用户名: 密码: 验证码:
他汀对AngⅡ诱导的动脉瘤与动脉粥样硬化的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景:
     随着社会经济的发展和人民生活水平的提高,近年来,动脉疾病的发病率、致残率、致死率明显上升。动脉疾病已经成为危险人类健康的定时炸弹,其中动脉瘤和动脉粥样硬化均是慢性炎症性动脉疾病,随着超声、CTA、MRA的普及,动脉瘤与动脉粥样硬化得以及时发现。大的动脉瘤可以行开放性外科手术和微创腔内隔绝术,小的动脉瘤患者只能消极等待与检查,目前尚无任何有效的药物可逆转或者是预防动脉瘤的发生与发展。虽然动脉粥样硬化从基础理论到临床特征,已经被研究多年,但是目前动脉粥样硬化的发病速度大于治疗速度,它仍然是危险人类健康的主力军。因此,继续寻找有效药物,预防、逆转与治疗动脉瘤与动脉粥样硬化,已经是医学研究者迫在眉睫的工作。
     众所周知,口服3-羟-3-甲戊二酰辅酶A还原酶抑制剂(他汀)对冠心病的病人是一种非常有效的治疗方法。随着他汀的治疗,心血管病的发病率与死亡率下降归功于血浆胆固醇浓度的降低和其他非脂机制,例如内皮功能改善和抗炎效果。罗苏伐他汀和阿托伐他汀是两种最广泛的他汀,用以大大地降低血浆总胆固醇浓度和低密度脂蛋白胆固醇浓度。在动脉粥样硬化斑块中,他汀能通过抑制NF-κB信号,激活可诱导的NO合酶的表达来减轻炎症趋化因子的表达,减少MMP-9容量,增加胶原和纤维帽的厚度。
     基于他汀类药物的多效性,尤其是抗炎的作用,他汀类药物有望在抗动脉粥样硬化的基础上成为一种抑制、逆转动脉瘤有效的药物。他汀是否能阻止人类腹主动脉瘤的扩张和破裂尚有争议。有研究提示:在弹性酶诱导的大鼠腹主动脉瘤模型上,阿托伐他汀通过抑制巨噬细胞的聚集来抑制腹主动脉瘤的发展,但是还尚没有瑞苏伐他汀抑制腹主动脉瘤的确切疗效报导。
     实验目的:
     研究他汀类药物(瑞苏伐他汀和阿托伐他汀)对血管紧张素Ⅱ诱导的apoE基因敲除雄性小鼠的腹主动脉瘤与主动脉粥样硬化的影响,并对其相关的作用机制进行探讨。
     实验方法:
     我们选用了血管紧张素Ⅱ诱导apoE基因敲除雄性小鼠而获得的腹主动脉瘤与主动脉粥样硬化的实验动物模型。60只apoE基因敲除雄性小鼠,随机分成三组,每组20只。安慰剂组:给予不含药物的饮用水;瑞舒伐他汀组:给予含瑞舒伐他汀10mg/kg/d的饮用水;阿托伐他汀组:给予含阿托伐他汀20mg/kg/d的饮用水。1周后,60只apoE基因敲除雄性小鼠均皮下植入含有血管紧张素Ⅱ1000ng/kg/min的ALZET(?)渗透泵诱导4周而成。我们每周测量小鼠体重。应用Kent无创血压监测系统监测小鼠血压变化。应用小动物活体超声成像系统探测肾上主动脉的最大内直径和最大横断面积,以监测不同组别小鼠的肾上主动脉内直径和横断面积大小的变化;按照Daugherty分型法,根据肾上主动脉形状对腹主动脉瘤进行分型,观察各组腹主动脉瘤不同型的构成情况。为了明确apoE基因敲除雄性小鼠体内存在有效血药浓度,我们采用了高效液相色谱-质谱联用法相继测定了瑞苏伐他汀和阿托伐他汀的血清浓度。应用了Wako LabAssayTM Clolesterol试剂盒测定了三组的血清总胆固醇浓度;应用小鼠单核细胞趋化蛋白-1ELISA试剂盒测定了三组的血清单核细胞趋化蛋白-1浓度;应用小鼠巨噬细胞移动抑制因子ELISA试剂盒测定了三组的血清巨噬细胞移动抑制因子浓度;应用En Face技术分析三组主动脉弓粥样硬化面积的绝对值与占内膜面积的百分比。应用图像分析软件Image Pro5.0分析三组主动脉根部每10um与每80um的粥样硬化斑块面积,比较瑞苏伐他汀与阿托伐他汀对血管紧张素Ⅱ诱导的apoE基因敲除雄性小鼠的动脉粥样硬化斑块的影响。应用MicroProbe手动染色系统对主动脉根部的粥样硬化斑块进行免疫组织化学染色的方法,以人工免疫染色分级的方法显示其中的血管平滑肌细胞、巨噬细胞、B淋巴细胞、T淋巴细胞的变化,从而阐述瑞苏伐他汀与阿托伐他汀对粥样硬化斑块内炎性细胞组分的不同影响。应用原位杂交检测了主动脉根部粥样硬化斑块内的PPAR-α mRNA、PPAR-γ mRNA、MCP-1mRNA、TNF-α mRNA、 NF-KappaB p50mRNA、NF-KappaB p65mRNA,从分子水平探讨瑞苏伐他汀与阿托伐他汀对抗炎因子与促炎因子的影响,从而说明动脉粥样硬化斑块内炎症状态的改变。
     实验结果:
     血管紧张素Ⅱ诱导的apoE基因敲除雄性小鼠的腹主动脉瘤与动脉粥样硬化的动物模型是一个成功的模型。在本次研究中,三组小鼠的体重、血压在同时段比较无显著性差异。比较植入含有血管紧张素Ⅱ的ALZET(?)渗透泵前后,血压有明显升高,说明血管紧张素Ⅱ使小鼠的血压升高,这可能对apoE基因敲除雄性小鼠的动脉瘤与动脉粥样硬化的形成有协助作用,但是该血压不受瑞苏伐他汀和阿托伐他汀的影响。通过用高效液相色谱-质谱联用法测定瑞苏伐他汀和阿托伐他汀的血清浓度,我们得出瑞苏伐他汀组与阿托伐他汀组均有相应的血药浓度。通过腹主动脉瘤的发生率与破裂的情况,用高频超声成像系统测定肾上主动脉的最大内直径与最大横断面积,分析腹主动脉瘤的分型构成比。我们认为瑞苏伐他汀与阿托伐他汀均未能改变血管紧张素Ⅱ所诱导的腹主动脉瘤的进展。通过测量三组的主动脉弓与主动脉根部的动脉粥样硬化斑块面积,在血管紧张素Ⅱ诱导的apoE基因敲除的主动脉粥样硬化斑块的模型上,阿托伐他汀有抗动脉粥样硬化的效果,却未见瑞苏伐他汀抗动脉粥样硬化的效果。
     我们从细胞与分子水平来探讨了阿托伐他汀在本模型中抗动脉粥样硬化斑块的机制。通过对主动脉根部的粥样硬化斑块内细胞组分进行免疫组化染色,我们发现:阿托伐他汀改变了粥样硬化斑块内的细胞组分,增加了中膜的血管平滑肌细胞的含量,减少了巨噬细胞与T淋巴细胞的聚集。通过原位杂交方法检测动脉粥样硬化斑块内促炎因子的转录因子NF-κB p50mRNA、NF-κB p65mRNA、MCP-1mRNA、TNF-α mRNA,及抗炎因子的转录因子PPAR-αmRNA和PPAR-γmRNA,阿托伐他汀显著下调了促炎因子的转录因子NF-B p50mRNA、NF-κB p65mRNA、MCP-1mRNA、TNF-α mRNA的丰度,上调了抗炎因子的转录因子PPAR-αmRNA和PPAR-γ mRNA的丰度。但是瑞苏伐他汀与阿托伐他汀对循环中的炎症因子MCP-1与MIF均无影响,对循环中的血清总胆固醇浓度亦无影响,这说明在本研究中阿托伐他汀的抗动脉粥样硬化斑块的效果是直接影响粥样硬化斑块内炎症状态而发挥作用的,与循环中的炎症状态无关,独立于调脂作用。
     实验结论:
     1.瑞苏伐他汀与阿托伐他汀均未能阻止与逆转血管紧张素Ⅱ诱导apoE基因敲除雄性小鼠的腹主动脉瘤的发生与进展。
     2.阿托伐他汀对血管紧张素Ⅱ诱导的apoE基因敲除雄性小鼠有明确的抗动脉粥样硬化斑块的效果,而瑞苏伐他汀的效果却不明显。
