用户名: 密码: 验证码:
转染HO-1基因的骨髓间充质干细胞(MSCs)移植治疗慢性心衰的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩张型心肌病(dilated cardiomyopathy,DCM)是原发性心肌疾病最常见的类型,原因至今未完全明了。此心肌病发病率逐年上升,到目前为止已经成为继冠心病、风心病、先心病之后的发病率较高的心脏疾病,并且是慢性心力衰竭(Chronic heartfailure,CHF)的重要原发病之一。DCM到目前为止缺乏有效的治疗,预后较差,病死率高,其治疗方法一直是心血管疾病的研究热点。
     研究结果发现,移植干细胞进入受者的心脏内部可以存活,干细胞能够分化成为心肌细胞、血管内皮细胞等。干细胞移植治疗心血管疾病的主要机制在病损心区部位的微环境可对干细胞的分化增殖产生一定的影响,使之向心肌细胞和或血管内皮细胞方向分化,代偿受损的心肌和血管组织,从而起到改善心功能的作用,减少心脏损伤程度,一些基础实验和临床试验也证明了此种推断。
     血红素氧合酶HO-1是血红素代谢过程中的限速酶,在体内有多种生物学功能,包括血管舒张作用、抗氧化作用、抗凋亡作用、抗炎作用,被认为是一种保护性因子。本研究利用阿霉素构建大鼠扩张型心脏病慢性心衰模型,分离得到骨髓间充质干细胞并利用5-aza进行诱导分化成心肌样细胞,利用脂质体载体将HO-1基因转染至诱导细胞内并表达,将转染HO-1基因的干细胞移植入心衰大鼠模型内,观察其治疗大鼠慢性心衰的效果,并对其机制进行初步探讨。
Objective
     Bone marrow mesenchymal stem cell transplantation in the treatment of cardiovasculardisease mainly in acute myocardial lesions and myocardial local lesion, and on the diffusedilated heart disease research is very little. This study use of adriamycin construction of ratmodel of chronic heart failure with dilated heart disease, isolated from bone marrowmesenchymal stem cells and the use of5-aza were induced to differentiate intocardiomyocyte-like cells, using a recombinant adenoviral vector HO-1gene transfection toinduce cell and expression of transfected HO-1gene, stem cell transplantation into heartfailure rat model, to observe the treatment of rats with chronic heart failure effect, and themechanism was discussed.
     Method
     1.The adriamycin rat dilated cardiomyopathy heart failure model preparation
     Experimental rats tail vein injection of doxorubicin hydrochloride solution,1mg/kg,weekly one time injection1times, for a total of6weeks; the normal control group tail veininjection of equal volumes of saline, the same time weekly injections of1, a total of6weeks.In the last2weeks after drug withdrawal after the injection, the rats' general physiologicalstatus and circumstances of death. The use of ultrasound in detecting left ventricular endsystolic diameter (LVDs), left ventricular end diastolic diameter and ejection fraction(LVDd), fractional shortening of FS EF. The polygraph record left ventricular systolicpressure (LVSP), left ventricular end diastolic pressure (LVEDP) and left ventricularpressure rising and falling speed (DP/dtmax). In experiment and the day of injection drugsfor two weeks after the beginning of heavy weight, respectively, and end weight.Measurement of ventricular mass (VW), and VW/BW ratio calculation. Myocardialpathology.
     2. Bone marrow mesenchymal stem cell separation, culture and induced to differentiate
     Charge and mass of stem cells and subculture density gradient separation method ofbone marrow to draw the three generations of MSCs growth curve immunohistochemistyevaluation,5-aza induction of the third generation of bone marrow between the charge and quality of stem cell differentiation into cardiomyocyte-like cells, the differentiation ofcardiomyocyte-like cells identification and calculation of the cardiomyocyte-like cellsconversion rate.
     3.Recombinant pcDNA3.1-of HO-1plasmid and its expression in MSCs
     Digested fragment of the GFP and the plasmid pcDNA3.1-HO-1connection, and toconstruct the recombinant plasmid pcDNA3.1-GFP-HO-1HO-1eukaryotic cell expression,the use of a single enzyme digestion of BamH Ⅰ and Hind Ⅲrestriction endonuclease thesize and the direction of the transferred gene, and amplification and purification. Theminimum lethal dose of G418for bone marrow mesenchymal stem cells were measuredusing lipofectamine plasmids were transformed into the spinal cord-derived bone marrowmesenchymal stem cells, the use of fluorescent protein expression by RT-PCR, Westernblotting detection of HO-1expression.
     4.Experimental study of transfer of HO-1gene, transplantation of MSCs in the treatment ofchronic heart failure
     Rat model of heart failure were randomly divided into3groups of10. Will be inducedcardiomyocyte-like cells were labeled with BrdU, syringe-induced expression of MSCssuspension2:00injected into the left ventricular wall myocardium. Four weeks later, eachgroup were sacrificed5rats, ultrasound detection of left ventricular end systolic diameter,left ventricular end-diastolic diameter, left ventricular ejection fraction, and determination ofthe maximum pressure change rate and other hemodynamic parameters. Heart tissueembedded sections Brdu immunohistochemical staining.
     Result
     1. Adriamycin rat model of heart failure of dilated cardiomyopathy Preparation
     Rat mortality rate was26.7%, while control animals did not kill. Compared with normalrats of CHF experimental rats at12days poisoning phenomenon. Significant increase in thenormal control group, body weight (BW), BW was significantly lower in the experimentalgroup, P <0.05, two significant differences in ventricular weight (VW) compared the twogroups was no significant difference, while the experimental group, VW/BW increasedsignificantly, and The normal control group, P <0.05, two significant differences. Andnormal control group compared to the experimental group of rat cardiac systolic functionand diastolic function was significantly impaired, were significantly lower heart rate, LVSPwas significantly lower LVEDP was significantly elevated±dp/dt max significantlydecreased (P <0.05), have different sex. Experimental myocardial tissue damage, myocardial fibers arranged in a wavy, myocardial cells showed a pathological kind of change. Electronmicroscope observation of the visible swelling of mitochondria in the rat model of heartfailure intracellular vacuoles, steep to reduce some of the myocardial fibers breakage,myocardial fibrosis.
