用户名: 密码: 验证码:
硫氧还蛋白系统蛋白在舌癌中的表达及作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)是最常见的十大恶性肿瘤之一,而在我国口腔鳞状细胞癌中,舌鳞癌(tongue squamous cell carcinoma, TSCC)的发病率居第一位。舌癌生长快,侵袭性较强,易发生淋巴结转移,预后相对较差。其治疗方法常是手术、放疗、化疗等的综合治疗,但患者的五年生存率仍然很低,因此寻找积极有效的预防途径及有效的治疗药物显得尤为迫切和必要。
     硫氧还蛋白系统是生物体内主要的抗氧化系统之一,由硫氧还蛋白(Thioredoxin, Trx)、硫氧还蛋白还原酶(Thioredoxin reductase, TrxR)和NADPH三部分组成,是一个广泛分布的NADPH依赖性二硫化物还原酶系统。Trx通过直接清除过氧化氢以及还原某些特异性酶而发挥其抗氧化作用,而TrxR是唯一可以还原Trx的还原剂。学者证实,Trx与TrxR在多种肿瘤组织中呈高表达状态,且高表达的Trx与细胞增殖活性的增高呈正相关关系,因此硫氧还蛋白系统在肿瘤细胞的增殖和分化中起着重要的作用。抑制硫氧还蛋白系统的功能可能会抑制肿瘤细胞的生长。因此,本研究旨在探讨Trx系统蛋白在舌癌中表达情况,以及其在舌癌发生发展中的作用。研究内容共分为以下三部分:
     第一部分硫氧还蛋白系统蛋白在人舌癌组织中的表达及其与临床病理因素、预后的关系
     目的检测硫氧还蛋白(Trx, Thioredoxin)和硫氧还蛋白还原酶(Thioredoxin reductase, TrxR)在人舌鳞癌(tongue squamous cell carcinoma, TSCC)组织中的蛋白表达水平,及与临床病理因素、预后的关系。材料和方法选取武汉大学口腔医院2003年至2005年经手术切除的舌癌组织共65例作为研究对象,并以正常口腔黏膜上皮做对照。采用免疫组化SP法分别检测Trx和TrxR-1的表达水平,应用SPSS16.0进行统计分析:采用卡方检验,四格表确切概率法以及相关性分析等方法检测Trx和TrxR-1在舌癌组织和正常口腔黏膜上皮的表达差异及相关性,并对全部病例进行随访。结果Trx与TrxR-1主要表达在肿瘤细胞的细胞质,少数表达于细胞核。65例肿瘤组织中,Trx与TrxR-1的表达率分别为100%(65/65),95.4%(62/65);而在10例正常口腔黏膜中,Trx在9例、TrxR-1在10例中均为低表达。舌癌组织中Trx与TrxR-1的表达显著高于正常对照(P=0.000,0.000)。在与临床病理学因素的比较中发现,Trx与肿瘤分化程度明显相关(P=0.001);而TrxR-1与肿瘤分化程度,性别,年龄,TNM分期,淋巴转移,复发等均无显著相关性(P>0.05)。相关分析表明,Trx与TrxR-1呈高度正相关关系,随着TrxR-1的表达增高,Trx也随之增高(P=0.001)。生存分析发现,Trx低表达组与Trx中,高度表达组间存在显著的差异性,Trx中度及高度表达的患者预后较差,生存时间较短(P=0.033)。结论舌癌组织中Trx与TrxR-1过表达,并且二者呈显著相关性,高表达的Trx可以预测舌癌的不良预后,还需要进一步的实验证明Trx与TrxR-1在舌癌发生中的具体作用机制。
     第二部分硫氧还蛋白还原酶抑制剂杨梅黄酮对人舌癌CAL-27细胞增殖、凋亡的影响
