的基因设定为差异表达基因。对表达倍数<1的基因数据进行负倒数转换,因此倍数为正的基因是实验组上调基因,负值表示实验组下调基因,分别标记为“↑”和“↓”。
     (2)差异表达基因生物信息分析
     将差异表达基因ID和表达倍数导入IPA8.6在线软件对差异表达基因进行注释、相互作用网络等生物学功能分析。对于脾虚证分别与健康志愿者和脾胃湿热证患者比较的差异表达基因根据BRB Array Tools软件的GO功能分析中的生物学过程和KEGG通路以及IPA在线软件的生物学功能分类和基因的生物学注释四方面信息综合确定物质能量代谢相关基因,分析脾虚证与物质能量代谢的相关性;对于非Hp感染脾虚证差异表达基因,通过差异表达基因功能注释和相互作用网络分析,探讨Hp的致病机制,为中医分型和Hp相关疾病的治疗提供理论依据。
     (3)基于差异表达基因的聚类分析
     利用BRB Array Tools软件的聚类功能,选择基因中心化、一减相关系数和平均连接簇设置,以选定的差异表达基因作为分析对象(Hp分析时选定所有差异表达基因,其他两组芯片分析选定物质能量代谢相关差异表达基因),对样本和基因进行层级聚类分析。
     (二)脾虚证患者、气虚证或体质人和脾虚大鼠模型物质能量代谢相关差异表达基因相似性比较
     1.脾虚证患者两组芯片的物质能量代谢基因之间相似性比较
     对脾虚证患者与健康志愿者比较的物质能量代谢相关差异表达基因和脾虚证与脾胃湿热证患者比较的物质能量代谢相关差异表达基因进行相似性比较,分析脾虚证患者差异表达基因的特征,并筛选出脾虚证患者特征性的基因和代谢途径,进一步探讨脾虚证与物质能量代谢的关系。
     2.脾虚证患者物质能量代谢基因和气虚证或体质人物质能量代谢基因相似性比较
     检索并汇总文献报道的气虚证或体质人差异表达基因,按照上述物质能量代谢相关基因的界定方法,筛选出物质能量代谢相关差异表达基因,并与脾虚证患者物质能量代谢差异表达基因进行比较,探讨脾虚证患者和气虚证或体质人在物质能量代谢基因差异表达上的异同,从而确定物质能量代谢异常是脾虚证患者特有的病理现象还是气虚证所共有的病理机制。
     3.脾虚证患者物质能量代谢基因和脾虚大鼠模型物质能量代谢基因相似性比较
     检索并汇总文献报道的脾虚大鼠模型差异表达基因,按照上述方法2,进行分析,探讨脾虚证特有的代谢基因和途径。
     (三)脾虚证与脾胃湿热证比较的差异表达基因荧光定量PCR验证
     1.胃黏膜组织的采集
     在广东省中医院收集慢性胃炎非Hp感染脾虚证和Hp感染脾胃湿热证患者各4例,胃镜下钳取胃窦黏膜活检组织200mg左右,液氮保存备用。
     2.荧光定量PCR实验
     论文对慢性胃炎非Hp感染脾虚证与Hp感染脾胃湿热证比较的差异表达基因HLA-DRB1、SCGN、COX7B和SULT1A4四个基因进行定量PCR验证。实验采用SYBR Green I的方法,利用primer express2.0软件设计引物,并按照相关试剂盒说明书提取总RNA、进行荧光定量RT-PCR反应,采用ΔΔCt的方法计算实验组与对照组之间的相对含量。
     结果:
     一、脾虚证患者差异表达基因
     (一)脾虚证与健康志愿者比较的物质能量代谢相关差异表达基因
     (1)GO分析获得287个有显著性意义的基因集,其中细胞成分49个、分子功能60个,生物学过程178个。KEGG分析获得11个有显著性意义的代谢通路。GO生物学过程和KEGG通路显示,脾虚证患者在涉及脂、蛋白质、核酸和糖代谢的相关基因表达异常。(2)分类对比分析获得15个物质能量代谢相关差异表达基因,占总差异表达基因的75%(15/20),其中下调基因14个,酶基因或有酶活性的基因11个(73%),它们参与机体脂、蛋白质、核酸和糖代谢过程。与脂类代谢相关的基因有ACAA2↓和CYP20A1↓,表现为脂肪酸分解和胆固醇转化降低;与蛋白质代谢相关的基因有RPS28↓、B3GNT1↓、GCNT1↓、PPP1R3C↓、UBXN1↓、UBE2D2↓、ASL↓、 ASS1↓和PCYOX1L↓、ALDH9A1↓,表现为蛋白质合成和糖基化和磷酸化修饰降低,蛋白质泛素化降解异常,参与尿素循环、自主神经等生物学过程的氨基酸代谢降低;与核酸代谢相关的基因有RMI1↓、SMARCD3↓和PARP1↑,表现为DNA复制和转录降低,DNA损伤修复增加;与糖类代谢相关的基因有B3GNT1↓、GCNT1↓和PPP1R3C↓,表现为聚糖和糖原合成降低。(3)基于物质能量代谢基因差异表达的样本聚类分析显示脾虚证患者与健康志愿者不能分开。
     (二)脾虚证与脾胃湿热证比较的物质能量代谢相关差异表达基因
     (1)GO分析获得373个有显著性意义的基因集,其中细胞成分58个、分子功能59个,生物学过程256个。这些生物学过程包括脂、蛋白质、核酸、糖代谢、微量元素和能量代谢等。KEGG分析获得2个有显著性意义的代谢通路,即核糖体和核黄素代谢。(2)分类对比分析获得56个物质能量代谢相关差异表达基因,占总差异表达基因的71%(56/79),其中下调基因45个、酶或具有酶活性的基因30个、转运蛋白基因5个,它们参与机体脂、蛋白质、核酸、糖、微量元素和能量代谢过程。与脂代谢相关的基因有ACADVL↓、LRP11↑、SULT1A4↓、CRLS1↑、GPCPD1↓、PIGL↓、 B3GNT1↓、ST8SIA4↓和FUT9↑,表现为脂肪酸p氧化降低、胆固醇摄取增加和代谢转化降低、磷脂和糖脂代谢异常;与蛋白质代谢相关的基因有ASRGL1↓、AARSD1↓、 EBNA1BP2↓、PUM2↑、MRPL52↓、C120RF65↓、PSMB8↓、PSME2↓、UBA7↓、RNF11↑、 FBX044↓、ZFYVE26↓、CHMP2A↓、SSR4↓、SNX4↑、RAB3B↓、RABL2A↓、GOLGA2↓、 KDELR1↓、PHPT1↓、ACPP↓、PTPRF↓、CRKL↓、HDAC7↓、ADPRHL2↓、B3GNT1↓、 ST8SIA4↓、DDOST↓和FUT9↑,主要表现为蛋白质的生物合成降低、蛋白质泛素化减弱、靶向输送和翻译后磷酸化和糖基化修饰降低;与核酸代谢相关的基因有TOP2A↓、 SF3A3↓、CREB3↓、CRTC2↓、NR1D2↑、MED6↓、GTF2IRD1↓、C1ORF83↓、ZNF773↓、ZMYND11↑、DFFB↓、FLJ35220↓和ADPRHL2↓,主要表现为DNA复制和转录减弱,DNA损伤修复增强;与糖代谢相关的基因有AGL↑、PTPRF↓、B3GNT1↓、FUT9↑、 ST8SIA4↓、SULT1A4↓、DDOST↓和PIGL↓,主要表现为糖原的分解增加和糖复合物的合成降低;与微量元素代谢相关的基因有COMMD1↓、FTL↓、SLC39A6↑、 CHRFAM7A↓、SCGN↑和S100A6↓,表现为铜离子和铁离子代谢下降、锌离子代谢增加、钙离子代谢异常;与能量代谢相关的基因有AK3↓和COX7B↓,表现能量代谢障碍。(3)基于物质能量代谢基因差异表达的样本聚类分析能够将脾虚证和脾胃湿热证患者分开。
     (三)非Hp感染脾虚证与Hp感染脾胃湿热证比较的差异表达基因
     (1)GO分析获得703个有显著性意义的基因集,其中细胞成分114个、分子功能114个,生物学过程475个。KEGG分析获得29个有显著性意义的代谢通路。GO生物学过程和KEGG通路分析结果一致显示,Hp感染会使宿主在涉及蛋白质代谢、信号通路、免疫炎症反应、细胞骨架等方面的基因差异表达。(2)分类对比分析获得34个有生物学功能注释的差异表达基因,它们参与蛋白质代谢、免疫和炎症反应、信号通路、基因转录、微量元素代谢等过程。(3)差异表达基因相互作用网络分析发现82%的基因被IPA软件归类到三个与基因表达、癌症进展、抗原递呈和免疫反应等相关的相互作用网络。这些结果显示Hp感染能够刺激颗粒富集的胞质结构(Particle-rich Cytoplasmic Structure PaCS)的形成,改变细胞基因表达过程,逃逸宿主防御机制,增加免疫和炎症反应,激活NFKB和Wnt/β-catenin信号通路,扰乱金属离子平衡,诱导癌症发生。(4)差异表达基因聚类分析能够将非Hp感染脾虚证患者和Hp感染脾胃湿热证患者分开。
     二、脾虚证患者、气虚证或体质人和脾虚大鼠模型物质能量代谢相关差异表达基因相似性比较
     (一)脾虚证患者两组芯片的物质能量代谢基因之间相似性比较
     1.两组芯片数据的GO分析都显示,脾虚证患者在涉及脂、蛋白质、核酸和糖代谢的相关基因表达异常,并且以参与蛋白质代谢的基因最多;KEGG分析都显示,脾虚证患者在参与蛋白质代谢通路的相关基因表达异常。
     2.两组芯片的分类对比分析显示,脾虚证与健康志愿者比较的物质能量代谢差异表达基因相对较少,主要涉及脂类、蛋白质、核酸和糖类代谢,而脾虚证与脾胃湿热证比较的物质能量代谢差异表达基因较多,主要涉及脂类、蛋白质、核酸、糖类、微量元素和能量代谢,并且两组芯片在具体的差异表达基因名称上也存在明显不同。尽管如此,两组芯片更多的存在很多共同点,表现在:(1)脾虚证患者在两组芯片中都存在大量物质能量代谢基因表达异常,占总差异表达基因的70%以上,并且大部分为酶基因或具有酶活性基因,总体以表达下调为主。(2)B3GNT1在两组基因芯片数据中都一致下调。(3)在代谢途径上,脾虚证患者在两者芯片中都表现为胆固醇代谢转化和脂肪酸p氧化过程降低,核糖体形成障碍,蛋白质翻译后磷酸化和糖基化修饰降低,蛋白质泛素化降解途径降低,DNA复制和转录水平低下,DNA损伤修复加强。同时,脾虚证患者胃肠道组织糖原合成降低,分解增强,并且还存在聚糖合成障碍。
     3.基于物质能量代谢基因差异表达的样本聚类分析显示,脾虚证患者与健康志愿者不能很好的分开,而脾虚证患者与脾胃湿热证患者则能很好的分开。
     (二)脾虚证患者物质能量代谢基因和气虚证或体质人物质能量代谢基因相似性比较
     脾虚证患者与其他气虚证或体质人物质能量代谢相关差异表达基因存在明显差异,具体表现在:(1)脾虚证患者,除与气虚体质人差异表达基因存在很多相似之处(差异表达基因都以下调为主,但是脾虚证患者在导致物质能量代谢障碍方面更加明显)之外,与其他气虚证或体质人在差异表达基因的种类、表达趋势和涉及的代谢途径上都明显不同;(2)UBA、ST、RAB和S100是脾虚证患者和气虚体质人的共有基因,可能与脾虚证密切相关,而RP、PTP和UBE2是脾虚证患者与其他气虚证或体质人的共有基因,可能与气虚证密切相关;(3)在代谢途径上,脾虚证患者参与糖、脂、蛋白质和核酸代谢的相关基因表达下调,而气虚证或体质人差异表达基因参与的代谢过程相对较少,并且相关基因以上调为主;(4)蛋白质泛素化异常是气虚证的共性,但脾虚证患者和气虚体质人表现降低,其他气虚证或体质人表现增强;(5)脾虚证患者和气虚证或体质人都存在DNA损伤,这可能是气虚证共有的病理现象。
     (三)脾虚证患者物质能量代谢基因和脾虚大鼠模型物质能量代谢基因相似性比较
     1.脾虚证患者和脾虚大鼠模型在差异表达基因的数量上存在明显差异,在表达趋势上,脾虚证患者差异表达基因总体以下调为主,脾虚大鼠模型差异表达基因除海马组织外,都以表达上调为主。这些结果说明脾虚证患者和脾虚大鼠模型在病理上可能存在明显不同。2.脾虚证患者和大鼠模型之间重复出现的代谢相关差异表达基因有13个:B3GNT1、CYP、SLC39A、SNX、FUT、SLC2A、GCNT、ACAD、LDH、RP、 PPP、S100和PTPR,其中RP和PTPR下调与气虚证患者共有基因分析结果一致;(1)这些基因表达产物,除RP外,全为酶和运载蛋白,与脾主运化的认识一致;(2)这些基因涉及糖、脂、蛋白质和微量元素代谢过程,具体表现为葡萄糖运输和分解、糖原合成与分解以及聚糖的合成紊乱;脂肪酸和胆固醇代谢异常;核糖体形成障碍、蛋白质翻译后磷酸化修饰降低和糖基化异常以及细胞内靶向输送增加;锌离子代谢增加、钙离子代谢降低。这些结果说明,不同建模方法构建的脾虚大鼠模型虽然都不能完全反映脾虚证的所有特征,但是都能从某一方面部分反映脾虚证的特征,其重复出现的代谢相关差异表达基因可能就是脾虚证的重要特征。
     三、脾虚证与脾胃湿热证对照的差异表达基因荧光定量PCR验证
     慢性胃炎非Hp感染脾虚证与Hp感染脾胃湿热证比较的差异表达基因HLA-DRB1、SCGN、COX7B和SULT1A4四个基因(后三个基因也是脾虚证与脾胃湿热证差异表达基因)的定量PCR结果与基因芯片实验结果一致,但是定量PCR结果整体比基因芯片结果偏低。此外,之前课题组对脾虚证患者与健康志愿者差异表达基因ACAA2进行了验证,定量PCR结果与基因芯片结果一致下调,定量PCR结果同样比基因芯片结果偏低。
     结论:
     1.脾虚证患者与其他气虚证不同,主要通过代谢相关基因,尤其是酶基因的表达下调,从而出现营养代谢障碍,具体表现为:(1)胆固醇代谢转化和脂肪酸β氧化过程降低;(2)核糖体形成障碍,蛋白质翻译后磷酸化和糖基化修饰降低,蛋白质泛素化降解途径降低;(3)DNA复制和转录水平低下,DNA损伤修复加强;(4)脾虚证患者胃肠道组织糖原合成降低,分解增强,并且还存在聚糖合成障碍。这些结果描绘出了脾虚证患者宏观物质能量代谢草图,支持《内经》中脾病理生理涉及物质能量代谢的论述,为脾藏象科学本质的现代研究和诠释提供了线索。同时,为从脾论治代谢性疾病研究提供了理论依据和学术指引。
     2.基于基因芯片数据分析获得的物质能量代谢相关差异表达基因与文献报道的临床代谢相关生化指标的测定结果相互印证,共同揭示了脾的病理生理主要涉及饮食物的消化吸收和体内代谢两方面。
     3.B3GNT1、ST、RAB、CYP、SLC39A、SNX、FUT、SLC2A、GCNT、ACAD、 LDH、RP、PPP1、S100和PTPR可能与脾虚证密切相关,而RP、PTP和UBE2可能与气虚证密切相关,这些基因为脾虚证的进一步研究提供了线索。
     4.基因表达谱分析显示,慢性胃炎脾虚证与脾胃湿热证之间临床表现差异较大,而慢性胃炎脾虚证与健康人之间临床表现差异不明显,这为中医疾病分型提供了理论依据。
     5.Hp感染会刺激PaCS的形成,改变细胞基因表达过程,逃离宿主防御机制,增加炎症和免疫反应,激活NFκB和Wnt/β-catenin信号通路,干扰金属离子的平衡,诱导肿瘤的发生。
Research background and objective
     The theory of "Spleen governing transportation and transformation"and "the spleen is the origin of the acquired constitution and source of qi-blood" in the Chinese medicine illustrates the spleen has a function in ingesta digest, absorb and transport, and provides energy and substance foundation for human growth, development and vital movement by metabolism of nutritive substance.Substance and energy metabolism is foundation of vital movement. It includes three stage of digest and absorb, intermdediate metabolism and excrete.Intermdediate metabolism is the main body of metabolism, and includes carbohydrate, lipide, protein, nucleic acid, trace element and energy metabolism.At present, many research results showed splenic asthenia animal existed the disorder of digest, absorb and nutrition metabolism.Thus, it is also similar between patho-manifestations of spleen and metabolism.