     2. Bone marrow mesenchymal stem cell separation, culture and induced to differentiate
     Primary cultured cells adherent for12h, the first exchange of medium for24h,adherent cells increased significantly after48h, and stretch for long spindle shape, about7dclose covered,3~4d can be passaged. Generation of MSCs is similar to the growth curve.MSCs cell specific markers CD44, cell surface antigen CD34negative.5-aza added to theculture medium to about8d about MSCs by flat polygonal into long fusiform, arrangedbetween the colony after15days with a directional, to differentiate into cardiomyocyte-likecells. Immunocytochemical staining show part culture cell TroponinT positive expression.5-aza-induced MSCs conversion of27%conversion rate of myocardial cells.
     3.Recombinant pcDNA3.1-of HO-1plasmid and its expression in MSCs
     BamH Ⅰ digested plasmid pcDNA3.1-GFP-HO-1is linearized; digested with Hind Ⅲdigestion under2998bp,5256bp two fragments, demonstrate the direction of the plasmidsand the correct size. G418selection by preliminary experiments to determine the screeningconcentration of0.4μg/ml. The use of fluorescence microscopy to observe GFP expression inGFP expression started24h after lipofection gradually weakened, show that HO-1also has acertain level of expression. After RT-PCR, and transfected with plasmidpcDNA3.1-GFP-HO-1available to a length of about809bp of the bands and a length tomatch the target gene. Western blotting analysis of transfected cells HO-1protein expressionwas positive.
     4.Experimental study of transfer of HO-1gene, transplantation of MSCs in the treatment ofchronic heart failure
     MSCs in BrdU incorporation24h after immunohistochemical staining, the nucleistained for the tan to prove the incorporation of BrdU in the nucleus, the labeling efficiencyof more than80%. After four weeks, four weeks after surgery, compared with the controlgroup, MSCs transplantation group, left ventricular end-systolic pressure, left ventricularejection fraction and left ventricular pressure, maximum rate of change were significantlyhigher (P <0.05), left ventricular diastolic the end pressure was significantly lower (P <0.01)compared with MSCs group, transfection of HO-1MSCs group left ventricular end systolicpressure, left ventricular ejection fraction and left ventricular pressure, maximum rate of change were significantly higher (P <0.05), left ventricular end diastolic pressure wassignificantly lower (P <0.01). The remaining indicators were not statistically significant (P>0.05). Four weeks CHF after transplant team can detect Brdu labeling-positive cells, controlthe group brdu immunization combined test results were negative.
     Conclusion:
     HO-1gene transfected MSCs in the treatment of chronic heart failure can improvecardiac function and provides a new method for the treatment of chronic heart failure.
引文
[1] Cedar SH. The function of stem cells and their future roles in healthcare. Br J Nurs,2006,15(2):104-107.
    [2]苏立,陈运贞.骨髓间充质干细胞的生物学特性.医学综述,2004,10(5):306-309.
    [3]梁雪,孔佩艳.骨髓间充质干细胞的生物学特性及临床应用前景.西部医学,2007,19(5):949-952.
    [4]何忠杰,马俊勋,
    [5]方驰华,等.大鼠骨髓间充质干细胞体外分离培养表型鉴定与标记.中国急救医学,2005,25(12):902-904.
    [6] Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on humanmarrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone,1992,13(1):69-80.
    [7] Zhang B,Wang F,Deng L,et al.Isolating and culturing rat marrow mesenchymal stemcells and studying their phenotypical and functional properties.Sichuan Da Xue XueBao Yi Xue Ban,2003,34(4):738-741.
    [8] Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotentmesenchymal stromal cells.The International Society for Cellular Therapy positionstatement.Cytotherapy,2006,
    [9]8(4):315-317.
    [10]吴军,张燕燕.骨髓间充质干细胞生物学特性及临床应用进展.中国组织工程研究与临床康复,2007,11(50):10134-10137.
    [11]傅文玉.间充质干细胞流式细胞仪分选法.中国血液学杂志,2002,23(4):202-204.
    [12] Guo KT, SchAfer R, Paul A, et al. A new technique for the isolation and surfaceimmobilization of mesenchymal stem cells from whole bone marrow usinghigh-specific DNA aptamers. Stem Cells,2006,24(10):2220-2231.
    [13] Bruder SP, J aiswal N, Haynesworth SE. Growth kinetics, self-renewal, and theosteogenic potential of purified human mesenchymal stem cells during extensivesubcultivation and following cryopreservation. J Cell Biochem,1997,64(2):278-294.
    [14] SordiV. Mesenchymal stem cell homing capacity. Transplantation,2009,87(9S):S42-45.
    [15] Saito T,Kuang JQ,Bittira B,et al. Xenotransplant cardiac chimera: immune toleranceof adult stem cells. Ann Thorac Surg,2002,74(1):19-24.
    [16]14Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrowmesenchymal stem cells improves brain function after resuscitation from cardiac arrest.Crit Care Med,2008,36(11): S486-491.
    [17] Hong SH,Gang EJ,Jeong JA,et al. In vitro differentiation of human umbilical cordblood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem BiophysRes Commun,2005,330(4):1153-1161.
    [18] Nasef A,Ashammakhi N,Fouillard L.Immunomodulatory effect of mesenchymalstromal cells:possible mechanisms.Regen Med,2008,3(4):531-546.
    [19] Barbash LM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cellmigration,and body distribution. Circulation,2003,108(7):863-868.
    [20] Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cellhoming into the infarcted human myocardium. Circulation,2005,111(7):2198-2202.