     3.阿托伐他汀抗动脉粥样硬化斑块的效果与增加了血管中膜的平滑肌细胞的含量,减少了斑块内巨噬细胞与T淋巴细胞的聚集有关。
     4.阿托伐他汀抗动脉粥样硬化斑块的效果与斑块内的抗炎因子上调、促炎因子下调有关,与循环中的炎症因子无关,且独立于调脂作用。
     5.血管紧张素Ⅱ诱导的apoE基因敲除雄性小鼠的腹主动脉瘤与动脉粥样硬化斑块的实验动物模型是一个稳定的模型,可进一步推广使用。
Background:
     With the development of the social economy and the improvement of the people's living standard, morbidity and mortality of arterial diseases have increased significantly in recent years. Arterial diseases are the time bomb which have been harmful to human health. Aortic aneurysms and atherosclerosis are all chronic inflammatory artery diseases. The popularity of ultrasound, CTA and MRA contributes to detect aneurysms and atherosclerosis. The patients with large aneurysms can be made open surgical operations or be performed minimally invasive endovascular aortic repair, but the patients with small aneurysms wait passively for repeating examination. There are no effective medicines to prevent or reverse the occurrence and development of aneurysms. Atherosclerosis has been studied for many years from basic theory to clinical feature. Although we have made great progress in antiatherosclerotic theory. Atherosclerotic disease is faster than the treatment speed. It is still a danger to human health. Therefore, searching for effective medicines to prevent and to reverse aneurysms and atherosclerosis is an imminent medical work for researchers.
     As is well known, administration of3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) inhibitor (statin) is a highly validated therapeutic approach for patients with coronary heart disease. Reductions of cardiovascular morbidity and mortality with statin therapy have been attributed to lowering of plasma cholesterol concentrations and other non-lipid-based mechanisms, such as improved endothelial function and anti-inflammatory effects. Rosuvastatin and atorvastatin are two of the most widely prescribed statins that profoundly reduce plasma concentrations of total cholesterol and low-density lipoprotein cholesterol (LDL-C). Statins reduced inflammatory chemokines expression by inhibition of NFκB signaling and activation of inducible NO synthase expression, decreased MMP-9content, and increased collagen and fibrous cap thickness in atherosclerotic lesions.
     Based on its pleiotropic effects, especially the anti-inflammatory effect, statins are expected to become an effective medicine to reverse aneurysm on the basis of anti-atherosclerosis. Now it is controversial whether satins can prevent the expansion and rupture of human abdominal aortic aneurysms (AAAs). Atorvastatin had been demonstrated to suppress the development of AAAs in elastase-induced rats through inhibition of macrophage migration. No studies have defined the effects of rosuvastatin on AAAs.
     Objectives:
     The objective of this study is to evaluate statins (rosuvastatin and atorvastatin) on angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis in apoE knockout male mice, and to explore their mechanisms.