     In relativity research between splenasthenic syndrome and metabolism, it is a common method to determine biochemical indicator related to certain metabolism, but this method can not simultaneously study whole substance and energy metabolism for splenasthenic syndrome patients.Microarray technology is a omics resesrch method, and able to reflect organism all gene expression in certain state, which is very similar to the holism of Chinese medicine.So, at the beginning of this century, microarray has been extensive utilized to research animal model of splenasthenic syndrome.But because of a late beginning in China, microarray data analysis exist some problems, such as not pretreatment for microarray data, not statistics test for differentially expressed gene, and simple function annotation. These problems cause microarray data not to well explain disease mechanism.Follow the development of molecule biology and bioinformatics, some professional anlysis softwares raise the readout ability of microarray data. Moreover, many microarray data have been accumulated in recently years.So,it is more important to mine reported microarray data of splenasthenic syndrome by using bioinformics software than microarray experiment in study pathogenesy of splenasthenic syndrome.
     Based on the work foundation of gene expression profiling for splenasthenic syndrome with chronic superficial gastritis in our research groups, at the present study, microarray data of chronic superficial gastritis (below named chronic gastristis) splenasthenic-splenogastric hygropyrexia syndrome and splenasthenic syndrome-healthy volunteer, and Helicobacter pylori (H. pylori, Hp)-uninfected splenasthenic-Hp-infected splenogastric hygropyrexia syndrome were mined and bioinformatics analysis by BRB Array Tools and IPA software.For the former, differentially expressed genes related to substance and energy metabolism were analyzed to approach the correlation of splenasthenic syndrome and substance and energy metabolism, and the physiological function of spleen and pathogenesy of splenasthenic syndrome based on whole substances and energy metabolism level of organism; For the latter, differentially expressed genes were analyzed to approach pathogenic mechanism of Hp infection and understood genetic background of clinical outcome that Hp infection rate of splenogastric hygropyrexia syndrome with chronic gastritis was higher than splenasthenic syndrome, and provided theoretical basis for classification of syndrome of Chinese medicine and therapia of Hp-related diseases.In addition, the microarray data from patients of syndrome or constitution of deficiency of QI and rat models of splenasthenic syndrome were also collected.Differentially expressed genes related to substance and energy metabolism from patients of splenasthenic syndrome, and that of rat models of splenasthenic syndrome and the peoples of syndrome or constitution of deficiency of QI were similarly compared to approach marked gene and metabolic pathway of splenasthenic syndrome, and provide some references for scientic annonation of basic theory of Chinese medicine spleen and differentiation of symptoms and classification of syndrome of splenasthenic syndrome, and provide some clue for pathophysiology research of splenasthenic syndrome.
     Materials and methods
     1.Materials
     (1)Microarray data origin
     All microarray raw data from chronic gastritis patients of splenasthenic-splenogastric hygropyrexia syndrome, splenasthenic syndrome-healthy volunteer and Hp-infected splenogastric hygropyrexia syndrome-Hp-uninfected splenasthenic syndrome were from early data studying pathogenesy of splenasthenic syndrome in our group, and some papers have been published based on these data. All differentially expressed genes from patients of syndrome or constitution of deficiency of QI including insufficiency of lung-QI, deficiency of both vital energy and yin, deficiency of vital energy, and rat models of splenasthenic syndrome including different modeling methods and tissue origin were from open publishing academic and degree papers.
     (2) Case origin of fluorescent quantitation PCR verification of differentially expressed genes from microarray data of splenasthenic-splenogastric hygropyrexia syndrome
     1) Diagnostic and differentiation of symptoms and signs for classification of syndrome criteria
     All criteria of diagnose and classification symptons were from previosly criteria (WANG,Ying-fang, doctor thesis of Guangzhou university of Chinese medicine,2006),as followed:
     Diagnostic criteria of chronic gastritis refer to the Guide Principle of Clinical Research of Chinese Material Medica and New Drug.
     Differentiation of symptoms and signs criteria of splenasthenic syndrome Main sign:①body of the tongue light and big or has imprints of the teeth, moss thin and white;②appetite decrease;③abdominal distension;④loose stool or diarrhoea. Secondary sign:①emaciated;②weary and hypodynamia;③pulses extenuate.Decision:a) Main sign①necessary, b) Including the two of main sign②,③and④; Or including one of main sign②,③and④,and including over two of secondary sign.
     Differentiation of symptoms and signs criteria of splenogastric hygropyrexia syndrome Main sign:①coated tongue yellow freasy;②chest distress;③gastric cavity painful abdominal mass or gas pains;④poor appetite.Secondary sign:①bitter taste and sticky of mouth;②thirsty and few drink, or hot drink preference;③oose stool or including mucus;④nauseated;⑤body exhausted and debilitation;⑥pulses slow or slide.Decision:a) Main sign①necessary, b) Including the two of main sign②,③and④;or including one of main sign②,③and④,and including over two of secondary sign; or including over three of secondary sign.
     Diagnostic criteria of Hp infection Patients donot take medicine of antibiotics in recent one month.Both pathological section-staining and fast urease test were positive, which were Hp infected, otherwise were Hp uninfected.
     2) Receive and remove criteria
     The patients who meet criteria of chronic gastritis, splenasthenic syndrome and Hp uninfection or meet chronic gastritis, splenogastric hygropyrexia syndrome and Hp infection were received. The patients whose age less18or over65,pregnancy or breast-feed woman, hypersensitiveness constitution, with other digestive canal disease or serious primary disease and psychiosis, were removed.
     2.Methods
     (1)The analysis of differentially expressed genes related to substance and energy metabolism from patients of splenasthenic syndrome
     All microarray raw data from chronic gastritis patients of splenasthenic-splenogastric hygropyrexia syndrome, splenasthenic syndrome-healthy volunteer and Hp-infected splenogastric hygropyrexia syndrome-Hp-uninfected splenasthenic syndrome were analyzed as follows:
     ①Microarray raw data preprocessing and filting
     These gene spots, in which Cy5and Cy3signal intensity values exceeded200or one of them exceeded800,and the ratio of Cy5and Cy3was between0.1-10.0, were used to calculate the natural logarithm for their ratios of Cy5and Cy3(r=lnCy5/Cy3).Subsequently, the mean value (R) of all r value was obtained.All Cy3signal intensity value was corrected by product of Cy3and1/R to decrease systemic error of Cy5and Cy3fluorescently labeled system. All corrected Cy3and Cy5signal intensity values lessed200were substituted with200. The corrected Cy3and Cy5signal intensity values were uploaded to BRB Array Tools4.1.0Beta2software to analyze. Intensity filers excluded the spot in which both intensities are below200.If only one intensity was below200, this intensity was increased to200. A log base2transformation was applied to intensities before the arrays were normalized by using median over entire array. Gene filters were used to exclude corresponding spots for an entire gene from all arrays. Exclude a gene under any of the following conditions: minimum fold-change less than20%of expression data values have at least a1.5-fold change in either direction from the gene's median value and percent missing exceeded50%. Filtered data were annonated and further analyzed.
     ②GO and KEGG gene sets analysis
     Filtered data were used to analysis of GO and KEGG. Healthy volunteers and patients of splenogastric hygropyrexia syndrome were acted as contrast groups, and splenic asthenia patients as experiment groups (In Hp analysis, contrast and experiment groups were exchanged).Statistics analysis were performed by paired t-test, LS/KS permutation test, and Efron-Tibshirani's GSA maxmean test,and P<0.005.
     ③Class comparison of between groups of arrays
     Filtered data were used to class comparison between groups of arrays, which was used to identify differentially expressed gene among classes of samples.The patients of splenogastric hygropyrexia syndrome, healthy volunteer and Hp-uninfected splenasthenic syndrome were used for the baseline gene expression. Statistics analysis was performed by paired t-test with random variance model and the found gene list was determined by significance at0.05,0.01and0.001levels of univariate tests, respectively. Negatively reciprocal transformation was done for the genes with fold change of expression less than1. The genes which matched p<0.01or0.05or0.001and fold change exceeded2were defined as differentially expressed genes.UP-regulated and down-regulated genes were signed as "↑" and "↓"
     ④efinition and analysis of genes related to substrance and energy metabolism
     The differentially expressed genes containing the gene identifiers along with the corresponding fold changes were uploaded into the Ingenuity Pathways Analysis (IPA) website (version8.6)(www.ingenuity.com) to annotate bio-functions, construct and visualize molecular interaction networks. For only splenasthenic syndrome, the metabolism genes were definited by GO annonation and KEGG analysis of BRB Array Tools, biofunction classification and annonation of IPA website software to approach the correlation of splenasthenic syndrome and metabolism.For differentially expressed genes of Hp-uninfected splenasthenic syndrome,to approach pathogenic mechanism of Hp
     infection and provided theoretical basis for classification of syndrome of Chinese medicine and therapia of Hp-related diseases.
     ⑤Clustering analysis of differentially expressed genes related metabolism
     Hierarchical clustering of genes and samples for differentially expressed genes were performed by BRB ArrayTools software.Analysis settings included center the genes, one minus correlation metric for genes or centered correlation for samples, and average linkage.
     (2) The similar comparison of differentially expressed genes related to metabolism from patients of splenasthenic syndrome, peoples of syndrome or constitution of deficiency of QI and rat models of splenasthenic syndrome
     ①The similar comparison of genes of substance and energy metabolism from microarray data of between two patients of splenasthenic syndrome
     Differentially expressed genes related metabolism from patients of splenasthenic syndrome-healthy volunteers and that of splenasthenic-splenogastric hygropyrexia syndrome were compared to analyze characteristic of gene expression profiling for splenasthenic syndrome, and filted its characteristic genes and pathways, and further approach the relationship of splenasthenic syndrome and metabolism.
     ②The similar comparison of genes of substance and energy metabolism from patients of splenasthenic syndrome and that of peoples of syndrome or constitution of deficiency of QI
     Differentially expressed genes from patients of syndrome or constitution of deficiency of QI were collected from publishing paper, and differentially expressed genes related to metabolism were definited according to above mentioned and selected to contrasting anlysis with that of patients of splenasthenic syndrome.The differentance of them were analyzed to decide that metabolism abnormality existed in only splenasthenic syndrome or all syndrome of deficiency of QI.
     ③The similar comparison of genes of substance and energy metabolism from patients of splenasthenic syndrome and that of rat models of splenasthenic syndrome
     Differentially expressed genes from rat models of splenasthenic syndrome were collected from publishing paper, and were analyzed according to above mentioned method
     ③to approach characteristic metabolic genes and pathways of splenasthenic syndrome.
     (3)Fluorescent quantitation PCR verification of differentially expressed genes from splenasthenic-splenogastric hygropyrexia syndrome
     1)Gastric mucosa collection
     Four patients who meet criteria of chronic gastritis, splenasthenic syndrome and Hp-uninfection, and4patients who meet criteria of chronic gastritis, splenogastric hygropyrexia syndrome and Hp-infection were collected in Guangdong province hospital of Chinese medicine.Their gastric mucosas were taken200mg in gastroscope, and were preserved in liquid nitrogen.
     (3)Fluorescent quantitation PCR of differentially expressed genes
     HLA-DRB1,SCGN, COX7B and SULT1A4, which were from differentially expressed genes of Hp-uninfected splenasthenic syndrome-and Hp-infected splenogastric hygropyrexia syndrome and the latter three genes were also differentially expressed gene of splenasthenic-splenogastric hygropyrexia syndrome, were used to quantitation PCR experiment by the method of SYBR Green I.The primers were designed using primer express2.0software.Total RNA extraction and fluorescent quantitation PCR were performed according to direction of kits.Relative amount of experiment and control group was calculated by the method of△△Ct.
     Results
     1.Differentially expressed genes related to substrance and energy metabolism from the patients of splenasthenic syndrome
     (1)Differentially expressed genes from patients of splenasthenic syndrome-healthy volunteers
     ①287gene sets including49cellular components,60molecular functions and178biological processes were obtained by GO analysis and11pathways were obtained by KEGG analysis.GO biological process and KEGG pathway showed genes related to metabolism of lipid, protein, nucleic acid, carbohydrate and trace element were differentially expressed in the patients of splenasthenic syndrome;②Fifteen differentially expressed genes related to metabolism were obtained by class comparison between groups of arrays, they occupied75%(15/20) of total differentially expressed genes,14genes were down-regulated and11gene productions have enzyme activities,they participated in the metabolism process related to lipid, protein, nucleic acid and carbohydrate.ACAA2↓and CYP20A1↓were participated in lipid metabolism, and showed fatty acid degradation and cholesterol metabolic transformation decreased;RPS28↓,UBXN1↓,UBE2D2↓,ASL↓, ASS1↓,PCYOX1L↓,ALDH9A1↓,B3GNT1↓,GCNT1↓and PPP1R3C↓were participated in protein metabolism, and showed that protein biosynthesis and modification of glycosylation and phosphorylation decreased,protein ubiquitination disturbed, amino acid metabolism related in urea cycle and autonomic nerve decreased, protein; RMI1↓, SMARCD3↓and PARP1↑were participated in nucleic acid metabolism, and showed that DNA duplication and transcription decreased, DNA damage repair increased; B3GNT11↓, GCNT1↓and PPP1R3C↓were participated in carbohydrate metabolism, and showed that biosynthesis of glycan and glycogen decreased.③Clustering analysis of differentially expressed genes related metabolism showed patients of splenasthenic syndrome and healthy volunteers could not be separated.