    [21] Price MJ,Chou CC,Frantzen M,et al. Intravenous mesenchymal stem cell therapyearly after reperfused acute myocardial infarction improves left ventricular functionand alters electrophysiologic properties. Int J Cardiol,2006, III (2):231-239.
    [22] Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymalstem cells improves myocardial function in a rat model of myocardial ischemia. CritCare Med,2007,35(1):2587-2593.
    [23] Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derivedprogenitor cells in acute myocardial infarction. N Engl J Med,2006,355(2):1210-1221.
    [24] Molina EJ,PalmaJ, Gupta D, et al. Improvement in hemodynamic performance,exercise capacity,inflammatory profile, and left ventricular reverse remodeling afterintracoronary delivery of mesenchymal stem cells in an experimental model ofpressure overload hypertrophy. J Thorac Cardiovasc Surg,2008,135(2):292-299.
    [25] Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution afterintramyocardial, intracor onary, and interstitial retrograde coronary venous delivery:implications for current clinical trials. Circulation,2005,112(9S):50-56.
    [26] Li RK,Mickle DA,Weisel RD,et al. Optimal time for cardiomyocyte transplantationto maximize myocardial function after left ventricular injury. Circulation,2002,106(6):1913-1918.
    [27] DohmannHF,Perin EC,Takiya CM,et al. Transendocardial autologous bone marrowmononuclear cell injection in ischemic heart failure: postmortem anatomicopathologicand immunohistochemical findings
    [28] Freyman T,Polin G,Osman H,et al. A quantitative,randomized study evaluatingthree methods of mesenchymal stem cell delivery following myocardial infarction. EurHeart J,2006,27(9):1114-1122.
    [29] Gao J,Dennis JE, Muzic RF,et al. The dynamic in vivo distribution of bonemarrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs,2001,1690):12-20.
    [30] Wollert KC,Meyer GP,Lotz J,etal. Intracoronary autologous bone marrow celltransfer after myocardial infarction: the BOOST randomized controlled clinical trial.Lancet,2004,364(9429):141-148
    [31] AmadoLC,Saliaris AP,Schuleri KH,et al. Cardiac repair with intramyocardialinjection of alloge-neic mesenchymal stem cells after myocardial infarction. Proc NatlAcad Sci USA,2005,102(32):11474-11479.20. Zhang H, Song P, Tang Y, etal. Injection of bone man:ow mesenchymal stem cells in the borderline area ofinfarcted myocardium: heart status and cell distribution. J Thorac Cardiovasc Surg,2007,134(5):1234-1240.
    [32] Garcia-Castro J, Trigueros C, Madrenas J, et al. Mesenchymal stem cells and theiruse as cell replacement therapy and disease modelling tool.J Cell Mol Med,2008,12(6B):2552-2565.
    [33] Tao ZW,Li LG. Cell therapy in congestive heart failure. J Zhejiang Univ Sci B,2007,8(9):647-660.
    [34] Plotnikov AN, Shlapakova I, Szabolcs MJ, et al. Xenografted adult humanmesenchymal stem cells provide a platform for sustained biological pacemakerfunction in canine heart. Circulation,2007,116(7):706-713.
    [35] Wang T,Tang W,Sun S,et al. Mesenchymal stem cells improve outcomes ofcardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardio1,2009,46(3):378-384.
    [36] Jiang CY, Gui C, He AN, et al. Optimal time for mesenchymal stem celltransplantation in rats with myocardial infarction. J Zhejiang Univ Sci B,2008,9(8):630-637.
    [37] Quaini F,Urbanek K,Beltrami AP,et al. Chimerism of the transplanted heart. N Eng JMed,2002,3460):5-15.
    [38] Orlic D,Kajstural J,Chimenti S,et al. Mobilized bone marrow cells repair the infractedheart,improving function and survival. Proc Natl Acad Sci USA,2001,98(18):10344-10349.
    [39] Matsumoto R,Omura T, Yoshiyama M,et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acutemyocardial infarction. Arterioscler Thromb Vasc BioI,2005,25(6):1168-1173.
    [40] Shake JG,Gruber PJ,BaumgartnerWA,et a1. Mesenchymal stem cell implantation in aswine myocardial infarct model: engraftment and functional effects. AnnThorac Surg,2002,73(6):1919-1926.
    [41] Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromalcells augments collateral perfusion through paracrine mechanisms. Circulation,2004,109(12):1543-1549.
    [42] Wang T, Tang W, Sun S, et al. Improved outcomes of cardiopulmonary resuscitation inrats with myocardial infarction treated with allogenic bone marrow mesenchymal stemcells. Crit Care Med,2009,37(3):833-839.
    [43] Hakuno D, Fukuda K, Makino S, et al. Bone marrow-derived regeneratedcardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors.Circulation,2002,105(3):380-386.
    [44] Wang JS,Shum-Tim D,Galipeau J,et al. Marrow stromal cells for cellularcardiomyoplasty:feasibility and potential clinical advantages. J Thorac CardiovascSurg,2000,120(5):999-1005.
    [45] Macedo Braga LM,Lacchini S, Schaan BD, et al. In situ delivery of bone marrow cellsand mesenchymal stem cells improves cardiovascular function in hypertensive ratssubmitted to myocardial infarction.1Biomed Sci,2008,15(3):365-374.
    [46] Sun L,Cui M, Wang Z, et al. Mesenchymal stem cells modified with angiopoietin-1improve remodeling in a rat model of acute myocardial infarction. Biochem BiophysRes Commun,2007,357(3):779-784.
    [47] Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymalstem cells improves myocardial function in a rat model of myocardial ischemia. CritCareMed,2007,35(11):2587-2593.
    [48] Swardson CJ, Kociba GJ, Perryman LE. Effects of equine infectious anemia viruson hematopoietic progenitors in vitro. Am J Vet Res,1992,53(7):1176-1179.