     Methods:
     We selected angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis in apoE knockout male mice as the experimental animal models. Sixty apoE konckout male mice fed a normal diet were randomly divided into three groups: control group, rosuvastatin group and atorvastatin group. The mice in the rosuvastatin group were administered drinking water with rosuvastatin1Omg/kg/day, while the mice in the atorvastatin group with atorvastatin20mg/kg/day for1week prior to initiating28-day angll infusion (1000ng/kg/min). We measured body weight in mice weekly. We used a computerized tail cuff to measure the blood pressure of the mice. We measured maximum suprarenal diameters and maximum cross-sectional areas using a high frequency ultrasound imaging system to monitor suprarenal change in each goup. Aneurysm severity was scored as professor Alan Daugherty. We analysed the constituent conditions of AAAs types. In order to identify the effective serum therapeutic medicine concentrations in apoE knockout male mice, we used liquid chromatography with electrospray ionization tandem mass spectrometry to detect rosuvastatin and atorvastatin concentrations. Serum total cholesterol concentrations were determined using enzymatic assay kits. Serum concentrations of monocyte chemoattractant protein-1and macrophage migration inhibitory factor were measured with ELISA kits according to manufacturer's recommendation. Atherosclerosis was assessed on the intimas of aortic arches by en face technique and on cross-sections of aortic roots. Quantitative analysis of aortic root atherosclerotic cross-sections (10μm and80um thick) was performed using Image-Pro software. We compared the effects of rosuvastatin and atorvastatin on angiotensin II-induced atherosclerotic plaques in apoE knockout male mice. Immunostaining of aortic root atherosclerosis plaque was performed with a commercially available system (Fisher Microprobe). Cellular components consisting of atherosclerotic lesions were graded. We identified the change of vascular smooth muscle cell、macrophages、B-lymphocytes、T-lymphocytes in lesions. We used in situ hybridization to detect PPAR-amRNA、PPAR-ymRNA、MCP-1mRNA、TNF-αmRNA、NF-κB p50mRNA、NF-κB p65mRNA in aortic root atherosclerotic lesions. From the molecular levels, we explored the effects of rosuvastatin and atorvastatin on inflammatory factors and anti-inflammatory factors. Thus we confirmed inflammatory changes in the atherosclerotic lesions.
     Results:
     The experimental animal model of angiotensin-induced abdominal aortic aneurysms and atherosclerosis in apoE knockout male mice is a successful model. In the study, body weight and blood pressure had no significant difference at the same time among the three groups. Blood pressure had increased after ALZET(?) osmotic pumps containing angiotensin Ⅱ implanted. That would be benefit to aortic aneurysms and atherosclerosis in apoE knockout male mice. But the blood pressures were not affected by rosuvastatin and atorvastatin. Serum concentrations of rosuvastatin and atorvastatin were measured by liquid chromatography with electrospray ionization tandem mass spectrometry. We found that statins (rosuvastatin and atorvastatin) administration led to therapeutic serum drugs concentrations. We calculated the occurrence rate of abdominal aortic aneurysms. We measured maximum suprarenal diameter and cross-sectional area using a high frequency ultrasound imaging system. We analysed the constituent ratio of abdominal aortic aneurysm types. Finally we made a decision that neither rosuvastatin nor atorvastatin altered development of angiotensin Ⅱ-induced AAAs. We measured atherosclerotic plaque areas induced by angiotensin Ⅱ of aortic arch and aortic root in the three groups. We found that atorvastatin had anti-atherogenic effects, but rosuvastatin had no effects.
     We explored the mechanisms of atorvastatin suppressing atherosclerotic plaque from the cell and molecular levels in the animal model. Atorvastatin changed cellular component in atherosclerotic plaque. It increased the content of vascular smooth muscle cells in the medial membrane and significantly decreased accumulation of macrophages and T lymphocytes in the lesions. We detected NF-κB p50mRNA、NF-κB p65mRNA、 MCP-1mRNA、TNF-amRNA as major inflammatory factors and PPAR-amRNA and PPAR-ymRNA as major anti-inflammatory factors in lesions using in situ hybridization. As a result, Atorvastatin administration decreased NF-κB p50mRNA, NF-κB p65mRNA, MCP-1mRNA and TNF-a mRNA abundances and increased PPAR-a mRNA and PPAR-y mRNA abundances in atherosclerotic lesions. But serum inflammatory markers MCP-1and MIF concentrations were not altered by rosuvastatin and atorvastatin, and serum total cholesterol were not changed too.
     Atherosclerosis attenuated by atovastatin was independent of reductions in serum total cholesterol concentrations. Atherosclerosis was not related to circulating inflammatory state, while to related to inflammatory state in atherosclerotic plaque.
     Conclusions:
     1. Administration of either rosuvastatin or atorvastatin all failed to suppress angⅡ-induced abdominal aortic aneurysms in apoE knockout mice.
     2. Atorvastatin significantly reduced angⅡ-induced atherosclerotic lesion areas in apoE knockout mice, but rosuvastatin had no effects.
     3. Effect of atorvastatin on atherosclerotic plaque was related to the increase of vascular smooth muscle cells and significant decrease of macrophages and T lymphocytes in lesions.
     4. Effect of atorvastatin on atherosclerotic plaque was related to upregulation of anti-inflammatory factors and downregulation of inflammatory factors in lesions, while it was independent of circulating inflammatory factors and serum total cholesterol.
     5. The experimental animal model of angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis in apoE knockout mice is a stable model. It can be used widely in the future.
引文
[1]Wilmink TB, Quick CR, Hubbard CS, Day NE. The influence of screening on the incidence of ruptured abdominal aortic aneurysms. J Vasc Surg.1999;资料30(2): 203-208.
    [2]Lederle FA, Johnson GR, Wilson SE, Chute EP, Hye RJ, Makaroun MS, Barone GW, Bandyk D, Moneta GL, Makhoul RG Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. The aneurysm detection and management study screening program:validation cohort and final results. Arch Intern Med.2000;160(10):1425-1430.
    [3]Ashton HA, Buxton MJ, Day NE, Kim LG, Marteau TM, Scott RA, Thompson SG, Walker NM. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men:a randomised controlled trial. Lancet.2002;360(9345):1531-1539.