     (2) Differentially expressed genes from patients of splenasthenic-splenogastric hygropyrexia syndrome
     ①373gene sets including58cellular components,59molecular functions and256biological processes were obtained by GO analysis.These GO biological process included metabolism of lipid, protein, nucleic acid, carbohydrate, trace element and energy. Two pathways obtained by KEGG analysis were ribosome and lactoflavin metabolism.② Fifty-six differentially expressed genes related to metabolism were obtained by class comparison between groups of arrays, they occupied71%(56/79) of total differentially expressed genes,45genes were down-regulated and30gene productions have enzyme activities, they participated in the metabolism process related to lipid, protein, nucleic acid, carbohydrate, trace element and energy metabolism.ACADVL↓, LRP11↑,SULT1A4↓, CRLS1↑,GPCPD1↓, PIGL↓, B3GNT1↓, ST8SIA4↓and FUT9↑were participated in lipid metabplism, and showed that (3-oxidation of fatty acid cut down, cholesterol intake increased and its metabolic transformation decreased, phospholipid and glycolipid metabolism were abnormal;ASRGL1↓, AARSD1↓,EBNA1BP2↓, PUM2↑, MRPL52↓, C120RF65↓, PSMB8↓, PSME2↓, UBA7↓, RNF11↑,FBXO44↓,ZFYVE26↓,CHMP2A↓, SSR4↓,SNX4↑,RAB3B↓,RABL2A↓,GOLGA2↓, KDELR1↓,PHPT1↓,ACPP↓,PTPRF↓, CRKL↓,HDAC7↓,ADPRHL2↓,B3GNT1↓, ST8SIA4↓,DDOST↓and FUT9↑were participated in protein metabolism, and showed that protein biosynthesis, ubiquitination and targeted transport decreased, posttranslation modification of phosphorylation and glycosylation decreased;TOP2A↓, SF3A3↓,CREB3↓,CRTC2↓,NR1D2↑, MED6↓, GTF2IRD1↓, C1ORF83↓, ZNF773↓,ZMYND11↑,DFFB↓,FLJ35220↓and ADPRHL2↓, were participated in nucleic acid metabolism, and showed that DNA duplication and transcription decreased, DNA damage repair increased; AGL↑, PTPRF↓, B3GNT1↓, FUT9↑,ST8SIA4↓,SULT1A4↓,DDOST↓and PIGL↓were participated in carbohydrate metabolism, and showed that glycogen degradation increased and glycoconjugate biosynthesis decreased;COMMD1↓,FTL↓,SLC39A6↑,CHRFAM7A↓,SCGN↑and S100A6↓were participated in trace metabolism, and showed copper and ferri ion metabolism decreased, zinc ion metabolism increased, calcium ion metabolism were abnormal;AK3↓and COX7B↓were participated in energy metabolism, and showed energy metabolism blocked.③Clustering analysis of differentially expressed genes related metabolism showed patients of splenasthenic syndrome and those of splenogastric hygropyrexia syndrome could be separated.
     (3)Differentially expressed genes from patients of Hp-uninfected splenasthenic-Hp-infected splenogastric hygropyrexia syndrome
     ①703gene sets including114cellular components,114molecular functions and475biological processes were obtained by GO analysis and29pathways obtained by KEGG analysis.The GO biological process and KEGG pathway showed that Hp infection caused host differential expression of genes related to protein metabolism, signal pathway, immunity and inflammation reaction, cystoskeleton etc.②Thirty-four annonated differentially expressed genes which obtained by class comparison between groups of arrays, were participated in protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on.The82%of these genes (28/34) were categorized in three molecular interaction networks involved in gene expression, cancer progress, antigen presentation and inflammatory response.Taken together, these data indicated that Hp infection could alter cellular gene expression processes, escape host defense mechanism, increase inflammatory and immune responses, activate NF-κB and Wnt/β-catenin signaling pathway, disturb metal ion homeostasis,and induce carcinogenesis.③Clustering analysis of differentially expressed genes showed patients of Hp-uninfected splenasthenic syndrome and those of Hp-infected splenogastric hygropyrexia syndrome could be separated.
     2.The similar comparison of differentially expressed genes related to metabolism from patients of splenasthenic syndrome, peoples of syndrome or constitution of deficiency of Ql and rat models of splenasthenic syndrome
     (1)The similar comparison of differentially expressed genes related to metabolism from patients of splenasthenic-splenogastric hygropyrexia syndrome and patients of splenasthenic syndrome-healthy volunteer
     ①The GO biological process from the two microarray data showed genes related to metabolism of lipid, protein, nucleic acid, carbohydrate and trace element were differentially expressed in the patients of splenasthenic syndrome;KEGG pathway from the two microarray data showed that genes related to protein metabolism were differentially expressed.
     ②The results of class comparison between groups of arrays showed, differentially expressed genes related to substrance and energy metabolism from patients of splenasthenic-splenogastric hygropyrexia syndrome and patients of splenasthenic syndrome-healthy volunteer showed obviously difference.The dissimilarity was the numbers and metabolic process of differentially expressed genes.The former was more than the latter, metabolic processes included lipid, protein, nucleic acid, carbohydrate, trace element and energy. The latter was participated in lipid, protein, nucleic acid and carbohydrate metabolism. Moreover, differentially expressed gene name was also difference.The similarity was followed as (1) Many genes related to substrance and energy metabolism were differentially expressed in the two microarray data, and they occupated over70%of total differentially expressed genes, and most of these genes were enzyme genes or enzyme activity gene, and their expressions were down-regulated in patients of splenasthenic syndrome;(2)B3GNT1expression was down-regulated in the two microarray data;(3) In the metabolic pathway, the results of two microarray data from patients of splenasthenic syndrome showed cholesterol metabolic transformation and β-oxidation of fatty acid decreased, ribosome assembly blocked, protein modification of phosphorylation and glycosylation decreased, protein ubiquitation decreased, DNA duplication and transcription decreased,DNA damage repair increased, tissue glycogen biosyntheis decreased and degradation increased, and glycan biosynthesis decreased.
     ③Clustering analysis of differentially expressed genes related metabolism showed patients of splenasthenic syndrome and those of splenogastric hygropyrexia syndrome could be separated, while patients of splenasthenic syndrome and healthy volunteers could not be separated.
     (2) The similar comparison of differentially expressed genes related to metabolism from patients of splenasthenic syndrome and syndrome or constitution of deficiency of QI
     Differentially expressed genes related to substrance and energy metabolism from patients of splenasthenic syndrome and syndrome or constitution of deficiency of QI showed obviously difference.(1)Differentially expressed genes related to metabolism from patients of splenasthenic syndrome were similar to that of constitution of deficiency of QI in expression tendency and metabolic pathway, and both existed metabolic block, but patients of splenasthenic syndrome more obvious.For these results, patients of other syndrome or constitution of deficiency of QI had completely different results;(2) ST, RAB and S100might be mark genes of splenasthenic syndrome, while RP, PTP and UBE2might be mark genes of syndrome of deficiency of QI;(3)In metabolic pathway, differentially expressed genes related to lipid, carbohydrate, protein and nucleic acid metabolism from patients of splenasthenic syndrome were down-regulated, while that of syndrome or constitution of deficiency of QI were up-regulated and participated in less metabolic process;(4)Protein ubiqutination abnormality was commonness of syndrome of deficiency of QI,but splenasthenic syndrome and constitution of deficiency of QI decreased, other syndrome or constitution of deficiency of QI increased;(5) DNA damage might be common pathological phenomenon of syndrome and constitution of deficiency of QI.
     3.The similar comparison of differentially expressed genes related to metabolism from patients and animal models of splenasthenic syndrome
     Differentially expressed genes related to metabolism from patients and animal models of splenasthenic syndrome had obvious differentence in numbers and expression tendency. But thirteen differentially expressed genes were repeatedly appeared in microarray results of patients and animal models of splenasthenic syndrome, they were B3GNT1,CYP, SLC39A, SNX, FUT, SLC2A, GCNT, ACAD, LDH, RP, PPP1, S100and PTPR. That RP and PTPR were down-regulated also appeared in syndrome of deficiency of QI;(1)Except for RP, all these genes production were enzyme and transporter;(2) These genes were participated in lipid, carbohydrate, protein and tace element metabolism, and showed that glucose transport and degradation, glycogen synthesis and degradation, and glycan synthesis, were disordered;Fatty acid and cholesterol metabolism were abnormal; Ribosome assembly blocked, protein modification of phosphorylation decreased and that of glycosylation was abnormal, and targeted transport increased; Zinc ion metabolism increased and calcium ion metabolism increased.
     3.Fluorescent quantitation PCR verification of differentially expressed genes from splenasthenic-splenogastric hygropyrexia syndrome
     The results of fluorescent quantitation PCR for HLA-DRB1,SCGN,COX7B and SULT1A4, which were from differentially expressed genes of Hp-uninfected splenasthenic syndrome-and Hp-infected splenogastric hygropyrexia syndrome and the latter three genes were also differentially expressed gene of splenasthenic-splenogastric hygropyrexia syndrome,and that of microarray experiment were similar, but the ratio of the former was lower than the latter. ACAA2of differentially expressed genes from splenasthenic syndrome-healthy volunteers was also verified by our research groups previously.
     Conclusions
     1.It was different to other syndrome of deficiency of QI that the patients of splenasthenic syndrome showed nutrition dysmetabolism by down-regulation of metabolic genes, especially enzyme genes.Dysmetabolism showed that cholesterol metabolic transformation and β-oxidation of fatty acid decreased, ribosome assembly was blocked, protein modification of phosphorylation and glycosylation decreased, protein ubiquitation decreased, DNA duplication and transcription decreased, DNA damage repair increased, tissue glycogen biosyntheis decreased and degradation increased, and glycan biosynthesis decreased. All of these results might be the one of important reason causing nutrition dysmetabolism of splenasthenic syndrome.All these results acted out macro-metabolism sketch of patients of splenasthenic syndrome, and supported discussion related to metabolism for pathophysiology of spleen in Neijing, which provided some clues for modern research and annotation of scientic essence of spleen picture.At the same time, the macro-metabolism sketch of patients of splenasthenic syndrome well revealed molecular pathophysiology background of spleen, which provided theoretical basis and academic guide for metabolic disease research based on the treatment from spleen.
     2.The differentially expressed genes related to metabolism from analysis of gene microarray data and the determination results of biochemical indicator related to metabolism from literature report were confirmed each other and revealed pathophysiology of spleen mainly included digest and absorb,and metabolism of substance.
     3.The B3GNT1,ST, RAB,CYP, SLC39A, SNX, FUT, SLC2A, GCNT, ACAD, LDH, RP, PPP1, S100and PTPR, might be closely related to the occurrence of splenasthenic syndrome, while RP, PTP and UBE2might be closely related to the occurrence of syndrome of deficiency of QI.All of these genes provided some clues for research of splenasthenic syndrome.
     4.The analysis of gene expression profiling showed the clinical manifestation between splenasthenic and splenogastric hygropyrexia syndrome was more obvious, while between splenasthenic syndrome and healthy volunteers was not obvious,which provided theoretical basis for classification of cases of disease in Chinese medicine.
     5.Hp infection could affect host on protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on, which provided theoretical basis for classification of syndrome of Chinese medicine and therapia of Hp-related diseases.
引文
[1]张万岱.加强脾虚证本质的研究.中国中西医结合脾胃杂志,1996,4(1):3.
    [2]侯灿.对中医脾本质的初步探讨.新医药学杂志,1977,(10):5.
    [3]王颖芳.慢性胃炎脾虚证患者基因差异表达谱研究,广州中医药大学博十论文,2006.
    [4]广州中医学院脾胃研究组.脾虚患者唾液淀粉酶活性初步研究.中华医学杂志,1980;60:290
    [5]唐元瑜,纪立金,王尔宁.从中医脾的实体解剖学研究探微脾主运化功能,浙江中医药大学学报,2011,35(6):821-823.
    [6]刘毅,冯晓桃,王文健.“脾主运化”理论再认识——“脾主运”与“脾主化”之辨析,中医杂志,2011,15(52)1264-1266.
    [7]马伟丰.脾虚患者胃形态和运动功能的超声图观察.浙江中医杂志,1991,26(4):184.
    [8]张向菊,劳绍贤,罗琦,等.慢性胃炎脾胃湿热证患者胃电图与胃排空的关系.广州中医药大学学报,2001;18(1):43-45.
    [9]郁仁存,胡玉芳,关天琦,等.恶性肿瘤患者中医证型的研究.中医杂志,1987,23:27.
    [10]张兵,张万岱,李黎波,等.脾虚证患者胃运动功能的研究.中国中西医结合杂志,1994,14(6):346.
    [11]曲瑞瑶.大鼠实验性脾虚证胃电波和胃运动波的研究.中西医结合杂志,1994,14(3):156.
    [12]任平,黄熙,张航向,等.脾气虚证患者胃泌酸、胃肠运动和胃肠电活动的变化.世界华人消 化杂志,2004,12(3):726-729.
    [13]劳绍贤,连至诚,王建华,等.脾胃虚实患者的消化道组织超微结构及运动功能改变.中国中西医结合脾胃杂志,1993;1(1):11-15.
    [14]彭成,雷载权.四君子汤抗脾虚动物胃肠细胞损伤的研究.中药药理与临床,1995;11(6):7.
    [15]许长照.脾虚证患者十二指肠的病理形态及组织化学研究.中西医结合杂志,1987;7(12):722.
    [16]陈淑芬.脾虚证与血清胃泌素、D-木糖排泄率及T细胞亚群的关系探讨,四川中医,1999;17(11):6.
    [17]吴家驹.“脾”与胰腺外分泌功能及小肠吸收功能关系的探讨,贵阳中医学院学报,1994;16(3):61.
    [18]成汗,彭先忠,唐子进,等.脾气(阳)虚病人腮腺分泌的研究.中华医学杂志,1984,64(9):558.
    [19]赵想法.脾虚大鼠的胃酸分泌功能及补中益气汤的作用,广州中医药大学硕十论文,2005.
    [20]韦蒿,沈鹰,刘正民.不同程度脾虚胃脘痛患者胃液成分的变化.安徽中医学院学报,1996,15(1):20.
    [21]田在善,李东华,刘英云.脾虚者病人小孩功能及唾液理化性质的改变,天津中医,1990(5):41.
    [22]唐铁军.两种不同脾虚造模方法对小鼠肠液分泌及淀粉酶活性的影响,中国药学,1994,97(3):40.
    [23]杨维益,梁嵘,陈家旭,等.脾气虚证与胰腺外分泌功能关系的实验研究,中国中医基础医学杂志,1995,1(4):41.
    [24]翁銮坤.脾虚在糖尿病发病机制中的地位,中华中医药学刊,2007,25(10):2158-2160.
    [25]黄从强,朱章志.“脾虚致消”学说对糖尿病治疗的意义及思考,广州中医药大学学报,2001,18(4):324-327.
    [26]张延群,和贵章,韩清,等.2080例糖尿病中医流行病学调研报告小结,中国中医基础医学杂志,2004,10(12):45.
    [27]蓝青强.脾胃与糖尿病的关系,陕西中医,1987(10):454.
    [28]刘敏.2型糖尿病患者胰岛素抵抗的中医实质初探,中国中医药杂志,2004,2(1):14.
    [29]刘丹,蓝青强,刘薇薇,等.糖尿病从脾虚论治探讨,广西中医药,2006,29(2):49-50.
    [30]钱秋海.糖尿病病机探讨与治疗同顾,山东中医学院学报,1988(4):66.
    [31]冯建华,刑安菊.程益春教授辨治老年糖尿病经验述要,山东中医学院学报,1996,20(5):328.
    [32]谢炳国.加减七味白术散治疗儿童脾虚消渴证78例,新中医,1994,26(12):18.
    [33]吴深涛.脾不散精与糖耐量低减,中国医药学报,2004,19(8):463-465.
    [34]陈弼沧,杨叔禹.运用补脾益气法治疗糖尿病经验,辽宁中医药杂志,2005,32(4):269-270.
    [35]黄山峰.健脾法在消渴前期证治疗中的意义,江苏中医,1998,19(6):16-17.
    [36]安淑华.中药治疗糖耐量低减40例,辽宁中医药大学学报,2007,9(3):115.
    [37]马立华.2型糖尿病前期中医药治疗,中国现代医生,2008,46(7):85-87.
    [38]黄文智,梁晓春.从脾论治糖耐量低减研究概况,环球中医药,2010,3(1):74-76.
    [39]熊海,张澄波,危北海,等.健脾益气汤对脾虚大鼠肌糖原含量的影响,中西医结合杂志,1989,9(2):96-97.
    [40]张霞,程富胜,魏彦明.实验性脾虚证大鼠肝脏和肌肉组织中糖原变化的组织学观察,中兽医医药杂志,2007,1:9-11.