    [49] Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiacrepair: potential influences on the cardiac stem cell niche. Nat Clin Pract CardiovascMed,2007,4(Suppl1):S21-26.
    [50] Bocchi EA,Bacal F,Guimaraes G,et al. Granulocyte-colony stimulating factor orgranulocyte-colony stimulating factor associated to stem cell intracoronary infusioneffects in non ischemic refractory heart failure. Int J Cardiol,2008,Jul31.[Epub aheadof print]
    [51] Yau TM, Tomita S,Weasel RD, et al. Beneficial effect of autologous celltransplantation on infracted heart function:comparision between bone marrow stromalcells and heart cells. Ann Thorac Surg,2003,75(1):169-176.
    [52] Xu M, Uemura R,Dai Y, et al. In vitro and in vivo effects of bone marrow stem cells oncardiac structure and function. J Mol Cell Cordio1,2007,42(2):441-448.
    [53] Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells cancontribute to functional improvement of the infarcted heart by protectingcardiomyocytes from ischemic lnjury. Am J Physiol Heart Circ Physiol,2006,291(2):H886-893.
    [54] Wang T, Tang W, Sun S, et al. Mesenchymal stem cells improve outcomes ofcardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol,2009,46(3):378-384.
    [55] Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymal stemcells improves myocardial function in a rat model of myocardial ischemia. Crit CareMed,2007,35(11):2587-2593.
    [56]王彤,黄子通,符岳,等.心肌梗死后骨髓间充质干细胞治疗改进心功能以及心肺复苏结果的研究.中山大学学报(医学版),2007,28(5):529-534.
    [57]吕菁君,徐红新,魏捷.骨髓单个核细胞自体移植治疗不同时期心肌梗死的研究.中华急诊医学杂志,2005,14(8):624-628.
    [58] Lin G, Lu J,JiangX, et al. Autologous transplantation of bone marrow mononuclearcells improved heart function after myocardial infarction. Acta Pharmacol Sin,2004,25(7):876-886.
    [59] Creemers EE, Davis IN, Parkhurst AM, et al. Deficiency of TIMP-1exacerbates LVremodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol,2003,284(1):H364-H371.
    [60] Kadner A, Hoerstrup SP, Zund G, et al. Anew source for cardiovascular tissueengineering: human bone marrow stromal cells. Eur J Cardiothorac Surg,2002,21(6):1055-1060.
    [61]郭豫涛,李小鹰,吴迪,等.骨髓干细胞移植通过基质金属蛋白酶及其抑制剂降低大鼠缺血性心力衰竭心室重构.中华心血管病杂志,2006,34(9):784-788.
    [62] Odic D, Kajstura J,Chimenti S, et al. Mobilized bone marrow cells repair the infarctedheart, improving function and survival. Proc Natl Acad Sci USA,2001,98(18):10344-10349.
    [63] Strauer BE, Brehm M, Zeus T, et al. Repair of infracted myocardium by autologousintra coronary mononuclear bone marrow cell transplantation in humans. Circulation,2002,106(15):1913-1918.
    [64] Schachinger V, Assmus B, Britten ME, et al. Transplantation of progenitor cells andregeneration enhancement in acute myocardial infarction: Final one-year results of theTOPCARE-AMI Trial. J Am Coll Cardio!'2004,44(8):1690-1699.
    [65] Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronarytransplantation of autologous bone marrow mesenchymal stem cell in patients withacute myocardial infarction. Am J Cardio1,2004,94(1):92-95.
    [66] Vanderheyden M, Mansour S, Vandekerckhove B, et al. Selected intracoronaryCD133+bone marrow cells promote cardiac regeneration after acute myocardialinfarction. Circulation,2004,110(suppl):324-325.
    [67] Janssens S, Dubois C, BogaertJ, et al. Autologous bone marrow derived stem-celltransfer in patients with ST-segment elevation myocardial infarction: double-blind,randomised controlled trial. Lancet,2006,367(9505):113-121.
    [68]王建安,谢小洁,孙勇,等.骨髓间质干细胞冠脉内移植治疗近期陈旧性心肌梗死伴心功能不全.中华急诊医学杂志,2005,14(12):996-999.
    [69]王建安,李佳慧.干细胞移植治疗心力衰竭国内应用状况与评价.中华临床医师杂志(电子版),2007,1(3):135-136.
    [70]王建安,谢小洁,何红,等.骨髓间质干细胞移植治疗原发性扩张型心肌病的疗效与安全性.中华心血管病杂志,2006,34(2):107-110.
    [71]刘莹,李占全,丁明岩,等.自体外周血干细胞移植治疗急性心肌梗死对左心室功能的影响研究.中国实用内科杂志,2006,26(19):1533-1534.
    [72]杨志健,张穰敏,周芳,等.自体骨髓干细胞移植治疗心肌梗死.中华急诊医学杂志,2006,15(4):315-318.
    [73]高连如,唐朝枢,朱智明,等.经冠状动脉骨髓单个核细胞移植治疗重度心力衰竭.中华心血管病杂志,2006,34(7):582-586.
    [74] Tang YL,Zhao Q,Qin X,et al.Paracrine action enhances the effects of autologousmesenchymal stem cell transplantation on vascular regeneration in rat model ofmyocardial infarction.Ann Thorac Surg,2005,80(1):229-236.
    [75] Rehman J,Traktuev D,Li J,et al.Secretion of angiogenic and antiapoptotic factors byhuman adipose stromal cells.Circulation,2004,109(10):1292-1298.
    [76] Xu HX, Li GS, Jiang H, et al. Implantation of BM cells transfected with phVEGF165enhances functional improvement of the infracted heart. Cytotherapy,2004,6(3):204-211.
    [77] Melo LG,Agrawal R,Zhang L,et al.Gene therapy strategy for long-term myocardialprotection using adeno-associated virus-mediated delivery of heme oxygeasegene.Circulation,2002,105(5):602-607.