    [4]Lawrence-Brown MM, Norman PE, Jamrozik K, Semmens JB, Donnelly NJ, Spencer C, Tuohy R. Initial results of ultrasound screening for aneurysm of the abdominal aorta in Western Australia:relevance for endoluminal treatment of aneurysm disease. Cardiovasc Surg.2001;9(3):234-240.
    [5]Lindholt JS, Juul S, Fasting H, Henneberg EW. Hospital costs and benefits of screening for abdominal aortic aneurysms:Results from a randomised population screening trial. Eur J Vasc Endovasc Surg.2002;23(1):55-60.
    [6]Kent KC, Zwolak RM, Jaff MR, Hollenbeck ST, Thompson RW, Schermerhorn ML, Sicard GA, Riles TS, Cronenwett JL. Screening for abdominal aortic aneurysm:a consensus statement. J Vasc Surg.2004;39(1):267-269.
    [7]Cowan JA Jr, Dimick JB, Henke PK, Rectenwald J, Stanley JC, Upchurch GR Jr. Epidemiology of aortic aneurysm repair in the United States from 1993 to 2003. Ann N Y Acad Sci.2006; 1085:1-10.
    [8]Iribarren C, Darvinian JA, Go AS, Fireman BH, Lee CD, Grey DP. Traditional and novel risk factors for clinically diagnosed abdominal aortic aneurysm:the Kaiser multiphasic health checkup cohort study. Ann Epidemiology.2007; 17(9): 669-678.
    [9]Grimshaw GM, Thompson JM, Hamer JD. A statistical analysis of the growth o small abdominal aortic aneurysms. Eur J Vase Surg 1994; 8(6):741-746.
    [10]Parodi JC. Endovascular repair of abdominal aortic aneurysms and other arterial lesions. J Vase Surg.1995; 21(4):549-555.
    [11]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000; 105(11):1605-1612.
    [12]Daugherty A, CassisL.Chronic angiotensin Ⅱ infusion promotes atherogenesis in low density lipoprotein receptor-/-mice. Ann N Y Acad Sci 1999;892:108-118.
    [13]Wolfrum S, Dendorfer A, Schutt M, Weidtmann B, Heep A, Tempel K, Klein HH, Dominiak P, Richardt G. Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the phosphatidylinositide 3-kinase/Akt pathway. J Cardiovasc Pharmacol 2004;44(3):348-355.
    [14]Gelosa P, Cimino M, Pignieri A, Tremoli E, Guerrini U, Sironi L. The role of HMG-CoA reductase inhibition in endothelial dysfunction and inflammation. Vase Health Risk Management,2007;3(5):567-577.
    [15]Ortego M, Bustos C, Hernandez-Presa MA, Tunon J, Diaz C, Hernandez G, Egido J. Atorvastatin reduces NF-kappa B activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 1999; 147(2):253-261.
    [16]Kolyada AY, Fedtsov A. Madias NE.3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors upregulate inducible NO synthase expression and activity in vascular smooth muscle cells. Hypertension 2001;38(5):1024-1029.
    [17]Suzumura K, Yasuhara M, Tanaka K,Suzuki T. Protective effect of fluvastatin sodium (XU-62-320), a 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on oxidative modification of human low-density lipoprotein in vitro. Biochem Pharmacol,1999,57(6):697-703.
    [18]Monetti M, Canavesi M, Camera M, Parente R, Paoletti R, Tremoli E, Corsini A, Bellosta S. Rosuvastatin displays anti-atherothrombotic and anti-inflammatory properties in apoE-deficient mice. Pharmacol Res.2007; 55(5):441-449.
    [19]Shiraya S, Miyake T, Aoki M, Yoshikazu F, Ohgi S, Nishimura M, Ogihara T, Morishita R. e Inhibition of development of experimental aortic abdominal aneurysm in rat model by atorvastatin through inhibition of macrophage migration. Atherosclerosis 2009;202(1):34-40.
    [20]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest.2000; 105(11):1605-1612.
    [21]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest.2000 Jun; 105(11):1605-1612.
    [22]Theeuwes F, Yum S.L. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals of Biomedical Engineering.1976,4(4):343-353.
    [23]Daugherty A, Rateri DL, Charo IF, Owens AP, Howatt DA, Cassis LA.Angiotensin Ⅱ infusion promotes ascending aortic aneurysms:attenuation by CCR2 deficiency in apoE-/-mice. Clin Sci (Lond).2010;118(11):681-689.
    [24]Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 2001; 134:865-870.
    [25]Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin Ⅱ-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2003; 23:483-488.
    [26]Barisione C, Charnigo R, Howatt DA, Moorleghen JJ, Rateri DL, Daugherty A.Rapid dilation of the abdominal aorta during infusion of angiotensin II detected by noninvasive high-frequency ultrasonography.J Vase Surg.2006;44(2):372-376.
    [27]Xu DH, Ruan ZR, Zhou Q, et al. Quantitative determination of rosuvastatin in human plasma by liquid chromatography with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2006;20:2369-2375.
    [28]Turner GH, Olzinski AR, Bernard RE, Aravindhan K, Boyle RJ, Newman MJ, Gardner SD, Willette RN, Gough PJ, Jucker BM. Assessment of macrophage infiltration in a murine model of abdominal aortic aneurysm. J Magn Reson Imaging.2009; 30(2):455-460.
    [29]Lu H, Rateri DL, Daugherty A. Immunostaining of mouse atherosclerotic lesions. Methods Mol Med 2007; 139:77-94.
    [30]Saraff K, Babamusta F, Cassis LA, et al. Aortic Dissection precedes formation of aneurysms and atherosclerosis in agiotensin II-infused,apolipoprotein E-deficient mice.Arterioscler Thromb Vasc Biol 2003;23:1621-1626.
    [31]Webb NR, Bostrom MA, Szilvassy SJ, van der Westhuyzen DR, Daugherty A, de Beer FC. Macrophage-expressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice.Arterioscler Thromb Vasc Biol.2003;23(2):263-268.