    [41]危北海,王仲德.脾胃疾病虚证的鉴别诊断,浙江中医杂志,1984,19(11):507-508.
    [42]谢仰洲,陈琦涛,谢崇岑.采用过劳和饮食失节法塑造大白鼠脾虚证类型的研究,中医杂志,1987,28(5):57-58.
    [43]李乐红.“脾气虚”大鼠骨骼肌细胞化学研究,中国医药学报,1990,5(5):16.
    [44]孙恩亭,谢锦玉,李乐红.脾气虚大鼠骨骼肌中某些元素,酶及能荷的变化,中国中西医结合杂志,1993,13(12):736.
    [45]王清云,孙红光,赵君玫,等.脾胃气虚胃脐痛各兼证的生化基础.河南中医,1986,(3):6.
    [46]中国中医研究院基础理论研究所.脾气虚证的发生机理的实验研究,中医杂志,1993,34(12):744.
    [47]杨维益,梁嵘,杨敏,等.健脾理气法对骨骼肌能量代谢影响的研究.中国运动医学杂志,1994,(1):28.
    [48]易崇勤,叶百宽,金敬善,等.四君子汤对脾虚大鼠胃黏膜细胞酶组织化学及血.浆胃肠激素的影响.北京中医药大学学报,1997,(6):31.
    [49]李振华.脾胃气虚本质的研究.河南中医,1986,(3):1.
    [50]王清云,孙红光,赵君玫,等.脾胃气虚与异柠檬酸脱氢酶和肾上腺髓质激素的关系.中西医结合杂志,1987,(7):426.
    [51]王松坡,蔡淦.膏脂血症中医辨治探讨,江苏中医,1998,19(10):17-18.
    [52]张晨,赵冰.试论高脂血症与脾虚的关系,湖北中医学院学报,2003,5(1):9-11.
    [53]郑雪君.中药降脂机理及祛脂途径初探,江西中医药,1996,3:60
    [54]柴瑞霭.高脂血症的病因病机与治法初探,山西中医,1997,13(2):48.
    [55]熊文生,李任先,刘国普,等.辨治高脂血症重在理脾化痰,新中医,1996,28(11):4.
    [56]朱均.高脂血症的中医药治疗体会,贵阳中医学院学报,1991;(4):31.
    [57]肖艳皎,刘延祥.试析高脂血症从脾论治,甘肃科技纵横,2007,36(4):194.
    [58]马中建,刘红丽.健脾调脂饮治疗高脂血症的临床观察,中医药导报,2008,14(5):34-35.
    [59]赵学军,李任先,刘国普,等.健脾化痰片治疗脾虚痰阻型高脂血症的临床观察,中药新药与临床药理,2000,11(6):330-332.
    [60]张晨,赵冰,杨秀捷.健脾降浊方对脾虚型高脂血症大鼠脂质代谢影响的实验研究,湖北中医学院学报,2005,7(1):7-10.
    [61]何鲜平,徐铁锋.祛脂愈肝胶囊治疗肝郁脾虚证非酒精性脂肪肝30例,2009,31(2):194-195.
    [62]吕爱平,李德新,刘春明,等.脾虚三证模型大鼠脂质过氧化损伤的比较,中国中西医结合消化杂志,9(2):74-75,78.
    [63]陈达理.147例脾虚患者血清丙二醛含量变化,中国中西医结合杂志,1994,(5):315.
    [64]章梅,邱根全,夏天.脾虚患者脂质过氧化和红细胞免疫功能关系,安徽中医学院学报,2001,20(2):43-45.
    [65]曲长江,刘劲,官艳华,等.大黄泻下与劳倦过度单、复因素造模脾虚小鼠过氧化与抗氧化改变的比较研究,中国中西医结合消化杂志,2001;9(4):213-215.
    [66]王晓明,李德新,易杰,等.脾为后天之本的分子生物学基础—脾气虚证大白鼠模型LPO及其相关抗氧化酶变化的实验研究,辽宁中医杂志,1994,21(3):139.
    [67]李德新,王晓明,易杰,等.脾虚证对生物膜结构与功能影响的研究,辽宁中医杂志,1993,20(6):39.
    [68]马丽红,赵子厚,危北海,等.脾虚证与氧自由基脂质过氧化损伤的相关性研究,中国中西医结合脾胃杂志,1993,1(1):24-25,36-37.
    [69]王彩霞,李德新.滋补脾胃法治疗痴呆大白鼠脂质过氧化损伤的实验研究,中国中医基础医学杂志,2000;6(2):27-29.
    [70]孙远岭.健脾肥儿糖浆对脾虚幼年小鼠能量代谢及蛋白质合成,江苏中医,1996,17(11):41.
    [71]陈芝喜,徐志伟,刘小斌,等.强肌健力口服液影响脾虚小鼠蛋白质合成的效应,中国临床康复,2006,10(35):97-99.
    [72]Chen Zhi-xi, Xu Zhi-wei,Liu Xiao-bin, et al.Effect of qiangji jianli liquid on changes of nucleic acid and protein of spleen and kidney tissue in mice with spleen deficiency syndrome. Journal of Clinical Rehabilitative Tissue Engineering Research,2007,11(8):1581-1584.
    [73]毛炯.30例阴虚证患者的中医临床观察和血浆蛋白测定.浙江中医杂志,1960;25(8):363.
    [74]戴小华,孙弼纲.脾虚患者血.清游离氮基酸的变化,中国中西医结合杂志,1994;14(7):403-405.
    [75]刘健,戴小华,刘春丽.脾气虚证蛋白质代谢动态变化的临床与实验研究,中国中医基础医学杂志,1998,4(5):35-37.
    [76]周正,劳绍贤,黄志新.慢性胃炎(脾胃湿热证)与水通道蛋白4表达关系的研究,中医杂志,2004,45(5):371-372.
    [77]余万祥,季哲生,李国安,等.健脾为主治疗肝病蛋白代谢失调62例,四川中医,1993(12):32-33.
    [78]杜鹃,王秀琴,季凤清,等.脾虚胃溃疡大鼠分裂原激活的蛋白激酶信号传递分子的研究,解剖学报,2005,36(5):558-562.
    [79]崔家鹏.脾虚证大鼠心、肺、空肠组织PKC和心、肝、脑组织MAPK活性变化及补益脾胃方药作用机制的实验研究,辽宁中医学院博士论文,2003.
    [80]李德新,易杰.脾虚证大鼠肝、脾组织蛋白激酶C活性变化的比较研究,中国中西医结合杂志,2004,24:229-231.
    [81]关崇芬,沈华.蛋白酪氨酸激酶与中医脾虚证研究,中国中医药信息杂志,1996,3(11):14.
    [82]沈华,关崇芬.蛋白酪氨酸激酶的ELISA测定方法及其在脾虚证研究中的应用,中国中西医结合杂志,1998,18:243-245.
    [83]刘晓秋,陈蔚文,唐惠琼.慢性胃炎脾虚证患者唾液糖蛋白N2聚糖结构特点,广州中医药大学学报,2007,24(2):91-96.
    [84]陈敏,余江平,黄敏.环核苷酸的生理作用及临床应用,中国药房,2007,18(11):872-874.
    [85]钱先.脾胃阴虚证血浆环核苷酸的对比研究,中医杂志,1990,31(1):49.
    [86]尹光耀,何雪芬,尹玉芬,等.脾虚证患者胃黏膜线粒体超微结构、微量元素及相关因素的研究,中国中西医结合杂志,1995,15(12):719.
    [87]张育轩,于惠饮,史济招,等.脾气虚本质的初步探讨,中医杂志,1983,24(8):72.
    [88]孟静岩,徐东琴,张斌,等.脾虚型慢性胃炎动物模型环核苷酸含量变化的观察,辽宁中医杂志,1994,21(3):99-101.
    [89]Zhi-xi Chen, Xiao-bin Liu, Ming-lu Zhou, et al. Effects of jianpi bushen recipe on serum levels of cyclic nucleotide and thyroid hormone in rat models of spleen deficiency, Chinese Journal of Clinical Rehabilitation,2004,8(30):6779-6781.
    [90]李志强,赵慧,陈津岩,等.补中益气丸对脾虚证大鼠血浆环核苷酸水平的影响,湖北中医学院学报,2009,11(4):22-24.
    [91]陈芝喜,徐志伟,刘小斌,等.强肌健力口服液对脾虚小鼠DNA合成的影响,中国临床康复,2006,10(15):141-143.
    [92]章梅,夏天,吴少华,等.四君子汤对脾虚鼠脾细胞DNA合成的影响,贵阳中医学院学报,2000,22(3):55-56.
    [93]王彩霞,崔家鹏,吕爱平,等.脾虚证衰老大鼠心肌和脑组织线粒体DNA损伤的实验研究,中华中医药学刊,2009,27(7):1349-1351.
    [94]赵霞,潘华峰,鞠晓云,等.胃痞消对CAG脾虚大鼠胃黏膜上皮细胞凋亡及调控蛋白Caspase-3影响的研究,中国中医基础医学杂志,2007,13(1):42-43.
    [95]赵霞,潘华峰,鞠晓云,等.胃痞消抑制慢性萎缩性胃炎脾虚大鼠胃黏膜上皮细胞凋亡及调控蛋白Caspase-3和P53表达,中国新药杂志,2007,16(13):1018-1021.
    [96]陈芝喜,徐志伟,刘小斌,等.强肌健力口服液对脾虚小鼠RNA合成的影响,中国临床康复,2006,10(43):129-131.
    [97]彭芬,易受乡,严洁,等.脾虚证与物质代谢改变相关性的研究概况,世界中西医结合杂志,2010,5(6):540-542.
    [98]王艳杰.脾虚证的酶学研究进展,辽宁中医杂志,2002,29(10):635-636.
    [99]修宗昌,余绍源,尚文.脾虚证与酶学相关性研究概述,中国中医基础医学杂志,2003,9(8):79-82.
    [100]李德新,修宗昌.脾虚证酶学的研究进展,辽宁中医杂志,1994,21(11):526-527.
    [101]陆佰荣,侯魁元.实验性脾虚证大鼠消化酶的变化,齐齐哈尔医学院学报,2006,27(1):59-60.
    [102]尹卫东,温晓艳,温晓竞,等.实验性脾虚证大鼠10种血清酶分析,河北北方学院学报,2009,26(3):41-42.
    [103]余亚信,李学军.脾气虚与能量代谢障碍,中国医药指南,2008,6(24):293-295.
    [104]金敬善,赵子厚,危北海,等.慢性胃炎脾气虚证患者的临床和实验研究,中医杂志,1989,30(3):21-22.
    [105]Liu You-zhang, Wang Chang-jun, Liu Jing, et al.Si-Jun-Zi decoction repair s mitochondrial damage of cells of liver, myocardium, gastric mucosa and skeletal muscle in rats with spleen asthenia, Chinese Journal of Clinical Rehabilitation,2006,10(39):170-173.
    [106]宋雅芳,王晓燕,刘友章,等.健脾益气中药对脾虚大鼠骨骼肌、胃黏膜线粒体超微结构的影响,中药药理与临床,2009;25(2):6-8.
    [107]郭文峰,高小玲,李茹柳.利血平致大鼠脾虚模型尿D-木糖排泄率与肠黏膜三磷酸腺苷水平的研究,中国中西医结合消化杂志,2008,16(4):211-214.
    [108]徐琦,崔成德,何丽,等.“脾主肌肉”的生化研究—若干酶指标活性的测定,中国中医药科技,1994,1(5):3-5.
    [109]郑永峰,杨维益.脾虚证与磷酸肌酸激酶的关系.北京中医学院学报,1988,(1):47.
    [110]宋雅芳,王汝俊,刘友章,等.健脾益气中药对脾虚大鼠肝组织线粒体功能的影响,中药新药与临床药理,2009,20(5):423-426.
    [111]刘友章,王昌俊,周俊亮,等.四君子汤修复脾虚大鼠线粒体细胞色素氧化酶的作用及机制,中国临床康复,2006,10(35):118-122.
    [112]刘涛.脾气虚证衰老大鼠心肌组织线粒体呼吸链酶复合物活性和线粒体DNA缺失的实验研究,辽宁中医学院,2004年硕十论文.
    [113]李建生,杨十杰.脾气虚证与血浆、红细胞中微量元素关系的研究,中医研究,1990,3(2):19-21.
    [114]查锡良主编.生物化学(第七版),人民卫生出版社.
    [115]罗陆一.血清微量元素与气虚症关系探讨,辽宁中医杂志,1986,90(6):19.
    [116]梁民里道,陈英洋,陈小花,等.脾气虚证血清锌、铜、钙、镁、铁的变化及其意义,中国医药学报,1992,7(1):22-24.
    [117]王冠庭,矫桂穑,佘家勤.慢性肝病虚证(肝阴虚、脾气虚)血中微量元素锌铜的变化及其意义.中西医结合杂志,1982,2(3):145-146.
    [118]尹光耀,张武宁,何雪芬,等.脾虚证胃病胃黏膜亚细胞结构及其微量元素、DNA研究的临床意义,中国中西医结合脾胃杂志,1996,4(1):10-15.
    [119]赵光,张玉珍,刘永利,等.实验性脾虚证大鼠血清中微量元素含量的研究,实验动物科学与管理,1996,13(1):1-4.
    [120]王进,张茂林,邱幸凡.补脾法对脾虚证大鼠59Fe代谢在各器官组织转运分布的影响,湖北中医学院学报,2007,9(3):20-22.
    [121]危北海.中医脾胃学说应用研究,北京:北京出版社,1993,第一版:90.
    [122]张丽.基于尿液代谢组学的脾气虚证本质研究,大连医科大学硕士论文,2009.
    [1]Reimers M. Statistical analysis of microarray data. Addict Biol 2005;10:23-35.
    [2]吴斌,沈自尹.基因芯片表达谱数据的预处理分析.中国生物化学与分子生物学报.2006,22(4):272-277.
    [3]Herrero J, A1.Shahrour F,Diaz-Uriarte R,et al. GEPAS:A web-based resource for microarray gene expression data analysis.Nucleic Acids Res.2003,31(13):3461-3467.
    [4]Quackenbush J.Microarray data normalization and transformation. Nat Genet,2002,32(Suppl): 496-501.
    [5]Wilson D L, Buckley M J, Helliwell C A, Wilson I W. New normalizat ion methods for cDNA microarray data. Bioinf ormatics,2003,19(11):1325-1332.
    [6]谈效俊,张永新,钱敏平.芯片数据标准化方法比较研究.生物化学与生物物理进展.2007,34(6):625-632.
    [7]Allison DB,Cui X,Page GP,et al.Microarray data analysis:from disarray to consolidation and consensus. Nat Rev Genet.2006,7(1):55-56.
    [8]Long AD, Mangalam HJ, Chan BY, et al. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem 2001;276:19937-19944.
    [9]Pavlidis P. Using ANOVA for gene selection from microarray studies of the nervous system. Methods 2003;31:282-289.
    [10]Pawitan Y, Michiels S,Koscielny S,et al.False discovery rate,sensitivity and sample size for microaray studies.Bioinformatics.2005,21(13):3017
    [11]N.Eric Olson. The Microarray Data Analysis Process:From Raw Data to Biological Significance. The Journal of the American Society for Experimental NeuroTherapeutics.2006,3(3):373-383.
    [12]胡延佳,翦新春.基因芯片数据分析过程:从原始数据到生物学意义.生物技术通讯.2007,18(2):333-335.
    [13]Sherlock G. Analysis of large-scale gene expression data.Curr Opin Immunol.2000,12(2):201-5.
    [14]Wiltgen M,Tilz GP. DNA microarray analysis:principles and clinical impact. Hematology.2007, 12(4):271-87.