    [78] Yet SF, Perrella MA, Layne MD, et al. Hypoxia induces severe right ventriculardilatation and infarction in hemeoxygenase-1null mice.J Clin Inv,1999,103(8):23-29.
    [79] Tang YL, Tang y, Zhang YC, et al. Improved graft mesenchymal stem cell survival inischemic heart with a hypoxia-regulated hemeoxygenase-1vector. J AmCallCardiol,2005,46(7):1339-1350.
    [80] Juan SH, Lee TS, Tseng KW, et al. Adenovirus-mediated hemeoxygenase-1genetransfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice.Circulation,2001,104(13):1519-1525.
    [81] Teng ZP,Chen J,ChauLY,et al. Adenoviral transfer of the hemeoxygenase-1geneprotects striatal astrocytes from heme-mediated oxidative injury. Neuro Dis,2004,17(2):179-187.
    [82] Zeng B, Chen H, Zhu C, et al. Effects of combined mesenchymal stem cells andhemeoxygenase-1therapy on cardiac performance. Eur J Cardiothorac Surg,2008,34(4):850-856.
    [83] Miyagawa S,Sawa Y, Taketani S, et al. Myocardial regeneration therapy for heartfailure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty.Circulation,2002,105(21):2556-2561.
    [84] Urbanek K,Rota M,Cascapera S,et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infracted myocardium, improvingventricular function and longterm survival. Circ Res,2005,97(7):663-673.
    [85] Zeng B,Ren X,Lin G. Paracrine action of HO-1-modified mesenchymal stem cellsmediates cardiac protection and functional improvement. Cell Biol Int,2008,32(10):1256-1264.
    [86] Cai J,LinG,Jiang H,et al. Transplanted neonatal cardiomyocytes as a potentialbiological pacemak-er in pigs with complete atrioventricular block. Transplantation,2006,81(7):1022-1026.
    [87] Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in humanpostnatal bone marrow. J Clin Invest,2002,109(3):337-346.
    [88] Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiateto a cardiomyocyte phenotype in the adult murine heart. Circulation,2002,1050):93-98.
    [89] Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Aktprevent remodeling and restore performance of infarcted hearts. Nat Med,2003,9(9):1195-1201.
    [90] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrowstromal cells in vitro. J Clin Invest,1999,103(5):697-705.
    [91] Shake JG,Gruber PJ,BaumgartnerWA,et at. Mesenchymal stem cell implantation in aswine myocardia I infarct model: engraftment and functional effects. Ann Thorac Surg,2002,73(6):1919-1925.
    [92] Agbulut0, Menot ML, Li Z, et a1. Temporal patterns of bone marrow celldifferentiation following transplantation in doxorubicin-induced cardiomyopathy.Cardiovasc Res,2003,58(2):451-459.
    [93] Hisashi Y, Tomita S, Nakatani T, et a1. Granulocyte-colony stimulating factorenhanced the recruit ment of bone marrow cells into the heart: time course evaluationof phenotypic differentiation in the doxorubicin-induced cardiomyopathic model. JThorac Cardiovasc Surg,2004,52(10):451-455.
    [94] Tomita S, Ishida M, Nakatani T, et a1. Bonemarrow is a source of regeneratedcardiomyocytes in doxorubicin-induced cardiomyopathy and granulocyte colony-stimulating factor enhances migration of bone marrow cells and attenuatescardiotoxicity of doxorubicin under electron microscopy. J Heart Lung Transplant,2004,23(5):577-584.
    [95] Ishida M,Tomita S,Nakatani T,et a1. Bonemarrow mononuclear cell transplantationhad beneficial effects on doxorubicin-induced cardiomyopathy. J Heart LungTransplant,2004,23(4):436-445.
    [96] Nagaya N,KangawaK, ItohT, et a1. Transplantation of mesenchymal stem cellsimproves cardiac function in a rat model of dilated cardiomyopathy. Circulation,2005,112(8):1128-1135.
    [97]李国草,李庚山,张静,等.骨髓间质干细胞在扩张型心肌病微环境中的分化研究.中国病理生理杂志,2005,21(12):2338-2340.
    [98]李国草,李庚山,张静,等.兔骨髓间充质干细胞自体移植治疗扩张型心肌病的实验研究.中华心血管病杂志,2004,32(12):1095-1098.
    [99]周癫,白小涓,王勃.同种异体骨髓间充质干细胞移植对扩张型心肌病心功能衰竭大鼠左心室功能的影响.中国动脉硬化杂志,2008,16(2):117-120.
    [100] Li TS, Takahashi M,Ohshima M, et a1. Myocardial repair achieved by theintramyocardial implantation of adult cardiomyocytes in combination with bonemarrow cells. Cell Transplant,2008,17(6):695-703.
    [101] Ghodsizad A, Ruhparwar A, Marktanner R, et a1. Autologous transplantation ofCD133+BM-derived stem cells as a therapeutic option for dilatative cardiomyopathy.Cytotherapy,2006,8(3):308-310.
    [102] Rupp S, Bauer J, Tonn T, et a1. Intracoronary administration of autologous bonemarrow-derived progenitor cells in a critically ill two-yr-old child with dilatedcardiomyopathy. Pediatr Transplant,2008, Nov26.[Epub ahead of print].
    [103] Ichim TE,Solano F,Brenes R,et a1. Placental mesenchymal and cord blood stem celltherapy for dilated cardiomyopathy. Reprod Biomed Online,2008,16(6):898-905.
    [104] Seth S, Narang R, Bhargava B, et a1. AIIMS Cardiovascular Stem Cell Study Group.Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy:clinical and histopathological results: the first-in-man ABCD(Autologous BoneMarrowCells in Dilated Cardiomyopathyhrial. J Am Coll Cardiol,2006,48(1):2350-2351.
    [105] Kirillov AM, Fatkhudinov TKh, Dyachkov A V, et a1. Transplantation of allogeniccells in the therapy of patients with dilated cardiomyopathy. Bull Exp Biol Med,2007,144(4):635-639.