    [32]Sun J, Sukhova GK, Yang M, Wolters PJ, MacFarlane LA, Libby P, Sun C, Zhang Y, Liu J, Ennis TL, Knispel R, Xiong W, Thompson RW, Baxter BT, Shi GP. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest.2007; 117(11):3359-3368.
    [33]Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 2001; 134:865-70.
    [34]Dobrin PB, Baker WH, Gley WC. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms.Arch Surg.1984; 119(4): 405-409.
    [35]Ayabe N, Babaev VR, Tang Y, Tanizawa T, Fogo AB, Linton MF, Ichikawa I, Fazio S, Kon V. Transiently heightened angiotensin Ⅱ has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis. 2006; 184(2):312-321.
    [36]Herron GS, Unemori E, Wong M, Rapp JH, Hibbs MH, Stoney RJ. Connective tissue proteinases and inhibitors in abdominal aortic aneurysms. Involvement of the vasa vasorum in the pathogenesis of aortic aneurysms. Arterioscler Thromb Vase Biol.1991; 11 (6):1667-1677.
    [37]Choke E, Thompson MM, Dawson J, Wilson WR, Sayed S, Loftus IM, Cockerill GW. Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vase Biol 2006; 26(9):2077-2082.
    [38]Ayabe N, Babaev VR, Tang Y, Tanizawa T, Fogo AB, Linton MF, Ichikawa I, Fazio S, Kon V.Transiently heightened angiotensin Ⅱ has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis. 2006; 184(2):312-321.
    [39]Zhang Y, Naggar JC, Welzig CM, Beasley D, Moulton KS, Park HJ, Galper JB. Simvastatin inhibits angiotensin Ⅱ-induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice:possible role of ERK. Arterioscler Thromb Vase Biol.2009; 29 (11):1764-1771.
    [40]Wilson WR, Evans J, Bell PR, Thompson MM. HMG-CoA reductase inhibitors (statins) decrease MMP-3 and MMP-9 concentrations in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg.2005; 30(3):259-262.
    [41]Kajimoto K, Miyauchi K, Kasai T, Shimada K, Kojima Y, Shimada A, Niinami H, Amano A, Daida H. Short-term 20-mg atorvastatin therapy reduces key inflammatory factors including c-Jun N-terminal kinase and dendritic cells and matrix metalloproteinase expression in human abdominal aortic aneurysmal wall. Atherosclerosis.2009;206(2):505-511.
    [42]Keidar S, Attias J, Heinrich R, Coleman R, Aviram M. Angiotensin Ⅱ atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis.1999;146(2):249-257.
    [43]Vankuijk JP, Flu WJ, Witteveen OP, Voute M, Bax JJ, Poldermans D. The influence of statins on the expansion rate and rupture risk of abdominal aortic aneurysms. J Cardiovasc Surg (Torino).2009;50(5):599-609.
    [44]Ni W, Kitamoto S, Ishibashi M, Usui M, Inoue S,Hiasa K, Zhao Q, Nishida K, Takeshita A,Eqashira K. Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin Ⅱ-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol. 2004;24(3):534-539.
    [45]Daugherty A, Rateri DL, Charo IF, Owens AP,Howatt DA,Cassis LA. Angiotensin II infusion promotes ascending aortic aneurysms:attenuation by CCR2 deficiency apoE-/-mice. ClinSci (Lond).2010;118(11):681-689.
    [46]Karlsson L, Bergqvist D, Lindback J, Parsson H. Expansion of small-diameter abdominal aortic aneurysms is not reflected by the release of inflammatory mediators IL-6, MMP-9 and CRP in plasma. Eur J Vase Endovasc Surg.2009; 37(4):420-424.
    [47]Tordjman K, Bernal-Mizrachi C, Zemany L, Weng S, Feng C, Zhang F, Leone TC, Coleman T, Kelly DP, Semenkovich CF. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest.2001; 107(8): 1025-1034.
    [48]Ruiz Ortega M, Lorenzo O, Ruperez M, Suzuki Y, Egido J. Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice.Nephrol Dial Transplant.2001;16 Suppl (1):27-33.
    [49]Kothe H, Dalhoff K, Rupp J, Muller A, Kreuzer J, Mass M, Katus HA. Hydroxymethylglutaryl coenzyme A reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. Circulation,2000; 101 (15):1760-1763
    [1]Wilmink TB, Quick CR, Hubbard CS, Day NE. The influence of screening on the incidence of ruptured abdominal aortic aneurysms. J Vasc Surg.1999; 30(2): 203-208.
    [2]Lederle FA, Johnson GR, Wilson SE, Chute EP, Hye RJ, Makaroun MS, Barone GW, Bandyk D, Moneta GL, Makhoul RG. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. The aneurysm detection and management study screening program:validation cohort and final results. Arch Intern Med.2000; 160(10):1425-1430.
    [3]Ashton HA, Buxton MJ, Day NE, Kim LG, Marteau TM, Scott RA, Thompson SG, Walker NM. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men:a randomised controlled trial. Lancet.2002;360(9345):1531-1539.
    [4]Lawrence-Brown MM, Norman PE, Jamrozik K, Semmens JB, Donnelly NJ, Spencer C, Tuohy R. Initial results of ultrasound screening for aneurysm of the abdominal aorta in Western Australia:relevance for endoluminal treatment of aneurysm disease. Cardiovasc Surg.2001;9(3):234-240.
    [5]Lindholt JS, Juul S, Fasting H, Henneberg EW. Hospital costs and benefits of screening for abdominal aortic aneurysms:Results from a randomised population screening trial. Eur J Vasc Endovasc Surg.2002;23(1):55-60.
    [6]Kent KC, Zwolak RM, Jaff MR, Hollenbeck ST, Thompson RW, Schermerhorn ML, Sicard GA, Riles TS, Cronenwett JL. Screening for abdominal aortic aneurysm:a consensus statement. J Vasc Surg.2004; 39(1):267-269.