    [15]Juan HF, Huang HC. Bioinformatics:microarray data clustering and functional classification. Methods Mol Biol.2007,382:405-16.
    [16]Osborne JD, Zhu LJ, Lin SM.Interpreting microarray results with gene ontology and MeSH. Methods Mol Biol.2007,377:223-42.
    [17]Beissbarth T. Interpreting experimental results using gene ontologies.Methods Enzymol. 2006,411:340-52.
    [18]Simon R, Lam A,Li MC, et al. Analysis of Gene Expression Data Using BRB-Array Tools.Cancer Inform.2007 Feb 4;3:11-7.
    [19]Brazma A,Hingamp P,Quackenbush J,et al.Minimum information about a microarray experiment (MIAME):toward standards for microarray data. Nat Genet 2001,29:365-371
    [20]Spellman PT, Miller M,Stewart J,et al Design and implementation of microarray gene expression markup language (MAGE-ML).Genome Biol.2002,3(9):RESEARCH0046
    [21]中定珠,李家邦,蒋荣鑫,等.证候蛋白质组学与中医证候学相关性探讨.中国中西医结合杂志,2006,26(4):366.
    [22]李炜弘,王米渠,王刚,等.冠心病心阳虚证相关差异表达基因分析.现代中西医结合杂志,2004,13(24):3219-3222.
    [23]李炜弘.心阳虚证能量、脂类代谢差异表达基因谱研究.成都中医药大学,2006,博十论文.
    [24]程志清,姚立,唐烨霞,等.心气虚证复合因素造模法对Wistar大鼠基因表达的影响.浙江中医药大学学报,2006,30(2):165-168.
    [25]Huang W, Wang G, Phelps DS,et al.Combined SP-A-bleomycin effect on cytokines by THP-1 cells:impact of surfactant lipids on this effect.Am J Physiol Lung Cell Mol Physiol,2002,283(1): L94-L102.
    [26]Taylor AK, Zambaux JL, Klisak I,et al.Carboxylester lipase:a highly polymorphic locus on human chromosome 9qter.Genomics,1991,10(2):425-31.
    [27]Heil SG, Lievers KI, Boers GH, et al.Betaine-homocysteine methyltransferase(BHMT):genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans. Mol Genet Metab,2000,71(3):511-9.
    [28]Berrebi D, Bruscoli S,Cohen N,et al.Synthesis of glucocorticoid-induced leucine zipper(GILZ)by macro phages:an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10.Blood,2003,101(2):729-38.
    [29]Inouye S,Seo M,Yamada Y, et al.Increase of adenylate kinase isozyme 1 protein during neuronal differentiation in mouse embryonal carcinoma P19 cells and in rat brain primary cultured cells.J Neurochem,1998,71(1):125-33.
    [30]李泽庚,童佳兵,彭波,等.慢性阻塞性肺疾病肺气虚证和肺阴虚证患者T淋巴细胞相关基因表达对比研究.中国中医药信息杂志,2007,14(12):9-11.
    [31]李泽庚,童佳兵,彭波,等.慢性阻塞性肺疾病肺气虚证患者T淋巴细胞差异表达基因的初步研究.中国中西医结合杂志,2006,26(12):1082-1085.
    [32]李泽庚,童佳兵,彭波,等.肺气虚证患者T淋巴细胞相关基因的表达研究.中华中医药杂志(原中国医药学报),2006,21(9):536-539.
    [33]魏敏,赵晓山,孙晓敏,等.亚健康状态肾阳虚证基因差异表达研究.南方医科大学学报,2011,31(2):248-251.
    [34]倪红梅,何裕民,方盛泉.青少年肾阳虚体质差异表达基因的筛选研究.浙江中医杂志,2007,42(5):265-267.
    [35]倪红梅,何裕民,方盛泉,等.青少年肾阳虚体质差异表达基因的筛选研究探析.江苏中医药,2007,39(10):26-28.
    [36]倪红梅,何裕民,方盛泉.青少年肾阳虚体质差异表达基因研究.辽宁中医杂志,2007,34(9): 1220-1222.
    [37]倪红梅,吴艳萍,方盛泉.用基因芯片技术研究青少年肾阳虚体质差异表达基因.上海中医药杂志,2004,38(6):3-5.
    [38]谭从娥,李炜弘,汤朝晖,等.应用基因表达谱芯片技术筛选老龄肾阳虚证特征功能类基因.辽宁中医杂志,2008,35(10):1441-1444.
    [39]谭从娥,王米渠.肾阳虚证免疫功能相关基因筛选及其表达分析.现代中西医结合杂志,2011.20(22):2731-2732.
    [40]李炜弘,雍小嘉,范怀吕,等.老龄肾阳虚证的差异表达基因谱分析.时珍国医国药,2009,20(5):1210-1212.
    [41]黄禹峰,李炜弘,汤朝晖,等.老龄冠心病心肾阳虚证的差异表达基因谱分析.辽宁中医杂志,2010,37(12):2283-2286.
    [42]陈晓玲,高志芬,丁维俊.肾阳虚证患者血液生化、免疫指标与基因表达谱结果的对比研究.四川中医,2007,25(5):1 1-13.
    [43]杨裕华,李震.“劳倦过度、房室不节”肾阳虚小鼠模型脑基因芯片研究.中华中医药杂志(原中国医药学报),2008,23(5):396-401.
    [44]沈自尹,黄建华,陈伟华.以药测证对肾虚和肾阳虚大鼠基因表达谱的比较研究.中国中西医结合杂志,2007,27(2):135-137.
    [45]魏敏,赵晓山,孙晓敏,等.肾阴虚证患者的基因差异表达.广东医学,2010,31(23):3017-3020.
    [46]赵晓山.肾阴虚证相关基因的初步研究.第一军医大学,2004,博十论文.
    [47]敖慧,彭成,林代华,等.参术胶囊治疗脾虚胃癌转移鼠模型的基因表达谱研究.云南中医学院学报,2010,33(1):7-11.
    [48]林代华.脾虚胃癌转移鼠模型的建立及基因表达谱的变化.成都中医药大学,2002,硕十论文.
    [49]王玉杰,谢鸣.肝郁脾虚证大鼠模型肝脏的差异基因表达.中华中医药杂志(原中国医药学报),2011,26(11):2660-2663.
    [50]王肃,陈小野,邹世洁,等.利血平脾虚证模型大脑皮层基因表达谱变化的初步研究,中医药学刊,2003,21(9):1512-1515.
    [51]王肃,邹世洁,陈小野,等.利血平脾虚证模型海马基因表达谱变化的研究,现代中西医结合杂志,2004,13(7):841-844.
    [52]陈蔚文,王颖芳,劳绍贤,等.脾气虚证患者基因差异表达研究,中国病理生理杂志,2008,24(1):148-152.
    [53]王颖芳,陈蔚文,劳绍贤,等.慢性胃炎脾气虚证与脾胃湿热证的差异表达基因比较,中国病理生理杂志,2008,24(2):320-324.
    [54]CHEN Yu-long, CHEN Wei-wen, WANG Ying-fang, et al.Bioinformatics research on chronic superficial gastritis of Pi-deficiency syndrome by gene arrays, Chin J Integr Med, 2009,15(5341-346.
    [55]王桂香.慢性胃炎脾虚证消化吸收障碍亚型差异表达基因生物信息学及临床研究,广州中医药大学博十论文,2007.
    [56]罗云坚,修宗吕,黄穗平,等.脾气虚证免疫相关基因组学机制初探.中国中西医结合杂志,2005,25(4):311-314.
    [57]Lim JW, Kim H,Kim KH.Cell adhesion-related gene expression by Helicobacter pylori in gastric epithelial AGS cells.Int J Biochem Cell Biol.2003 Aug;35(8):1284-96.
    [58]陈玉龙,尹素改,陈蔚文.中医药研究应用基因芯片技术相关文献分析.中医学报,2010,25(150):1023-1026.
    [1]Pinto-Santini D, Salama NR.The biology of Helicobacter pylori infection, a major risk factor for gastric adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2005;14:1853-8.
    [2]Santacroce L, Cagiano R, Del Prete R, Bottalico L, Sabatini R, Carlaio RG, et al.Helicobacter pylori infection and gastric MALTomas:an up-to-date and therapy highlight. Clin Ter 2008; 159:457-62.
    [3]Carrilho C, Modcoicar P, Cunha L, et al. Prevalence of Helicobacter pylori infection, chronic gastritis, and intestinal metaplasia in Mozambican dyspeptic patients. Virchows Arch.2009 Feb; 454(2):153-60.
    [4]Badmos KB,Olokoba AB,Ibrahim OO, et al. Histomorphology of Helicobacter pylori-associated chronic gastritis in Ilorin.Afr J Med Med Sci.2010 Mar;39(1):37-40.
    [5]卓家和,陈寿菲,郑立升.慢性胃炎中医辨证分型研究一附361例临床资料分析.新中医,2001,33(2):21-22.
    [6]罗云坚,黄穗平,陈慧,等.慢性胃炎中医证候与胃窦十二指肠运动及胃炎程度的相关性.广 州中医药大学学报,2000,17(3):241-245.
    [7]陈晴清.幽门螺杆菌与慢性胃炎中医证型的关系,广西医学,2004,26(3):346-347.
    [8]武一曼,任彦,葛振华,等.脾胃湿热证慢性胃炎与Hp感染率、NF-κB、TGF-α表达的相关性研究,中医杂志,2005.46(6):449-450,453.
    [9]冯春霞,劳绍贤,黄志新,等.慢性胃炎脾胃湿热证胃黏膜病理、幽门螺杆菌感染及胃黏膜分泌特点,广州中医药大学学报,2003,20(3):187-190.
    [10]冯莲君,延文.幽门螺杆菌与胃脘痛中医分型的关系.现代中西医结合杂志,2000,9(2)105-106.
    [11]张闽光,朱国曙.糜烂性胃炎中医分型与幽门螺杆菌感染的相关研究.现代中西医结合杂志,2002,11(1):7.
    [12]郑惠虹,王明如.消化性溃疡和慢性胃炎幽门螺杆菌感染与中医证型关系的研究.浙江中西医结合杂志,2000,10(5):270.
    [13]刘夏,苏成程,李桂贤,等.幽门螺杆菌相关性消化性溃疡与中医辨证分型关系探讨,山西中医,2009,25(3):44-45,50.
    [14]张琳,杨连纹,杨李君.幽门螺杆菌与慢性萎缩性胃炎发病关系及防治研究.中国中西医结合杂志,1992,12(9):621.
    [15]Molnar B, Galamb O, Sipos F, et al. Molecular pathogenesis of Helicobacter pylori Infection:the role of bacterial virulence factors. Dig Dis.2010;28(4-5):604-8.
    [16]Mobley LH,Hu TL,Foxal AP. Helicobacter pylori urease:properties and role in pathogenesis. Scand J Gastroenterol,1991,187(Suppl):39-46.
    [17]Skouloubris S,Labigne A, De Reuse H. The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori:natural evolution of two enzyme paralogues. Mol Microbiol.2001 May;40(3):596-609.
    [18]Wang G,Alamuri P,Maier RJ.The diverse antioxidant systems of Helicobacter pylori.Mol Microbiol,2006,61:847-860.
    [19]Gobert AP,McGee DJ,Akhtar M,et al.Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells:a strategy for bacterial survival.Proc Nat Acad Sci USA,2001,98: 13844-13849.
    [20]Lewis ND, Asim M,Barry DP, et al.Arginase Ⅱ restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages. J Immunol.2010 Mar 1;184(5):2572-82.Epub 2010 Jan 22.
    [21]Wang G, Ge Z, Rasko DA,Taylor DE:Lewis antigens in Helicobacter pylori:biosynthesis and phase variation. Mol Microbiol 2000;36:1187-1196.
    [22]Censini S,Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M,Rappuoli R, Covacci A:cag, a pathogenicity island of Helicobacter pylori,encodes type I-specific and disease-associated virulence factors.Proc Natl Acad Sci USA 1996;93:14648-14653.
    [23]Su B,HellstrOm PM,Rubio C,et al.Type I Helicobacter pylori shows Lewis(b)-independent adherence to gastric cells requiring de novo protein synthesis in both host and bacteria.J Infect Dis,1998,178:1379-1390.
    [24]Mahdavi J,Sonden B,Hurtig M,Olfat FO, Forsberg L, et al.Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science.2002 Jul 26;297(5581):573-8.
    [25]Carlsohn E, Nystrom J, Bolin I, et al. HpaA is essential for Helicobacter pylori colonization in mice. Infect Immun.2006 Feb;74(2):920-6.
    [26]Snelling WJ,Moran AP,Ryan KA,et al.HorB(Hp0127)is a gastric epithelial cell adhesin. Helicobacter,2007,12:200-209.
    [27]de Jonge R,Durrani Z,Rijpkema SG,et al.Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach.J Med Microbiol,2004,53(Pt 5):375-379.
    [28]Odenbreit S.Adherence properties of Helicobacter pylori:impact on pathogenesis and adaptation to the host.Int J Med Microbiol,2005,295:317-324.
    [29]Segal, E. D.,J.Cha, J.Lo, S.Falkow, and L. S.Tompkins.Altered states:involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori.Proc. Natl.Acad. Sci.1999.USA 96:14559-14564.
    [30]Stein M,Rappuoli R, Covacci A.Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A.2000;97(3):1263-8.
    [31]Odenbreit S, Puls J, Sedlmaier B,et al.Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion.Science.2000 Feb 25;287(5457):1497-500.
    [32]Lai CH,Chang YC,Du SY,et al.Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells.Infect Immun,2008,76:3293-3303.
    [33]Suzuki M,Mimuro H,Kiga K,et al.Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe,2009,5:23-34.
    [34]Mimuro H,Suzuki T, Nagai S, et al.Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2007 Oct 11;2(4):250-63.
    [35]Chang YJ,Wu MS,Lin JT, et al.Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell Microbiol.2006 Nov;8(11):1740-52.Epub 2006 Jun 7.
    [36]Backert S,Tegtmeyer N,Selbach M.The versatility of Helicobacter pylori CagA effector protein functions:The master key hypothesis.Helicobacter.2010 Jun;15(3):163-76.
    [37]Koyama S.Apoptotic depletion of infiltrating mucosal lymphocytes associated with Fas ligand expression by Helicobacter pylori-infected gastric mucosal epithelium:human glandular stomach as asite of immune privilege.Dig Dis Sci,2000,45:773-780.
    [38]Wang J,Brooks EG,Bamford KB,et al. Negative selection of T cells by Helicobacter pylori as a model for bacterial strain selection by immune evasion.J Immunoe,2001,167:926-934.
    [39]Isomoto H,Moss J,Hirayama T. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA.Tohoku J Exp Med.2010 Jan;220(1):3-14.
    [40]Yamasake,E.,Wada, A.,Kumatori,A.,et al.Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J.Biol.Chem.,2006,281,11250-11259.
    [41]Matsumoto A,Isomoto H,Nakayama M,et al.Helicobacter pylori VacA Reduces the Cellular Expression of STAT3 and Pro-survival Bcl-2 Family Proteins, Bcl-2 and Bcl-X(L), Leading to Apoptosis in Gastric Epithelial Cells.Dig Dis Sci.2010 Oct 7.
    [42]Supajatura V, Ushio H,Wada A,Yahiro K,Okumura K, Ogawa H,Hirayama T, Ra C:Cutting edge: VacA,a vacuolating cytotoxin of Helicobacter pylori,directly activates mast cells for migration and production of proinflammatory cytokines.J Immunol 2002;168:2603-2607.
    [43]Satin B,Del Giudice G, Della Bianca V, et al.The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and major virulence factor. J Exp Med,2000,191: 1467-1476.
    [44]Polenghi A, Bossi F, Fischetti F, et al.The neutrophil-activating protein of Helicobacter pylori crosses endothelia to promote neutrophil adhesion in vivo.J Immunoe,2007,178:1312-1320.