    [106] Kalil RA,Ott D,Sant'Anna R,et a1. Autologous transplantation of bone marrowmononuclear stem cells by mini-thoracotomy in dilated cardiomyopathy: techniqueand early results. Sao Paulo Med J,2008,126(2):75-81.
    [107]王建安,谢小洁,何红,等.骨髓间质干细胞移植治疗原发性扩张型心肌病的疗效与安全性.中华心血管病杂志,2006,34(2):107-110.
    [108]黄榕肘,姚康,李延林,等.经冠状动脉骨髓单个核细胞移植治疗原发性扩张型心肌病的安全性与疗效近期观察.中华心血管病杂志,2006,34(2):111-113.
    [109] Liu JF, Wang BW, Hung HF, et al. Human mesenchymal stem cells improvemyocardial perform ance in a splenectomized rat model of chronic myocardialinfarction. J Formos Med Assoc,2008,107(2):165-174.
    [110] Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischemic myocardium byintramyocardial autologous bone marrow mononuclear cell implantation. Lancet,2003,36l(9351):47-49.
    [111] Fuchs S, Satler LF, Kornowski R, et al. Catheter-based autologous bone marrowmyocardial injection in no-option patients with advanced coronary artery disease: afeasibility study. J Am Coll Cardiol,2003,41(10):1721-1724.
    [112] Perin EC, Dohmann HF, BorojevicR, et al. Transendocardial, autologous bone marrowcell trans plantation for severe, chronic ischemic heart failure. Circulation,2003,107(18):2294-2302.
    [113] Briguori C, Reimers B, Sarais C, et al. Direct intramyocardial percutaneous delivery ofautologous bone marrow in patients with refractory myocardial angina. AmHeart J,2006,15l(3):674-680.
    [114] Beeres SL, Bax JJ, Kaandorp TA, et al. Usefulness of intramyocardial injection ofautologous bone marrow-derived mononuclear cells in patients with severe anginapectoris and stress-induced myocardial ischemia. Am J Cardiol,2006,97(9):1326-1331.
    [115]刘平,曾建平,黄河,等.自体骨髓干细胞移植治疗缺血性心肌病的临床研究.中国医刊,2007,42(6):43-44.
    [116] Memon lA, Sawa Y, Miyagawa S, et a1. Combined autologous cellularcardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts forischemic cardiomyopathy. J Thorac Cardio-vasc Surg,2005,130(3):646-653.
    [117] Otterbein LE, Choi AMK. Heme oxygenase: colors of defense against cellularstress.Am J Physiol,2000,279:L1029-L1037.
    [118] Motterlini R, Foresti R, Intaglietta M, et al. NO-mediated activation of hemeoxygenase:endogenous cytoprotection against oxidative stress to endothelium. Am JPhysiol Heart Circ Physiol.1996;270: H107-114.
    [119] Durante W, Kroll MH, Christodoulides N, et al. Nitric oxide induces hemeoxygenase-1gene expression and carbon monoxide production in vascular smoothmuscle cells. CircRes.1997;80:557-564.
    [120] Tian W, Bonkovasky HL, Shibahara S, et al. Urea and hypertonicity increaseexpression of heme oxygenase-1in murine renal medullary cells. Am J Physiol RenalPhysiol.2001;281: F983-991.
    [121] Chen YH, Lin SJ, Lin MW, et al. Microsatellite polymorphism in promoter ofhemeoxygenase-1gene is associated with susceptibility to coronary artery disease intype2diabetic patients. Hum Genet.2002;111:1-8.
    [122] Schillinger M, Exner M, Mlekusch W, et al. Heme oxygenase-1genotype is a vascularanti-inflammatory factor following balloon angioplasty. J Endovasc Ther.2002;9:385-394.
    [123] Liu XM., Chapman GB., Peyton KJ, et al. Carbon monoxide inhibits apoptosis invascular smooth muscle cells. Cardiovasc. Res.2002;55:396-405.
    [124] Liu XM, Peyton KJ, Ensenat D, et al. Endoplasmic Reticulum Stress Stimulates HemeOxygenase-1Gene Expression in Vascular Smooth Muscle. J Biol Chem.2005;280:872-877.
    [125] McDaid J, Yamashita K, Chora A, et al. Heme oxygenase-1modulates the allo-immuneresponse by promoting activation-induced cell death of T cells. FASEB J.2005;19:458-460.
    [126] Dasilva JL, Tiefenthaler M, Park E, et al. Tin-mediated heme oxygenase geneactivationand cytochrome P450arachidonate hydroxylase inhibition in spontaneouslyhypertensive rats. Am J Med Sci.1994;307:173181.
    [127] Christou H, Morita T, Hsieh CM, et al. Prevention of hypoxia-induced pulmonaryhypertension by enhancement of endogenous heme oxygenase-1in the rat. CircRes.2001;86:1224-1229.
    [128] Johnson RA, Lavesa M, Deseyn K, et al. Heme oxygenase substrates acutelylowerblood pressure in hypertensive rats. Am Phys Soci.1996;271:H132-138.
    [129] Foresti R, Goatly H, Green CJ, et al. Role of heme oxygenase-1in hypoxiareoxygenation: requirement of substrate heme to promote cardioprotection.Am JPhysiol Heart Circ Physiol.2001;281(5):H1976-984.
    [130] Wu TW, Wu J, Li RK, et al. Albumin-bound bilirubins protect human ventricularmyocytes against oxyradical damage. Biochem Cell Biol.1991;69:683–688.
    [131] Balla G, Jacob HS, Balla J, et al.Ferritin:a cytoprotective antioxidant strategem ofendothelium. J Biol Chem,1992;267:18148-18153.
    [132] Kaur H,Hughes MN, Green CJ, et al. Interaction of bilirubin and biliverdin withreactive nitrogen species. FEBS Lett,2003;543(1-3):113-119.