    [7]Grimshaw GM, Thompson JM, Hamer JD. A statistical analysis of the growth of small abdominal aortic aneurysms. Eur J Vasc Surg.1994; 8(6):741-746.
    [8]Norman PE, Davis TM, Le MT, Golledge J. Matrix biology of abdominal aortic aneurysms in diabetes:mechanisms underlying the negative association. Connect Tissue Res.2007;48(3):125-131.
    [9]Yamashita A, Noma T, Nakazawa A, Saito S, Fujioka K, Zempo N, Esato K. Enhanced expression of matrix metalloproteinase- 9 in abdominal aortic aneurysms. World J Surg,2001,25(3):259-265.
    [10]Quinn CO, Scott DK, Brinckerhoff CE, Matrisian LM, Jeffrey JJ, Partridge NC.Rat collagenase. Cloning, aminoacid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J Biol Chem,1990,265 (36): 22342-22347.
    [11]White JV, Haas K, Comerota AJ. Adventitial elastolysis is a primary event in aneurysms formation. J Vasc Surg,1993; 17(2):380-381.
    [12]Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 practice guidelines for the management of patients wit h peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation,2006,113(11): e463-e654.
    [13]Halpern VJ, Nackman GB, Gandhi RH, Irizarry E, Scholes JV, Ramey WG, Tilson MD. The elastase infusion model of experimental aortic anearysms synchrony of induction of endogenous proteinases with matrix destruction and inflammatory cell response. J Vasc Surg,1994; 20 (1):51-60.
    [14]Juvonen J, Surcel HM, Satta J, Teppo AM, Bloigu A, Syrjala H, Airaksinen J, Leinonen M, Saikku P, Juvonen T. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vase Biol,1997,17(11):2843-2847.
    [15]Mauviel A.Cytokine regulation of metalloproteinase gene expression.J Cell Bio, 1993,53(4):288-295.
    [16]Wahlgren CM, Larsson E, Magnusson PK, Hultgren R, Swedenborg J. Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J Vase Surg 2010;51(1):3-7
    [17]Gretarsdottir S, Baas AF, Thorleifsson Q Holm H, den Heijer M, de Vries JP et al.Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to bdominal aortic aneurysm. Nat Genet 2010;42(8):692-697.
    [18]Houard X, Rouzet F, Touat Z, Philippe M, Dominguez M, Fontaine V. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J Pathol 2007;212(1):20-28.
    [19]Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, Webster MW. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vase Surg 2001;34(2):291-299.
    [20]Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vase Surg 2003;38(6):1283-1292.
    [21]Wassef M, Baxter BT, Chisholm RL, Dalman RL, Fillinger MF, Heinecke J, Humphrey JD, Kuivaniemi H, Parks WC, Pearce WH, Platsoucas CD, Sukhova GK, Thompson RW, Tilson MD, Zarins CK. Pathogenesis of abdominal aortic aneurysms:a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vase Surg,2001; 34(4):730-738.
    [22]Vaglio A, Greco P, Corradi D, Palmisano A, Martorana D, Ronda N et al. Autoimmune aspects of chronic periaortitis. Autoimmun Rev 2006; 5:458-464.
    [23]Tsuruda T, Kato J, Hatakeyama K, Yamashita A, Nakamura K, Imamura T, Kitamura K, Onitsuka T, Asada Y, Eto T. Adrenomedullin in mast cells of abdominal aortic aneurysm. Cardiovasc Res 2006;70(1):158-164.
    [24]Kasashima S, Zen Y, Kawashima A, Endo M, Matsumoto Y, Kasashima F. A new clinicopathological entity of IgG4-related inflammatory abdominal aortic aneurysm. J Vase Surg 2009;49(5):1264-1271.
    [25]Holmes DR, Liao S, Parks WC, Thompson RW. Medial neovascularization in abdominal aortic aneurysms:a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J Vase Surg 1995; 21(5): 761-771.
    [26]Thompson MM, Jones L, Nasim A, Sayers RD, Bell PR. Angiogenesis in abdominal aortic aneurysms. Eur J Vase Endovasc Surg 1996;11(4):464-469.
    [27]Dobrin PB. Animal models of aneurysms. Ann Vasc Surg.1999; 13(6):641-648.
    [28]Carrell TW, Smith A,Burnand KG. Experimental techniques and models in the study of the development and treatment of abdominal aortic aneurysm.Br J Surg.1999,86(3):305-312.
    [29]Alan Daugherty, Cassis LA. Mouse Models of Abdominal Aortic Aneurysms. Arterioscler Thromb Vase Biol 2004,24(3):429-434.
    [30]Anidjar S,Salzmann JL,Gentric D,Lagneau P, Camilleri JP, Michel JB. Elastase-induced experimental aneurysms in rats. Circulation 1990,82:973-981.
    [31]Marinov GR, Marois Y, Paris E, Roby P, Formichi M, Douville Y, Guidoin R.Can the infusion of elastase in the abdominal aorta of the Yucatan miniature swine consistently produce experimental aneurysms? J Invest Surg.1997; 10(3):129-50.
    [32]Gertz SD,Kurgan A,Eisenberg D. Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo.J Clin Invest.1988,81 (3):649-656.
    [33]Freestone T,Tumer RJ,Higman DJ, Lever MJ,Powell JT. Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vase Biol.1997,17(1):10-17.
    [34]Nishijo N,Sugiyama F,Kimoto K,Taniguchi K,Murakami K,Suzuki S, Fukamizu A,Yagami K. Salt-sensitive aortic aneurysm and rupture in hypertensive transgenic mice that overproduce angiotensin Ⅱ.Lab Invest.1998,78(9): 1059-1066.
    [35]MacSweeney ST, Ellis M, Worrell PC, Greenhalgh RM, Powell JT. Smoking and growth rate of small abdominal aortic aneurysms. Lancet 1994; 344(8923): 651-652.