    [45]Montemurro, P., Nishioka, H.,Dundon, W.G.,et al.The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells.Eur. J.Immunol.2002.32,671-676.
    [46]de Bernard M,D'Elios MM.The immune modulating activity of the Helicobacter pylori HP-NAP: Friend or foe? Toxicon.2010 Dec 15;56(7):1186-92.
    [47]D'Elios MM,Amedei A,Cappon A,et al.The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Med Microbiol.2007 Jul;50(2):157-64.
    [48]Namavar F, Sparrius M, Veerman EC, et al.Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin.Infect Immun,1998,66:444-447.
    [49]Zanotti G, Papinutto E, Dundon W, et al.Structure of the neutrophil-activating protein from Helicobacter pylori.J Mol Biol.2002 Oct 11;323(1):125-30.
    [50]Evans DJ Jr, Evans DJ,Lampert HC, et al.Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori,Anabaena variabilis, Bacillus subtilis and Treponema pallidum,by analysis of gene sequences. Gene,1995,153:123-127.
    [51]Ishihara, S.,M.A.Rumi,Y. Kadowaki,et al.Essential role of MD-2 in TLR4-dependent signaling during Helicobacter pylori-associated gastritis. J Immunol.2004 Jul 15;173(2):1406-16.57.
    [52]Yokota, S.,T. Ohnishi, M.Muroi, et al.Highly-purified Helicobacter pylori LPS preparations induce weak inflammatory reactions and utilize Toll-like receptor 2 complex but not Toll-like receptor 4 complex. FEMS Immunol.Med.Microbiol.2007.51:140-148.
    [53]Yokota S,Okabayashi T,Rehli M,et al.Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway.Infect Immun,2010,78:468-476.
    [54]Huesca, M.,Borgia, S.,Hoffman, P. et al.Acidic pH changes receptor binding specificity of Helicobacter pylori:a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infect Immun,1996.64,2643-2648.
    [55]R. Takenaka, K. Yokota, K. Ayada, et al. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptort-riggered pathway in cultured human gastric epithelial cells, Microbiology 150 (2004) 3913-3922.
    [56]Y.Zhao, K. Yokota, K. Ayada, et al.Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes, J.Med.Microbiol.56(2007)154-164.
    [57]Gobert AP, Bambou JC, Werts C, et al.Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-,and myeloid differentiation factor 88-independent mechanism.J Biol Chem.2004 Jan 2;279(1):245-50.Epub 2003 Oct 22.
    [58]Yamaoka Y, Kwon DH,Graham DY. A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori.Proc Natl Acad Sci U S A.2000 Jun 20;97(13):7533-8.
    [59]Tabassam FH,Graham DY,Yamaoka Y. OipA plays a role in Helicobacter pylori-induced focal adhesion kinase activation and cytoskeletal re-organization.Cell Microbiol,2008,10:1008-1020.
    [60]Hussein NR, Argent RH,Marx CK, et al.Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J Infect Dis.2010 Jul 15;202(2):261-9.
    [61]Beswick EJ,Pinchuk IV,Minch K,et al.The Helicobacter pylori UreasB Subnit Binds to CD74 on Gastric Epithelial Cells and Induces NF-kB Activation and Inteleukin-8 Production.Infection and Immunity,2006,74:1148-1155.
    [62]Kocsis AK, Ocsovszky I, Tiszlavicz L, et al. Helicobacter pylori induces the release of alpha-defensin by human granulocytes. Inflamm Res.2009 May;58(5):241-7.
    [63]Soylu OB, Ozturk Y, Ozer E. Alpha-defensin expression in the gastric tissue of children with Helicobacter pylori-associated chronic gastritis:an immunohistochemical study. J Pediatr Gastroenterol Nutr.2008 Apr;46(4):474-7.
    [64]Kocsis AK, Kiss ZF, Tiszlavicz L, et al.Potential role of human beta-defensin 1 in Helicobacter pylori-induced gastritis.Scand J Gastroenterol.2009;44(3):289-95.
    [65]Luqmani YA,Campbell TA,Bennett C, et al.Expression of lactoferrin in human stomach.Int J Cancer 1991;49:684-687.
    [66]Singh M, Prasad KN, Saxena A, et al.Helicobacter pylori induces apoptosis of T-and B-cell lines and translocates mitochondrial apoptosis-inducing factor to nucleus. Curr Microbiol.2006 Apr;52(4):254-60.Epub 2006 Mar 9.
    [67]Ganten TM, Aravena E, Sykora J, et al.Helicobacter pylori-induced apoptosis in T cells is mediated by the mitochondrial pathway independent of death receptors. Eur J Clin Invest.2007 Feb;37(2):117-25.
    [68]Chu SH, Lim JW, Kim DG, Lee ES, Kim KH, Kim H.Down-regulation of Bcl-2 is mediated by NF-κB activation in Helicobacter pylori-induced apoptosis of gastric epithelial cells. Scand J Gastroenterol.2010 Oct 24.
    [69]Matsumoto A,Isomoto H,Nakayama M,et al.Helicobacter pylori VacA Reduces the Cellular Expression of STAT3 and Pro-survival Bcl-2 Family Proteins, Bcl-2 and Bcl-X(L), Leading to Apoptosis in Gastric Epithelial Cells. Dig Dis Sci.2010 Oct 7.
    [70]Yokota S, Okabayashi T, Rehli M, et al.Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infect Immun.2010 Jan;78(1):468-76.
    [71]Zhu L, Jin R, Wang HJ,Li H,Zhan Q, Liu WL, Quan XL.Gastric epithelial cell proliferation, apoptosis and P53 protein expression in children with Helicobacter pylori associated chronic gastritis. Zhonghua Er Ke Za Zhi.2007 Feb;45(2):126-9.
    [72]Yuan JP, Li T, Li ZH,et al. mRNA expression profiling reveals a role of Helicobacter pylori vacuolating toxin in escaping host defense. World J Gastroenterol.2004 May 15;10(10):1528-32.
    [73]Yuan JP, Li T, Chen HB,et al.Analysis of gene expression profile in gastric cancer cells stimulated with Helicobacter pylori isogenic strains. J Med Microbiol.2004 Oct;53(Pt 10):965-74.
    [74]Bach S, Makristathis A, Rotter M, et al.Gene Expression Profiling in AGS Cells Stimulated with Helicobacter pylori Isogenic Strains (cagA Positive or cagA Negative). Infect Immun.2002 Feb;70(2):988-92.
    [75]Sepulveda AR, Tao H, Carloni E, et al.Screening of gene expression profiles in gastric epithelial cells induced by Helicobacter pylori using microarray analysis. Aliment Pharmacol Ther.2002 Apr;16 Suppl 2:145-57.
    [76]Kim N,Park WY, Kim JM,et al.Analysis of Gene Expression Profile of AGS Cells Stimulated by Helicobacter pylori Adhesion.Gut Liver.2007 Jun;1(1):40-8.
    [77]Lim JW, Kim H, Kim KH.Cell adhesion-related gene expression by Helicobacter pylori in gastric epithelial AGS cells.Int J Biochem Cell Biol.2003 Aug;35(8):1284-96
    [78]Mannick EE, Schurr JR, Zapata A,et al.Gene Expression in Gastric Biopsies from Patients Infected with Helicobacter pylori.Scand J Gastroenterol.2004 Dec;39(12):1192-200.
    [79]Hofman VJ,Moreilhon C, Brest PD, et al.Gene expression profiling in human gastric mucosa infected with Helicobacter pylori.Mod Pathol.2007 Sep;20(9):974-89.
    [80]Wen S, Felley CP, Bouzourene H,et al.Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans.J Immunol.2004 Feb 15;172(4):2595-606.
    [81]Huff JL, Hansen LM,Solnick JV. Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque.Infect Immun.2004 Sep;72(9):5216-26.
    [1]张霞,程富胜,魏彦明.实验性脾虚证大鼠肝脏和肌肉组织中糖原变化的组织学观察.中兽医医药杂志,2007,1:9-11.
    [2]李德新,王晓明,易杰,等.脾虚证对生物膜结构与功能影响的研究.辽宁中医杂志,1993,20:39.
    [3]戴小华,孙弼纲.脾虚患者血清游离氮基酸的变化.中国中西医结合杂志,1994;14:403-405.
    [4]Chen Zhi-xi,Xu Zhi-wei, Liu Xiao-bin, et al.Effect of qiangji jianli liquid on changes of nucleic acid and protein of spleen and kidney tissue in mice with spleen deficiency syndrome.Journal of Clinical Rehabilitative Tissue Engineering Research,2007,11:1581-1584.
    [5]王肃,邹世洁,陈小野,等.利血平脾虚证模型海马基因表达谱变化的研究.现代中西医结合杂志,2004,13:841-844.
    [6]敖慧,彭成,林代华.参术胶囊治疗脾虚胃癌转移鼠模型的基因表达谱研究.云南中医学院学报,2010,33:7-11.
    [7]王颖芳,陈蔚文,劳绍贤,等.慢性胃炎脾气虚证与脾胃湿热证的差异表达基因比较.中国病理生理学杂志,2008,24:320-324.
    [8]Chen YL, Chen WW, Wang YF, et al.Bioinformatics research on chronic superficial gastritis of Pi-deficiency syndrome by gene arrays.Chin J Integr Med,2009,15:341-346.
    [9]陈蔚文,王颖芳,劳绍贤,等.脾气虚证患者基因差异表达研究.中国病理生理杂志,2008,24:148-152.
    [10]陈玉龙,尹素改,陈蔚文.中医药研究应用基因芯片技术相关文献分析.中医学报,2010,25:1023-1026.
    [11]Vaz FM, Fouchier SW, Ofman R, et al.Molecular and biochemical characterization of rat gamma-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J Biol Chem.2000,275:7390-7394.
    [12]Saville MK, Sparks A,Xirodimas DP, et al.Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem,2004,279:42169-42181.
    [13]LaLonde DP, Bretscher A.The UBX protein SAKS1 negatively regulates endoplasmic reticulum-associated degradation and p97-dependent degradation. J Biol Chem,2011, 286:4892-4901.
    [14]Sasaki K, Kurata-Miura K, Ujita M, et al.Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc Natl Acad Sci U S A,1997,94:14294-14299.
    [15]Susini S,Jeanneau C,Mathieu S, et al.A glycosyltransferase-enriched reconstituted membrane system for the synthesis of branched O-linked glycans in vitro. Biochim Biophys Acta.2011, 1808:1509-1519.
    [16]Doherty MJ,Young PR, Cohen PT. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver-and muscle-specific glycogen binding subunits of protein phosphatase 1.FEBS Lett,1996,399:339-343.
    [17]Wu L, Bachrati CZ, Ou J,et al.BLAP75/RM11 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci U S A,2006,103:4068-4073.
    [18]Ahel I, Ahel D, Matsusaka T, et al.Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature,2008,451:81-85.
    [19]Wang W, Xue Y, Zhou S, et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev,1996,10:2117-2130.
    [20]曾庆明,张炜宁,雷跃.浅谈从脾虚生痰生瘀论治高脂血症.江西中医药,2006,37:10-12.
    [21]Wu-Baer F, Ludwig T, Baer R. The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function.Mol Cell Biol,2010,30:2787-2798.
    [22]周光耀,韩晶,赖守国,等.中医气虚证的能量代谢研究.中医杂志,1991,6:48-49.
    [23]黎同明,于洋,潘雪刁,等.精胺对脾虚证大鼠肠道吸收功能的影响.广东药学院学报,2011,27:174-177.
    [1]张霞,程富胜,魏彦明.实验性脾虚证大鼠肝脏和肌肉组织中糖原变化的组织学观察[J].中兽医医药杂志,2007,1:9-11.
    [2]孙恩亭,谢锦玉,李乐红.脾气虚大鼠骨骼肌中某些元素,酶及能荷的变化[J].中国中西医结合杂志,1993,13(12):736.
    [3]易崇勤,叶百宽,金敬善,等.四君子汤对脾虚大鼠胃黏膜细胞酶组织化学及血浆胃肠激素的影响[J].北京中医药大学学报,1997,(6):31.
    [4]王清云,孙红光,赵君玫,等.脾胃气虚与异柠檬酸脱氢酶和肾上腺髓质激素的关系[J].中西医结合杂志,1987,(7):426.
    [5]干晓明,李德新,易杰,等.脾为后天之本的分子生物学基础一脾气虚证大白鼠模型LPO及其相关抗氧化酶变化的实验研究[J].辽宁中医杂志,1994,21(3):139.
    [6]李德新,王晓明,易杰,等.脾虚证对生物膜结构与功能影响的研究[J].辽宁中医杂志,1993,20(6):39.
    [7]王彩霞,李德新.滋补脾胃法治疗痴呆大白鼠脂质过氧化损伤的实验研究[J].中国中医基础医学杂志,2000;6(2):27-29.
    [8]孙远岭.健脾肥儿糖浆对脾虚幼年小鼠能量代谢及蛋白质合成[J].江苏中医,1996,17(11)41.
    [9]戴小华,孙弼纲.脾虚患者血清游离氮基酸的变化[J].中国中西医结合杂志1994;14(7):403-405.
    [10]崔家鹏.脾虚证大鼠心、肺、空肠组织PKC和心、肝、脑组织MAPK活性变化及补益脾胃方药作用机制的实验研究.辽宁中医学院博十论文,2003.
    [11]陈芝喜,徐志伟,刘小斌,等.强肌健力口服液对脾虚小鼠DNA合成的影响[J].中国临床康复,2006,10(15):141-143.
    [12]陈芝喜,徐志伟,刘小斌,等.强肌健力口服液对脾虚小鼠RNA合成的影响[J].中国临床康复,2006,10(43):129-131.
    [13]Liu You-zhang, Wang Chang-jun, Liu Jing, et al.Si-Jun-Zi decoction repair s mitochondrial damage of cells of liver, myocardium, gastric mucosa and skeletal muscle in rats with spleen asthenia [J]. Chinese Journal of Clinical Rehabilitation,2006,10(39):170-173.
    [14]郭文峰,高小玲,李茹柳.利血平致大鼠脾虚模型尿D-木糖排泄率与肠黏膜三磷酸腺苷水平的研究[J].中国中西医结合消化杂志,2008,16(4):211-214.
    [15]梁民里道,陈英洋,陈小花,等.脾气虚证血清锌、铜、钙、镁、铁的变化及其意义[J].中国医药学报,1992,7(1):22-24.
    [16]Rossi L, Lapini I, Magi A, et al.Carotid artery disease:Novel pathophysiological mechanisms identified by gene expression profiling of peripheral blood [J].Eur J Vasc Endovasc Surg.2010, 40(5):549-558.
    [17]Aaroe J,Lindahl T, Dumeaux V, et al.Gene expression profiling of peripheral blood cells for early detection of breast cancer[J].Breast Cancer Res.2010,12(1):R7.
    [18]Pandey AK, Munjal N,Datta M.Gene expression profiling and network analysis reveals lipid and steroid metabolism to be the most favored by TNFalpha in HepG2 cells[J].PLoS One.2010, 5(2):e9063.
    [19]王肃,陈小野,邹世洁,等.利血平脾虚证模型大脑皮层基因表达谱变化的初步研究[J].中医药学刊,2003,21(9):1512-1515.
    [20]王肃,邹世洁,陈小野,等.利血平脾虚证模型海马基因表达谱变化的研究[J].现代中西医结合杂志,2004,13(7):841-844.
    [21]敖慧,彭成,林代华.参术胶囊治疗脾虚胃癌转移鼠模型的基因表达谱研究[J].云南中医学院学报,2010,33(1):7-11.