    [133] Mancuso C,Bonsignore A, Stasio ED, et al. Bilirubin and S-nitrosothiols interaction:evidence for a possible role of bilirubin as a scavenger of nitricoxide.BiochemPharmacol,2003;66(12):2355-2363.
    [134] Hayashi S, Takamiya R, Yamaguchi T, et al. Induction of heme oxygenase-1suppresses venular leukocyte adhesion elicited oxidative stress:role ofbilirubingenerated by the enzyme. Circ Res,1999;85:663-671.
    [135] Wagener F,Silva JL, Farley T, et al. Differential effects of heme oxygenase isoformson heme mediation of endothelial intracellular adhesion molecule1expression.Pharmacol Exp Ther,1999;291:416-423.
    [136] Otterbein LE, Bach FH, Alam J,et al. Carbon monoxide has anti-inflammatory effectsinvolving the mitogen-activated protein kinase pathway.Nat Med,2000;6(4):422-428.
    [137] Katori M, Buelow R, Ke B, et al.Heme oxygenase-1overexpression protects rat heartsfrom cold ischemia reperfusion injury via an antiapoptotic pathway.Transplantation,2002;73(2):287-292.
    [138] Akamatsu Y, Haga M, et al. Heme oxygenase-1derived carbonmonoxide protectsheartsfrom transplant-associated ischemia reperfusion injury.FASEB J,2004;10.1096-1099.
    [139] Agbulut O,Meno tML,Li ZL,et al.Temporal patterns of bone marrow cell
    [140] Dieffreniiation following transplantation in doxorubicin-induced cardiomyopathy.Casdiovascular Researeh,2003,58:451-459
    [141] Baldasseroni S,Opasich C,Gorini M,et al.Letf bundle branch block is associated wihincreased l-year sudden and total mortality rate in5517Patients with congestive heartfailure,A report from the Italian network on congestive heart failure,Am Heart J,2002,143(3):398-405
    [142] GrimmW,Rudolpj S,Christ M,et al.Prognostic significance of endomyocardial biopsyanalysis in patients with idiopathic dilated cardiomyopathy.Am Heart J,2003,146(2):372-376.
    [143] PenningtonDG,Oaks TE,Lohmann DP.Pemanent ventricular assist device supportversus cardiac transplantation.Ann Thorac Surg,1999,67:729-733
    [144] Brann WM,Bennett LE,Keck BM,et al.Morbidity,functional status andimmunsuppressive therapy after heart transplantation:an analysis of the JointInternational Society for heart an lung transplantation/United Network for OrganSharing Thoracic Registry.Heart Lung Transplant,1998,17:374-382.
    [145] Kohl GY,Klug MG,Soonph MH,et al.Differentiation and long-term survival of CC12myoblasts grafts in heart.J Clin Invest,1993,93:1548-1554
    [146] Li RK,Jia ZQ,Weisel RD,et al.Smooth muscle cell transplantation into myocardial scartissue improves heart function.J Mol Cell Cardiol,1999,31:513-522.
    [147] Wakitani S,Saito T,Caplan AI.Myogenic cell derived from rat bone marrowmesechymal stem cells exposed to5-azacytidine.Muscle Nerve,1995,18(12):1417-1426
    [148] Makaino S,Fukuda K,Miyoshi S,et al.Cardiomyocytes can be generated from marrowstromal cells in vitro.J Clin Invest,1999,103(5):697-705
    [149] Siminak T,Kalawski R,Fiszer D,et al.Skeletal myoblast transplantation during bypassgrafting in the treatment of heart failure-phase I clinical trial feasibility study and earlyresults.Heart Surg Forum,2002,6(1):3-7
    [150] Strauer BE,BrehmM,Zeus T,et al.Repair of infracted myocardium by autologousintracoronary mononuclear bone marrow cell transplantation in humans.Circulation,2002,106:1913-1918
    [151] Whelan RS,Kaplinskiy V,Kitsis RN.Cell death in the pathogenesis of heart disease:mechanisms and significance[J].Annu Rev Physiol,2010;72:19-44.
    [152] Munagala VK,Hart CY,Burnett JC,et al.Ventricular structure and function in aged dogswith renal hypertension:model of experimental diastolic heart failure [J]. Circulation,2005;111(9):1128-1135.
    [153]蔡毅,何昆仑,闫丽辉,等.新西兰兔腹主动脉缩窄术(肾动脉上)后心肌收缩和舒张功能的变化[J].中国康复理论与实践,2007;13(3):245-247.
    [154]王瑞芳,何昆仑,杨泉,等.压力负荷诱导的大鼠舒张性心力衰竭模型的建立[J].中华保健医学杂志,2009;11(2):92-95.
    [155] Liao L,Jollis JG, Anstrom KJ, et al. Costs for heart failure with normal vs reducedejection fraction [J]. Arch Intern Med,2006;166(1):112-118.
    [156] Bhatia RS, Tu JV, Lee DS, et al.Outcome of heart failure with preserved ejectionfraction in a population based study[J].N Engl JMed,2006,355(3):260-269.
    [157] Aurigemma GP. Diastolic heart failure-a common and lethal condition by any name[J].N Engl J Med,2006;355(3):308-310.
    [158] He KL,Dickstein M, Sabbah HN,et al.Mechanisms of heart failure with well preservedejection fraction in dogs following limited coronary microembolization [J].CardiovascRes,2004;64(1):72-83.
    [159] Kobayashi M,Machida N,Mitsuishi M,et al.Beta blocker improves survival leftventricular function, and myocardial remodeling in hypertensive rats with diastolicheart fa ilure [J]. Am J Hypertens,2004;17(12):1112-1119.
    [160].Owen ME,AJ Friedenstein.Cell and molecular biology of vertebrate hard tissues[J].Ciba Found SymP(Chihcester),1998,42-60.