    [36]Shantikumar S, Ajjan R, Porter KE, Scott DJ. Diabetes and the abdominal aortic aneurysm. Eur J Vase Endovasc Surg 2010;39 (2):200-207.
    [37]Parodi JC. Endovascular repair of abdominal aortic aneurysms and other arterial lesions. J Vase Surg.1995;21(4):549-555.
    [38]Vankuijk JP, Flu WJ, Witteveen OP, Voute M, Bax JJ, Poldermans D.The influence of statins on the expansion rate and rupture risk of abdominal aortic aneurysms. J Cardiovasc Surg (Torino).2009;50(5):599-609.
    [39]Steinmetz EF, Buckley C, Shames ML, Ennis TL, Vanvickle-Chavez SJ, Mao D, Goeddel LA, Hawkins CJ, Thompson RW. Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice. Ann Surg 2005;241(1):92-101.
    [40]Kalyanasundaram A, Elmore JR, Manazer JR, Golden A, Franklin DP, Galt SW,Zakhary EM, Carey DJ. Simvastatin suppresses experimental aortic aneurysm expansion. J Vasc Surg 2006;43(1):117-124.
    [41]Nagashima H, Aoka Y, Sakomura Y, Sakuta A, Aomi S, Ishizuka N, Hagiwara N, Kawana M, Kasanuki H. A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall. J Vasc Surg 2002;36(1):158-163.
    [42]Sukhija R, Aronow WS, Sandhu R, Kakar P, Babu S. Mortality and size of abdominal aortic aneurysm at long-term follow-up of patients not treated surgically and treated with and without statins. Am J Cardiol 2006; 97(2): 279-280.
    [43]Schouten O, van Laanen JH, Boersma E, Vidakovic R, Feringa HH, Dunkelgrun M, Bax JJ, Koning J, van Urk H, Poldermans D. Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur J Vasc Endovasc Surg 2006;32(1):21-26.
    [44]Sukhija R, Aronow WS, Sandhu R, Kakar P, Babu S. Mortality and size of abdominal aortic aneurysm at long-term follow-up of patients not treated surgically and treated with and without statins. Am J Cardiol 2006; 97(2): 279-280.
    [45]Ferguson CD, Clancy P, Bourke B, Walker PJ, Dear A, Buckenham T, Norman P, Golledge J. Association of statin prescription with small abdominal aortic aneurysm progression. Am Heart J 2010;159 (2):307-313.
    [46]Mosorin M, Niemela E, Heikkinen J, Lahtinen J, Tiozzo V, Satta J, Juvonen T, Biancari F. The use of statins and fate of small abdominal aortic aneurysms. Interact Cardiovasc Thorac Surg 2008;7(4):578-581.
    [47]Thompson AR, Cooper JA, Ashton HA, Hafez H. Growth rates of small abdominal aortic aneurysms correlate with clinical events. Br J Surg 2010; 97(1): 37-44.
    [48]Leach SD,Toole AL, Stern H, DeNatale RW, Tilson MD. Effect of beta-adrenergic blockade on the growth rate of abdominal aortic aneurysms. Arch Surg 1988; 123(5):606-609.
    [49]Lindholt JS, Heegaard NH, Vammen S, Fasting H,Henneberg EW, Heickendorff L. Smoking, but not lipids, lipoprotein(a) and antibodies against oxidised LDL, is correlated tothe expansion of abdominal aortic aneurysms. Eur J VascEndovasc Surg 2001;21(1):51-56.
    [50]Gadowski GR, Pilcher DB, Ricci MA. Abdominal aortic aneurysm expansion rate: effect of size and beta-adrenergic blockade. J Vasc Surg 1994; 19(4):727-731.
    [51]Propanolol Aneurysm Trial Investigators. Propranolol for small abdominal aortic aneurysms:results of a randomized trial. J Vasc Surg 2002; 35(1):72-79.
    [52]Prescott MF,Sawyer WK,Von Linden-Reed J,Jeune M,Chou M,Caplan SL,Jeng AY.Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, MMP-13 and on restenosis in rats after balloon injury.Ann NY Acad Sci.1999, 878:179-190.
    [53]Alan Daugherty, Cassis LA. Mouse Models of Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2004,24(3):429-434.
    [54]Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm:doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation 2009; 119(16):2209-2216.
    [55]Abdul-Hussien H, Hanemaaijer R, Verheijen JH, van Bockel JH, Geelkerken RH, Lindeman JH. Doxycycline therapy for abdominal aneurysm:improved proteolytic balance through reduced neutrophil content. J Vasc Surg 2009; 49(3): 741-749.
    [56]Mosorin M, Juvonen J, Biancari F, Satta J, Surcel HM, Leinonen M,Saikku P, Juvonen T. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms:a randomized, double-blind, placebo-controlled pilot study.J Vasc Surg 2001; 34(4):606-610.
    [57]Franklin IJ, Harley SL, Greenhalgh RM, Powell JT. Uptake of tetracycline by aortic aneurysm wall and its effect on inflammation and proteolysis. Br J Surg. 1999; 86(6):771-775.
    [58]Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW, Powell JT. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 1999; 100:48-54.
    [59]King VL, Trivedi DB, Gitlin JM, Loftin CD. Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin Ⅱ-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol 2006;26(5): 1137-1143.
    [60]Gitlin JM, Trivedi DB, Langenbach R, Loftin CD. Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc Res 2007;73(1):227-236.
    [61]Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW, Powell JT. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation.1999; 100(1):48-54.
    [62]Hackam DQ Thiruchelvam D, Redelmeier DA. Angiotensin-converting enzyme inhibitors and aortic rupture:a population-based case-control study. Lancet 2006; 368(9536):659-665.
    [63]Sweeting MJ, Thompson SG, Brown LC, Greenhalgh RM, Powell JT. Use of angiotensin converting enzyme inhibitors is associated with increased growth rate of abdominal aortic aneurysms. J Vasc Surg 2010;52 (1):1-4.