    [22]王颖芳,陈蔚文,劳绍贤,等.慢性胃炎脾气虚证与脾胃湿热证的差异表达基因比较[J].中国病理生理学杂志,2008,24(2):320-324.
    [23]Chen YL, Chen WW, Wang YF, et al.Bioinformatics research on chronic superficial gastritis of Pi-deficiency syndrome by gene arrays [J].Chin J Integr Med,2009,15(5):341-346.
    [24]McAndrew RP, Wang Y, Mohsen AW, et al.Structural basis for substrate fatty acyl chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase[J].J Biol Chem,2008, 283(14):9435-9443.
    [25]Gallazzini M, Ferraris JD,Burg MB.GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC [J].Proc Natl Acad Sci U S A, 2008,105(31):11026-11031.
    [26]Lu B,Xu FY, Jiang YJ,et al. Cloning and characterization of a cDNA encoding human cardiolipin synthase (hCLS 1)[J].J Lipid Res,2006,47(6):1140-1145.
    [27]Pottekat A,Menon AK. Subcellular localization and targeting of N-acetylglucosaminyl phosphatidylinositol de-N-acetylase, the second enzyme in the glycosylphosphatidylinositol biosynthetic pathway[J]. J Biol Chem,2004,279(16):]5743-15751.
    [28]Spassov DS, Jurecic R. Cloning and comparative sequence analysis of PUM1 and PUM2 genes, human members of the Pumilio family of RNA-binding proteins[J].Gene,2002,299(1-2):195-204.
    [29]Antonicka H,Ostergaard E, Sasarman F, et al.Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect [J].Am J Hum Genet,2010, 87(1):115-122.
    [30]Li H, Seth A. An RNF11:Smurf2 complex mediates ubiquitination of the AMSH protein[J]. Oncogene,2004,23(10):1801-1808.
    [31]Glenn KA, Nelson RF, Wen HM, et al.Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases[J]. J Biol Chem,2008, 283(19):12717-12729.
    [32]Ridley SH, Ktistakis N, Davidson K, et al. FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments[J].J. Cell. Sci.2001,114, 3991-4000.
    [33]Mari M, Macia E, Le Marchand-Brustel Y, et al. Role of the FYVE finger and the RUN domain for the subcellular localization of Rabip4 [J].J.Biol. Chem,2001,276,42501-42508.
    [34]Martin-Serrano J,Yarovoy A,Perez-Caballero D, et al.Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins[J].Proc Natl Acad Sci USA,2003,100(21):12414-12419.
    [35]Tsang HT, Connell JW, Brown SE, et al.A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex [J].Genomics,2006,88(3):333-346.
    [36]Traer CJ,Rutherford AC, Palmer KJ,et al. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment [J].Nat Cell Biol,2007, 9(12):1370-1380.
    [37]Holthuis JC, van Riel MC, Martens GJ.Translocon-associated protein TRAP delta and a novel TRAP-like protein are coordinately expressed with pro-opiomelanocortin in Xenopus intermediate pituitary[J].Biochem J,1995,312 (Pt 1):205-213.
    [38]Townsley FM, Wilson DW, Pelham HR. Mutational analysis of the human KDEL receptor:distinct structural requirements for Golgi retention, ligand binding and retrograde transport [J].EMBO J, 1993,12(7):2821-2829.
    [39]Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene[J].J Biol Chem,1996, 271(38):23255-23261.
    [40]Margariti A,Zampetaki A,Xiao Q, et al.Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin[J].Circ Res,2010,106(7):1202-1211.
    [41]Oka S,Kato J,Moss J.Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase[J].J Biol Chem,2006,281(2):705-713.
    [42]Yamagata T, Tsuru T, Momoi MY, et al.Genome organization of human 48-kDa oligosaccharyltransferase (DDOST) [J].Genomics,1997,45(3):535-540.
    [43]Liu X, Li P, Widlak P, et al.The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis[J].Proc Natl Acad Sci U S A, 1998,95(15):8461-8466.
    [44]Guo G, Ding Y, Weiss B.nfi, the gene for endonuclease V in Escherichia coli K-12[J].J.Bacteriol, 1997,179,310-316.
    [45]Tanackovic G, Kramer A.Human splicing factor SF3a, but not SF1,is essential for pre-mRNA splicing in vivo[J].Mol Biol Cell,2005,16(3):1366-1377.
    [46]lourgenko V, Zhang W, Mickanin C, et al.Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells [J]. Proc Natl Acad Sci U S A,2003,100(21):12147-12152.
    [47]Raghuram S,Stayrook KR, Huang P, et al.Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta [J]. Nat Struct Mol Biol, 2007,14(12):1207-1213.
    [48]Baek HJ,Kang YK, Roeder RG. Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly [J].J Biol Chem, 2006,281(22):15172-15181.
    [49]Tussie-Luna MI,Bayarsaihan D, Ruddle FH, et al.Repression of TFII-I-dependent transcription by nuclear exclusion[J].Proc Natl Acad Sci U S A,2001,98(14):7789-7794.
    [50]Masselink H, Bernards R. The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR[J].Oncogene,2000,19(12):1538-1546.
    [51]Sasaki K, Kurata-Miura K, Ujita M, et al.Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis[J]. Proc Natl Acad Sci U S A,1997,94(26):14294-14299.
    [52]Kaneko M,Kudo T, Iwasaki H,et al.Alpha1,3-fucosyltransferase IX(Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX[J].FEBS Lett,1999,452(3):237-242.
    [53]de Bie P, van de Sluis B,Klomp L, et al.The many faces of the copper metabolism protein MURR1/COMMD1[J]. J Hered.2005,96(7):803-811.
    [54]Taylor KM, Morgan HE, Johnson A, et al. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters[J].Biochem J, 2003,375(Pt 1):51-59.
    [55]Wagner L, Oliyarnyk O, Gartner W, et al.Cloning and expression of secretagogin, a novel neuroendocrine-and pancreatic islet of Langerhans-specific Ca2+-binding protein[J].J Biol Chem, 2000,275(32):24740-24751.
    [56]Okazaki K, Niki I, Iino S, et al.A role of calcyclin, a Ca(2+)-binding protein, on the Ca(2+)-dependent insulin release from the pancreatic beta cell[J].J Biol Chem, 1994,269(8):6149-6152.
    [57]陈蔚文,王颖芳,劳绍贤,等.脾气虚证患者基因差异表达研究[J].中国病理生理杂志,2008,24(1): 148-152.
    [58]曾庆明,张炜宁,雷跃.浅谈从脾虚生痰生瘀论治高脂血症[J].江西中医药,2006,37(6):10-12.
    [59]王松坡,蔡淦.膏脂血症中医辨治探讨[J].江苏中医,1998,19(10):17-18.
    [60]Jiang F, Ryan MT, Schlame M,et al. Absence of cardiolipin in the crdl null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function [J]. J Biol Chem, 2000,275(29):22387-22394.
    [61]朱旭锦,唐建华.糖基磷脂酰肌醇锚定蛋白质与肿瘤血管生成的关系[J].生命的化学,2010,30(1):127-131.
    [62]Birkle S, Zeng G, Gao L, et al.Role of tumor-associated gangliosides in cancer progression [J]. Biochimie,2003,85(3-4):455-463.
    [63]Chen Zhi-xi,Xu Zhi-wei, Liu Xiao-bin, et al.Effect of qiangji jianli liquid on changes of nucleic acid and protein of spleen and kidney tissue in mice with spleen deficiency syndrome[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2007,11(8):1581-1584.
    [64]孙远岭.健脾肥儿糖浆对脾虚幼年小鼠能量代谢及蛋白质合成[J].江苏中医,1996,17(11)41.
    [65]Worby CA, Dixon JE. sorting out the cellular functions of sorting nexins[J]. Nat Rev Mol Cell Biol, 2002,3(12):919-31.
    [66]黄从强,朱章志.“脾虚致消”学说对糖尿病治疗的意义及思考[J].广州中医药大学学报,2001,18(4):324-327.
    [67]熊海,张澄波,危北海,等.健脾益气汤对脾虚大鼠肌糖原含量的影响[J].中西医结合杂志,1989,9(2):96-97.
    [68]Mander A, Hodgkinson CP, Sale GJ. Knock-down of LAR protein tyrosine phosphatase induces insulin resistance. FEBS Lett.2005 Jun 6;579(14):3024-8.
    [69]尹光耀,何雪芬,尹玉芬,等.脾虚证患者胃黏膜线粒体超微结构、微量元素及相关因素的研究[J].中国中西医结合杂志,1995,15(12):719-723.
    [70]余亚信,李学军.脾气虚与能量代谢障碍[J].中国医药指南,2008,6(24):293-295.
    [1]Segal ED, Cha J, Lo J, Falkow S, Tompkins LS(1999) Altered states:involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96:14559-14564.
    [2]Suzuki M, Mimuro H,Kiga K, Fukumatsu M, Ishijima N, et al.(2009) Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation.Cell Host Microbe 5:23-34.
    [3]Isomoto H, Moss J, Hirayama T (2010) Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA.Tohoku J Exp Med 220:3-14.
    [4]Takeshima E, Tomimori K, Takamatsu R, Ishikawa C, Kinjo F, et al.(2009) Helicobacter pylori VacA activates NF-kappaB in T cells via the classical but not alternative pathway. Helicobacter 14:271-279.
    [5]Evans DJ Jr, Evans DG, Takemura T, Nakano H,Lampert HC, et al.(1995)Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63:2213-2220.
    [6]D'Elios MM,Amedei A, Cappon A, Del Prete G, de Bernard M (2007) The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Med Microbiol 50:157-164.
    [7]de Bernard M, D'Elios MM (2010) The immune modulating activity of the Helicobacter pylori HP-NAP:Friend or foe? Toxicon 56:1186-1192.
    [8]Yokota S, Okabayashi T, Rehli M, Fujii N,Amano K (2010) Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infect Immun 78:468-476.
    [9]Takenaka R, Yokota K, Ayada K, Mizuno M, Zhao Y, et al.(2004) Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptort-riggered pathway in cultured human gastric epithelial cells.Microbiology 150:3913-3922.
    [10]Zhao Y, Yokota K, Ayada K, Yamamoto Y, Okada T, et al.(2007) Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR) 2 and mitogen-activated protein (MAP) kinase pathway in human monocytes.J Med Microbiol 56:154-164.
    [11]Gobert AP, Bambou JC, Werts C, Balloy V, Chignard M, et al.(2004) Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-,and myeloid differentiation factor 88-independent mechanism.J Biol Chem 279:245-250.
    [12]Hussein NR, Argent RH,Marx CK, Patel SR, Robinson K, et al.(2010) Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J Infect Dis 202:261-269.
    [13]Beswick EJ,Pinchuk IV, Minch K, Suarez G, Sierra JC, et al.(2006) The Helicobacter pylori UreasB Subnit Binds to CD74 on Gastric Epithelial Cells and Induces NF-κB Activation and Inteleukin-8 Production.Infect Immun 74:1148-1155.
    [14]Ma YJ,Duan GC, Zhang RG, Fan QT, Zhang WD (2010) Mutation of iceA in Helicobacter pylori compromised IL-8 induction from human gastric epithelial cells. J Basic Microbiol 50 Suppl 1:S83-S88.
    [15]Luqmani YA,Campbell TA,Bennett C, Coombes RC, Paterson IM(1991) Expression of lactoferrin in human stomach. Int J Cancer 49:684-687.
    [16]Lewis ND, Asim M, Barry DP, Singh K, de Sablet T, et al. (2010) Arginase Ⅱ Restricts Host Defense to Helicobacter pylori by Attenuating Inducible Nitric Oxide Synthase Translation in Macrophages. J Immunol 184:2572-2582.
    [17]Handa O, Naito Y, Yoshikawa T (2010) Helicobacter pylori:a ROS-inducing bacterial species in the stomach. Inflamm Res 59:997-1003.
    [18]Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala N,et al.(1994) Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo.Gut 35:179-185.
    [19]Terres AM,Pajares JM(1998) An increased number of follicles containing activated CD69+helper T cells and proliferating CD71+B cells are found in H. pylori-infected gastric mucosa. Am J Gastroenterol 93:579-583.
    [20]Lindholm C, Quiding-Jarbrink M, Lonroth H, Hamlet A, Svennerholm AM (1998) Local cytokine response in Helicobacter pylori-infected subjects.Infect Immun 66:5964-5971.
    [21]Kranzer K, Eckhardt A, Aigner M, Knoll G, Deml L, et al. (2004) Induction of maturation and cytokine release of human dendritic cells by Helicobacter pylori. Infect Immun 72:4416-4423.
    [22]Zhu Y, Shu X, Chen J, Xie Y, Xu P, et al.(2008) Effect of Helicobacter pylori eradication on oncogenes and cell proliferation.Eur J Clin Invest 38:628-633.
    [23]Chu SH,Lim JW, Kim DG, Lee ES,Kim KH,et al. (2011)Down-regulation of Bcl-2 is mediated by NF-κB activation in Helicobacter pylori-induced apoptosis of gastric epithelial cells.Scand J Gastroenterol 46:148-155.
    [24]Huff JL, Hansen LM,Solnick JV (2004) Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect Immun 72:5216-5226.
    [25]Yuan JP, Li T, Li ZH,Yang GZ, Hu BY, et al.(2004) mRNA expression profiling reveals a role of Helicobacter pylori vacuolating toxin in escaping host defense.World J Gastroenterol 10:1528-1532.
    [26]Backert S, Gressmann H,Kwok T, Zimny-Arndt U,Konig W, et al. (2005)Gene expression and protein profiling of AGS gastric epithelial cells upon infection with Helicobacter pylori. Proteomics 5:3902-3918.
    [27]You YH,Song YY, Meng FL, He LH,Zhang MJ,et al.(2010) Time-series gene expression profiles in AGS cells stimulated with Helicobacter pylori. World J Gastroenterol 16:1385-1396.
    [28]Kim N,Park WY, Kim JM,Park YS, Lee DH,et al.(2007) Analysis of Gene Expression Profile of AGS Cells Stimulated by Helicobacter pylori Adhesion.Gut Liver 1:40-48.
    [29]Maeda S, Otsuka M,Hirata Y, Mitsuno Y, Yoshida H,et al.(2001)cDNA microarray analysis of Helicobacter pylori-mediated alteration of gene expression in gastric cancer cells.Biochem Biophys Res Commun 284:443-449.
    [30]Mannick EE, Schurr JR, Zapata A,Lentz JJ,Gastanaduy M, et al.(2004) Gene expression in gastric biopsies from patients infected with Helicobacter pylori. Scand J Gastroenterol 39:1192-1200.
    [31]Wen S, Felley CP, Bouzourene H, Reimers M, Michetti P, et al. (2004) Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans.J Immunol 172:2595-2606.
    [32]Hofman VJ,Moreilhon C, Brest PD, Lassalle S, Le Brigand K, et al.(2007) Gene expression profiling in human gastric mucosa infected with Helicobacter pylori. Mod Pathol 20:974-989.
    [33]Galamb O, Gyorffy B, Sipos F, Dinya E, Krenacs T, et al.(2008)Helicobacter pylori and Antrum Erosion-Specific Gene Expression Patterns:The Discriminative Role of CXCL13 and VCAM1 Transcripts.Helicobacter.13:112-126.
    [34]Wang YF, Chen WW, Lao SX,Li RL, Guo WF, et al. (2008) Comparison of differentially expressed genes between deficiency of spleen-QI syndrome and splenogastric hygropyrexia syndrome patients with chronic gastritis.Chinese Journal of Pathophysiology 24:320-324.
    [35]Chen YL, Chen WW, Wang YF, Li RL, Guo WF, et al. (2009) Bioinformatics research on chronic superficial gastritis of Pi-deficiency syndrome by gene arrays, Chin J Integr Med 15:341-346.
    [36]Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 17:699-711.