    [161]侯炳波,王挹青.骨髓间充质干细胞通过旁分泌作用治疗心肌缺血研究进展.[J].中国分子心脏病学杂志,2007,7:117-120.
    [162].展玉涛,魏来,陈红松,等.用流式细胞仪富集大鼠骨髓干细胞[J].免疫学杂志2003,19(6):471-473.
    [163]160.Zohar R,Sodek J,McCulloch CAG.Characterization of stromal progenitor cellsenriched by flow cytometry.[J].Blood.1997,90(9):3471-3481.
    [164] Vlasselaer PV,Falla N,Snoeck H,et al.Characterization and purification of osteogeniccells from murine bone marrow by two-color cell sorting using anti-Sca-Ⅰmonoclonalantibody and wheat germ agglutinin.[J].Blood1994,84(3):753-763.
    [165]侯炳波,王挹青.骨髓间充质干细胞通过旁分泌作用治疗心肌缺血研究进展.[J].中国分子心脏病学杂志,2007,7:117-120.
    [166] Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult humanmesenchymal stem cells.[J].Science,1999,284:143-147.
    [167] Lisignoli G,Remiddi G,Cattini L.et al.An elevated number of differentiated osteoblastcolonies can be obtained from rat bone marrow stromal cells using a gradient isolationprocedure.[J].Connect Tissue Res,2001,42:49-57.
    [168] Declercq H,van den Vreken N,de Maeyer E,et a1.Isolation,proliferation anddifferentiation of osteoblastic cells to study cell/biomaterial interactions:comparisonof different isolaition techniques and source[J]. Biomaterial,2004,25(5):757-768.
    [169] Orlie D,Kajstura J,Chimenti S,et al.Mobilized bone marrow cells repair the infractedheart,improving function and survival.Proe Natl Acad Sci USA,2001;98:10344-10349.
    [170] Seiler C,Pohl T,Wustmann K,et al.Promotion of collateral growth by Granulocyte-macrophage colony-stimulating fact or inpatients with coronary artery disease:arandomized,double-blind,placebo-controlled study. Cireulation,2001;104:2012-2017.
    [171] Ke B, Shen XD, Zhai Y, et al. Heme oxygenase1mediates the immunomodulatory andantiapoptotic effects of interleukin13gene therapy in vivo and in vitro. Hum GeneTher.2002;13(15):1845-1857.
    [172] Bonventre JV. Mechanisms of ischemic acute renal failure. Kidney Int.1993;43:1160-1178.
    [173] Chetboul V, Klonjkowski B, Lefebvre HP, et al. Short-term efficiency and safetyofgene delivery into canine kidneys. Nephrol Dial Transplant.2001;16(3):608-614.
    [174] Gerstenkorn C, Deardon D, Koffman CG, et al. Outcome of renal allograftsfromnon-heart-beating donors with delayed graft function. Transpl Int.2002;15(12):660-663.
    [175] Takahashi Y, Geller DA, Gambotto A, et al. Adenovirus-mediated gene therapy toliver grafts: successful gene transfer by donor pretreatment. Surgery.2000;128(2):345-352.
    [176] Braudeau C, Bouchet D, Tesson L, et al. Remy Induction of long-term cardiacallograftsurvival by heme oxygenase-1gene transfer. Gene Ther.2004;11(8):701-710.
    [177] Tullius S, Nieminen-Kelha M, Buelow R, et al. Inhibition ofischemia/reperfusioninjury and chronic graft deterioration by a single donor treatmentfor the induction of heme oxygenase-1. Transplantation2002;74(5):591-598.
    [178] Cicalese L, Caraceni P, Nalesnik MA, et al. Oxygen free radical content andneutrophilinfiltration are important determinants in mucosal injury after rat smallboweltransplantation. Transplantation.1996;62(2):161-6.
    [179] Cleland JGF, Sehuster MD, Szaboles MJ,et al.Improving patient outcomes in heartfailure: evidence and barriers[J].Heart,2000;84(SupplⅠ):8-10.
    [180] Soonpaa MH, Koh GY, Klug MG,et al. Formation of nascent intercalated disksbetween grafted fetal cardiomyocytes and host myocardium [J]. Science,1994;64(5155):98-101.
    [181] Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cellsimproves damaged heart function[J]. Circulation,1999;100(Suppl Ⅱ):247-256.
    [182] Strauer BE, Brehm M, Zeus T, et al. Intracoronary human autologous stem cellstransplantation for myocardial regeneration following myocardial infarcttion[J].DtschMed Wochenscher,2001;126(34-35):932-938.
    [183] Psaltis PJ,Paton S,See F,et al. Enrichment for STRO-1expression enhances the cardio-vascular paracrine activity of human bone marrow-derived mesenchymal cellpopulations[J]. J Cell Physiol,2010;223(2):530-540.
    [184] Herrmann JL, Wang Y, Abarbanell AM, et al. Preconditioning mesenchymal stem cellswith transforming growth factor-alpha improves mesenchymal stem cell-mediatedcardioprotection [J]. Shock,2010;33(1):24-30.
    [185] Yoon CH, Koyanagi M, Iekushi K, et al. Mechanism of improved cardiac functionafter bone marrow mononuclear cell therapy: role of cardiovascular lineagecommitment[J]. Circulation,2010;121(18):2001-2011.
    [186] MizuguchiH,KayMA.Efficient construction of a recombinant adenovirus vector by animproved in vitro ligation method.Hum Gene Ther.1998;9(17):2577-83.
    [187] Barr E, Carroll J, Kalynych, A.M,et al. Efficient catheter-mediated gene transfer intothe heart using replication-defective adenovirus. Gene Ther,1994,1:51-58.
    [188] Koninckx R, Hensen K, Dani ls A,et al. Human bone marrow stem cells co-culturedwith neonatal rat cardiomyocytes display limited cardiomyogenic plasticity[J].Cytotherapy,2009;11(6):778-792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700