    [64]Hackam DG, Thiruchelvam D, Redelmeier DA. Angiotensin-converting enzyme inhibitors and aortic rupture:a population-based case-control study. Lancet 2006;368(9536):659-665.
    [65]Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis.Br J Pharmacol 2001; 134(4):865-870.
    [66]Fujiwara Y, Shiraya S, Miyake T, Yamakawa S, Aoki M, Makino H,Nishimura M, Morishita R.Inhibition of experimental abdominal aortic aneurysm in a rat model by an angiotensin receptor blocker, valsartan. Int J Mol Med 2008;22(6):703-708.
    [67]Tsuruda T, Kato J, Hatakeyama K, Kojima K, Yano M, Yano Y Nakamura K, Nakamura-Uchiyama F, Matsushima Y, Imamura T, Onitsuka T, Asada Y, Nawa Y, Eto T, Kitamura K. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res 2008; 102(11):1368-1377.
    [68]Lindholt JS, Juul S, Vammen S, Lind I, Fasting H, Henneberg EW. Immunoglobulin A antibodies against Chlamydia pneumoniae are associated with expansion of abdominal aortic aneurysm. Br J Surg 1999; 86(5):634-638.
    [69]Hogh A, Vammen S, Ostergaard L, Joensen JB, Henneberg EW, Lindholt JS. Intermittent roxithromycin for preventing progression of small abdominal aortic aneurysms:long-term results of a small clinical trial. Vasc Endovasc Surg 2009;43(5):452-456.
    [70]Vammen S, Lindholt JS, Ostergaard L, Fasting H, Henneberg EW. Randomized double-blind controlled trial of roxithromycin for prevention of abdominal aortic aneurysm expansion. Br J Surg 2001; 88(8):1066-1072.
    [71]Karlsson L, Gnarpe J, Bergqvist D, Lindback J, Parsson H. The effect of azithromycin and Chlamydophilia pneumonia infection on expansion of small abdominal aortic aneurysmsea prospective randomized double-blind trial. J Vasc Surg 2009;50(1):23-29.
    [72]Dobrin PB, Baumgartner N, Anidjar S, Chejfec G, Mrkvicka R.Ann N Y Acad Sci. Inflammatory aspects of experimental aneurysms. Effect of methylprednisolone and cyclosporine.1996; 800:74-88.
    [73]Lawrence DM, Singh RS, Franklin DP, Carey DJ, Elmore JR. Rapamycin suppresses experimental aortic aneurysm growth. J Vasc Surg 2004;40(2): 334-338.
    [74]Lindholt JS, Sorensen HT, Michel JB, Thomsen HF, Henneberg EW. Low-dose aspirin may prevent growth and later surgical repair of medium-sized abdominal aortic aneurysms. Vasc Endovasc Surg 2008;42(4):329-334.
    [75]Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A.Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K, Matsuzaki M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N terminal kinase. Nat Med 2005;11(12):1330-1338.
    [76]Miyake T, Aoki M, Masaki H, Kawasaki T, Oishi M, Kataoka K, Ogihara T, Kaneda Y, Morishita R. Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model. Circ Res 2007;101(11):1175-1184.
    [77]Nakashima H, Aoki M, Miyake T, Kawasaki T, Iwai M, Jo N, Oishi M, Kataoka K, Ohgi S, Ogihara T, Kaneda Y, Morishita R. Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity of NFkB and ets transcription factors. Circulation 2004;109(1):132-138.
    [78]Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10(5):2327-2334.
    [79]Satriano J, Schlondorff D. Activation of attenuation of transcriptional factor NF-kB in mouse glomerular cells in response to tumor necrosis factor-a, immunoglobulin G, and adenosine 30:50-cyclic monophosphate. Evidence for involvement of reactive oxygen species. J Clin Invest 1994; 94(4):1629-1636.
    [80]Ledebur HC, Parks TP. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J Biol Chem 1995;270(2):933-943.
    [81]Weber C, Erl W, Pietsch A, Weber PC. Aspirin inhibits nuclear factorkappa B mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation 1995;91(7):1914-1917.
    [82]Bond M, Baker AH, Newby AC. Nuclear factor kappaB activity is essential for matrix metalloproteinase-1 and -3 upregulation in rabbit dermal fibroblasts. Biochem Biophys Res Commun 1999;264(2):561-567.
    [83]Kim H, Koh G. Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kappaB-dependent pathway. Biochem Biophys Res Commun 2000;269(2):401-405.
    [84]Takeshita H, Yoshizaki T, Miller WE, Sato H, Furukawa M, Pagano JS, Raab-Traub N. Matrix metalloproteinase 9 expression is induced by Epstein-Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J Virol 1999;73(7):5548-5555.
    [85]Kuang PP, Berk JL, Rishikof DC, Foster JA, Humphries DE, Ricupero DA, Goldstein RH. NF-kappaB induced by IL-lbeta inhibits elastin transcription and myofibroblast phenotype. Am J Physiol Cell Physiol 2002; 283(1):C58-C65.
    [86]Kouba DJ, Chung KY, Nishiyama T, Vindevoghel L, Kon A, Klement JF, Uitto J, Mauviel A.Nuclear factor-kappa B mediates TNF-alpha inhibitory effect on alpha 2(1) collagen (COL1A2) gene transcription in human dermal fibroblasts.J Immunol 1999;162(7):4226-4234.
    [87]Parodi FE, Mao D, Ennis TL, Bartoli MA, Thompson RW. Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-kappaB. J Vase Surg. 2005 Mar;41(3):479-489.
    [88]Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N.Reduced collagen biosynthesis is the hallmark of cerebral aneurysm:contribution of interleukin-lbeta and nuclear factor-kappaB. Arterioscler Thromb Vase Biol.2009 Jul;29(7):1080-1086. Epub 2009 Apr 9.
    [89]Miyake T, Aoki M, Masaki H, Kawasaki T, Oishi M, Kataoka K, Ogihara T, Kaneda Y, Morishita R.Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model.Circ Res.2007 Nov26;101(11):1175-1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700