    [37]Graham TR, Burd CG (2011) Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol 21:113-121.
    [38]Scott KL, Chin L (2010) Signaling from the Golgi:mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16:2229-2234.
    [39]Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005) ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes.FEBS Lett 579:6796-6802.
    [40]McDaneld TG, Hannon K, Moody DE (2006) Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle.Am J Physiol Regul Integr Comp Physiol 290:R1672-R1682.
    [41]Nameki N, Yoneyama M,Koshiba S,Tochio N, Inoue M,et al.(2004) Solution structure of the RWD domain of the mouse GCN2 protein. Protein Sci 13:2089-2100.
    [42]Yamada M,Ohnishi J,Ohkawara B,Iemura S, Satoh K, et al.(2006) NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J Biol Chem 281:20749-20760.
    [43]Yoon J,Terada A,Kita H (2007) CD66b regulates adhesion and activation of human eosinophils.J Immunol 179:8454-8462.
    [44]Sasaki T, Brakebusch C,Engel J,Timpl R(1998) Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds betal integrins, collagens and fibronectin.EMBO J 17:1606-1613.
    [45]Ullrich A,Sures I, D'Egidio M,Jallal B,Powell TJ,et al.(1994) The secreted tumor-associated antigen 90K is a potent immune stimulator. J Biol Chem 269:18401-18407.
    [46]Dedio J, Konig P, Wohlfart P, Schroeder C,Kummer W, et al.(2001) NOSIP, a novel modulator of endothelial nitric oxide synthase activity. FASEB J 15:79-89.
    [47]Rump A, Morikawa Y,Tanaka M, Minami S,Umesaki N, et al.(2004) Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 279:9190-9198.
    [48]Endsley MA,Njongmeta LM,Shell E, Ryan MW, Indrikovs AJ,et al.(2009) Human IgA-inducing protein from dendritic cells induces IgA production by naive IgD+ B cells. J Immunol 182:1854-1859.
    [49]Rogstam A,Linse S,Lindqvist A,James P, Wagner L, et al.(2007) Binding of calcium ions and SNAP-25 to the hexa EF-hand protein secretagogin.Biochem J 401:353-363.
    [50]Ek P, Pettersson G, Ek B,Gong F, Li JP, et al.(2002) Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur J Biochem 269:5016-5023.
    [51]Woo EJ, Jeong DG, Lim MY, Jun Kim S, Kim KJ,et al.(2007) Structural Insight into the Constitutive Repression Function of the Nuclear Receptor Rev-erb(3.J Mol Biol 373:735-744.
    [52]Dorjsuren D, Lin Y, Wei W, Yamashita T, Nomura T, et al.(1998) RMP, a novel RNA polymerase Ⅱ subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18:7546-7555.
    [53]Garrett KP, Aso T, Bradsher JN,Foundling SI,Lane WS,et al.(1995) Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog. Proc Natl Acad Sci U S A 92:7172-7176.
    [54]Ayer DE(1999) Histone deacetylases:transcriptional repression with SINers and NuRDs. Trends Cell Biol 9:193-198.
    [55]Tochio N,Umehara T, Munemasa Y, Suzuki T, Sato S,et al.(2010) Solution structure of histone chaperone ANP32B:interaction with core histones H3-H4 through its acidic concave domain. J Mol Biol 401:97-114.
    [56]Baek HJ, Kang YK, Roeder RG (2006) Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J Biol Chem 281:15172-15181.
    [57]Harrison PM,Arosio P(1996) The ferritins:molecular properties, iron storage function and cellular regulation.Biochim Biophys Acta 1275:161-203.
    [58]Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA,et al.(2005) COMMD proteins, a novel family of structural and functional homologs of MURR1.J Biol Chem 280:22222-22232.
    [59]Taylor KM,Nicholson RI (2003)The LZT proteins; the new LIV-1 subfamily of zinc transporters. Biochim Biophys Acta 1611:16-30.
    [60]Crow YJ,Leitch A,Hayward BE, Garner A (2006) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection.Nat Genet 38:910-916.
    [61]Eisenhofer G, Coughtrie MWH,Goldstein DS(1999) Dopamine sulphate:an enigma resolved.Clin Exp Pharmacol Physiol 26:S41-S53.
    [62]Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, et al.(2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin.J Clin Invest 109:1417-1427.
    [63]Necchi V, Sommi P, Ricci V, Solcia E (2010) In Vivo Accumulation of Helicobacter pylori Products, NOD1,Ubiquitinated Proteins and Proteasome in a Novel Cytoplasmic Structure.PLoS One 5:e9716.
    [64]Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458:430-437.
    [65]Matsukura N,Onda M, Tokunaga A,Kato S,Kyono S,et al.(1995) Tissue IgA antibody against Helicobacter pylori in patients with gastroduodenal diseases:comparison with bacterial culture, serum IgG antibody, and[13C] Urea breath test. J Clin Gastroenterol 21 Suppl 1:S146-S150.
    [66]Kaetzel, CS (2007) Mucosal Immune Defense:Immunoglobulin A.New York, NY:Springer Science+Business Media, LLC.
    [67]Kitamura H,Morikawa H,Kamon H,Iguchi M,Hojyo S,et al.(2006) Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol 7:971-977.
    [68]Hisatsune J,Nakayama M, Isomoto H,Kurazono H, Mukaida N, et al.(2008) Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2,cAMP response element binding protein, and NF-kappaB activation.J Immunol 180:5017-5027.
    [69]Franco AT, Israel DA,Washington MK, Krishna U,Fox JG, et al.(2005) Activation of β-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A 102:10646-10651.
    [70]Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221-227.
    [71]Karin M (2006) Nuclear factor-kappaB in cancer development and progression.Nature 441:431-436.
    [72]Aggarwal BB,Gehlot P (2009) Inflammation and cancer:how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9:351-369.
    [73]Fubini B,Hubbard A (2003) Reactive oxygen species (ROS)and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507-1516.
    [74]Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801-847.
    [75]Bronte-Tinkew DM,Terebiznik M, Franco A,Ang M,Ahn D, et al.(2009) Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo.Cancer Res 69:632-639.
    [76]Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26:149-161.
    [77]Bhavsar AP, Guttman JA,Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens.Nature 449:827-834.
    [78]Hamon MA,Batsche E, Regnault B, Tham TN,Seveau S,et al.(2007) Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci U S A 104:13467-13472.
    [79]Ding SZ, Fischer W, Kaparakis-Liaskos M, Liechti G, Merrell DS, et al.(2010) Helicobacter pylori-Induced Histone Modification, Associated Gene Expression in Gastric Epithelial Cells, and Its Implication in Pathogenesis. PLoS One 5:e9875.
    [80]Hawkes NA,Otero G, Winkler GS, Marshall N,Dahmus ME, et al.(2002) Purification and characterization of the human elongator complex. J Biol Chem 277:3047-3052.
    [81]Dovhanj J, Kljaic K, Vcev A,Ilakovac V (2010) Helicobacter pylori and trace elements.Clin Lab 56:137-142.
    [82]Janjetic MA,Goldman CG, Balcarce NE, Rua EC, Gonzalez AB,et al.(2010) Iron, zinc, and copper nutritional status in children infected with Helicobacter pylori. J Pediatr Gastroenterol Nutr 51:85-89.
    [83]Cardenas VM,Mulla ZD, Ortiz M,Graham DY (2006) Iron deficiency and Helicobacter pylori infection in the United States. Am J Epidemiol 163:127-134.
    [84]Baik SC,Youn HS,Chung MH,Lee WK, Cho MJ,et al.(1996) Increased oxidative DNA damage in Helicobacter pylori-infected human gastric mucosa. Cancer Res 56:1279-1282.
    [85]Ladeira MS, Rodrigues MA,Salvadori DM,Queiroz DM, Freire-Maia DV (2004) DNA damage in patients infected by Helicobacter pylori. Cancer Epidemiol Biomarkers Prev 13:631-637.
    [86]Xing X, Lai M,Gartner W, Xu E, Huang Q, et al.(2006) Identification of differentially expressed proteins in colorectal cancer by proteomics:down-regulation of secretagogin. Proteomics 6:2916-2923.
    [87]Taylor KM (2008) A distinct role in breast cancer for two LIV-1 family zinc transporters.Biochem Soc Trans 36:1247-1251.
    [1]中定珠,李家邦,蒋荣鑫,等.证候蛋白质组学与中医证候学相关性探讨.中国中西医结合杂志,2006,26(4):366.
    [2]许轶曼,中维玺,刘玉梅,等.胃癌气虚证细胞因子基因表达谱的基因芯片研究.肿瘤基础与临床,2007,20(3):232-233.
    [3]罗云坚,修宗昌,黄穗平,等.脾气虚证免疫相关基因组学机制初探.中国中西医结合杂志,2005,25(4):311-314.
    [4]李泽庚,童佳兵,彭波,等.慢性阻塞性肺疾病肺气虚证患者T淋巴细胞差异表达基因的初步研究.中国中西医结合杂志,2006,26(12):1082-1085.
    [5]柴可夫,黄晓玲.2型糖尿病中医气阴两虚证与湿热困脾证差异表达基因的研究.中华中医药 杂志(原中国医药学报),2009,24(10):1340-1343.
    [6]柴可夫,黄晓玲,钱俊文.2型糖尿病中医气阴两虚证的基因表达研究.中华中医药学刊,2009,27(7):1351-1354.
    [7]周小军,田道法,王十贞,等.气虚体质之鼻咽癌高癌家系成员基因组稳定与修复基因表达.中医药信息,2009,26(5):59-63.
    [8]王睿林.气虚体质者外周血基因表达谱初步研究.北京中医药大学硕十学位论文,2005.
    [9]张惠敏,郑守曾.气虚体质的研究进展.北京中医药大学学报,2004,27(1):14-16.
    [10]潘佩光,潘奔前,周俊亮.脾胃学说与气虚体质.中国临床康复,2006,10(23):165-166.
    [11]胡春雨.浅谈脾胃与气虚体质的相关性.陕西中医,2006,27(6):767-769.
    [1]贺志有,张帆.常用脾虚证动物模型造模方法的研究概况.内蒙古中医药,2012,3:110-111.
    [2]王肃,陈小野,邹世洁,等.利血平脾虚证模型大脑皮层基因表达谱变化的初步研究.中医药学刊,2003,21(9):1512-1515.
    [3]王肃,邹世洁,陈小野,等.利血平脾虚证模型海马基因表达谱变化的研究.现代中西医结合杂志,2004,13(7):841-844.
    [4]王玉杰,谢鸣.肝郁脾虚证大鼠模型肝脏的差异基因表达.中华中医药杂志(原中国医药学报),2011,26(11):2660-2663.
    [5]林代华.脾虚胃癌转移鼠模型的建立及基因表达谱的变化.成都中医药大学,2002,硕士论文.
    [6]敖慧.参术胶囊治疗脾虚胃癌转移鼠模型的基因表达谱研究.成都中医药大学,2007,硕士论文.
    [7]黄禹峰,李炜弘,汤朝晖,等.老龄冠心病心肾阳虚证的差异表达基因谱分析.辽宁中医杂志,2010,37(12):2283-2286.
    [8]魏敏,赵晓山,孙晓敏,等.亚健康状态肾阳虚证基因差异表达研究.南方医科大学学报,2011,31(2):248-251.
    [9]魏敏,赵晓山,孙晓敏,等.肾阴虚证患者的基因差异表达.广东医学,2010,31(23):3017-3020,
    [10]罗云坚,修宗昌,黄穗平,等.脾气虚证免疫相关基因组学机制初探.中国中西医结合杂志,2005,25(4):311-314.
    [11]Burant CF, Takeda J,Brot-Laroche E, Bell GI, Davidson NO.Fructose transporter in human spermatozoa and small intestine is GLUT5.J Biol Chem.1992 Jul 25;267(21):14523-6.
    [12]Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S, Bell GI.Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5)expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem.1990 Aug 5;265(22):13276-82.
    [13]Yanagidani S, Uozumi N, Ihara Y,Miyoshi E, Yamaguchi N,Taniguchi N.Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-beta-D-glucosaminide:alphal-6 fucosyltransferase (alphal-6 FucT) from human gastric cancer MKN45 cells.J Biochem.1997 Mar;121(3):626-32.
    [14]Kaneko M,Kudo T, Iwasaki H,Ikehara Y, Nishihara S,Nakagawa S,Sasaki K, Shiina T, Inoko H, Saitou N,Narimatsu H.Alphal,3-fucosyltransferase IX(Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX.FEBS Lett.1999 Jun 11;452(3):237-42.
    [15]Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB.Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype.J Biol Chem.1995 Mar 3;270(9):4640-9.
    [16]Bierhuizen MF, Fukuda M.Expression cloning of a cDNA encoding UDP-GlcNAc:Gal beta 1-3-GalNAc-R (GlcNAc to GalNAc) beta 1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen.Proc Natl Acad Sci U S A.1992 Oct 1;89(19):9326-330.
    [17]Yeh JC, Ong E, Fukuda M. Molecular cloning and expression of a novel beta-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J Biol Chem.1999 Jan 29;274(5):3215-21.
    [18]Wang H,Zhou Z, Xu M,Li J, Xiao J, Xu ZY, Sha J.A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med(Berl).2004 May;82(5):317-24.
    [19]McAndrew RP, Wang Y, Mohsen AW, He M,Vockley J,Kim JJ.Structural basis for substrate fatty acyl chain specificity:crystal structure of human very-long-chain acyl-CoA dehydrogenase. J Biol Chem.2008 Apr 4;283(14):9435-43.
    [20]Rozen R, Vockley J, Zhou L, Milos R, Willard J,Fu K, Vicanek C, Low-Nang L,Torban E, Fournier B.Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family. Genomics.1994 Nov 15;24(2):280-7.
    [21]Lee JH, You J, Dobrota E, Skalnik DG. Identification and characterization of a novel human PP1 phosphatase complex. J Biol Chem.2010 Aug 6;285(32):24466-76.
    [22]Doherty MJ,Young PR, Cohen PT. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver-and muscle-specific glycogen binding subunits of protein phosphatase 1.FEBS Lett.1996 Dec 16;399(3):339-43.
    [23]Nam HJ, Poy F, Krueger NX, Saito H, Frederick CA. Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell.1999 May 14;97(4):449-57.
    [24]Mander A, Hodgkinson CP, Sale GJ. Knock-down of LAR protein tyrosine phosphatase induces insulin resistance. FEBS Lett.2005 Jun 6;579(14):3024-8.
    [25]Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N, Carlton JG, Kremerskothen J, Stephens DJ,Cullen PJ.SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol.2007 Dec;9(12):1370-80.
    [26]Dyve AB,Bergan J,Utskarpen A,Sandvig K.Sorting nexin 8 regulates endosome-to-Golgi transport. Biochem Biophys Res Commun.2009 Dec 4;390(1):109-14.
    [1]罗瑶,许宏,李瑶,等.表达谱基因芯片的可靠性验证分析.遗传学报,2003,30(7):611-618.
    [2]中华人民共和国卫生部,《中药新药临床研究指导原则》,1995:114.
    [3]张善.脾虚患者唾液淀粉酶活性初步研究.新中医,1978,10(3):47-49.
    [4]沈自尹.中医虚证辨证参考标准.中西医结合杂志,1986,6(10):598-598.
    [5]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001 Dec;25(4): 402-8.
    [6]Lee ML, Kuo FC,Whitmore GA, et al.Importance of replication in microarray gene expression studies:statistical methods and evidence from repetitive cDNA hybridizations.Proc Natl Acad Sci U S A.2000,97(18):9834-9839.
    3杨洋民,陈蔚文,王颖芳.慢性胃炎脾虚与脾胃湿热患者物质能量代谢基因差异表达研究,中国中西医结合杂志,2012,录用.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700