     目的采用体外培养人舌癌CAL-27细胞的方法,观察不同浓度的杨梅黄酮对其生长产生的作用。材料和方法光学显微镜观察未经和经杨梅黄酮作用的CAL-27细胞的形态学变化;应用透射电镜观察经120μmol/L杨梅黄酮作用12h的细胞超微结构变化;浓度为120μmol/L的杨梅黄酮作用12h后,Hoechst33258荧光染色观察细胞形态;浓度为40、80、120、160、200μmol/L杨梅黄酮作用于CAL-27细胞,分别培养6,12,24h后,采用MTT比色法,检测CAL-27细胞增殖活性的改变,观察不同浓度杨梅黄酮作用不同时间后对人舌癌CAL-27的毒性效应;经浓度为40、80、120、160、200μmol/L杨梅黄酮作用于CAL-27细胞12h后,用Annexin V/PI双染色流式细胞术法检测细胞凋亡率;采用统计学软件SPSS16.0对数据进行统计学处理,数据用均数标准差(X±S)表示。结果经杨梅黄酮作用后,CAL-27细胞的形态以及超微结构发生了明显变化。透射电镜及荧光染色观察到肿瘤细胞发生了明显的形态学改变,可见细胞骨架破坏,染色体固缩,细胞核碎裂以及凋亡小体形成等。MTT结果显示杨梅黄酮对CAL-27细胞具有明显的生长抑制作用,并呈现明显的浓度和时间依赖性;不同浓度组间、不同时间组间生长抑制率均有显著性差异(P<0.05)。200μmol/L杨梅黄酮作用24h后细胞生长抑制率达94.21%。流式细胞仪检测发现肿瘤细胞的凋亡率随着杨梅黄酮浓度的增高而升高,由(14.60%±2.44%)增加到(62.91%±3.54%),各实验组与对照组相比具有统计学意义(P<0.05)。结论杨梅黄酮对人舌癌细胞CAL-27具有明显的生长抑制及促进凋亡作用,并且作用强度随着杨梅黄酮浓度的升高以及时间的延长而增强。
     第三部分杨梅黄酮促进人舌癌CAL-27细胞凋亡的作用机制
     目的分别研究在不同时间、不同浓度的杨梅黄酮作用下,人舌癌细胞CAL-27中TrxR的活性变化,重点研究Trx下游调控分子及caspase3在杨梅黄酮促进舌癌细胞凋亡过程中的参与机制。材料和方法浓度为40、80、120、160、200μmol/L杨梅黄酮作用于CAL-27细胞,分别培养6、12、24h后,用TrxR活性试剂盒检测TrxR的活性;浓度为40、80、120、160、200μmol/L杨梅黄酮作用于CAL-27细胞培养12h后,或浓度为120μmol/L杨梅黄酮作用于肿瘤细胞分别培养1、3、6及12h后,采用免疫蛋白印记法(Western Blotting)检测药物作用后的CAL-27细胞中p-ASK1, ASK1, p-p38, p38, p-JNK和JNK的蛋白表达水平,并对检测结果进行半定量分析;应用caspase3活性检测试剂盒测定经浓度为40、80、120、160、200μmol/L杨梅黄酮分别作用6、12、24h后肿瘤细胞caspase3的活性;采用统计学软件SPSS16.0对数据进行统计学处理,数据用均数±标准差(x±s)表示。结果杨梅黄酮作用后的CAL-27细胞的TrxR活性被显著抑制,并具有浓度及时间依赖性;120μmol/L作用12h,TrxR活性抑制率达70%以上,200μmol/L作用24h以上,TrxR活性几乎被完全抑制。Western Blotting检测结果显示经杨梅黄酮作用后,CAL-27细胞的ASKl,p38和JNK表达减弱,相反p-ASK1, p-p38和p-JNK表达逐渐升高且具有时间浓度依赖性。Caspase3活性检测结果显示,经杨梅黄酮作用后的CAL-27细胞caspase3活性增强,并呈显著的浓度及时间依赖性,结果具有统计学意义(P<0.05)。结论杨梅黄酮诱导人舌鳞癌CAL-27细胞的凋亡作用部分通过调控TrxR/Trx/ASK1/p38/JNK信号通路来实现。
Background
     Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the top ten at present, while the incidence of tongue squamous cell carcinoma (TSCC) ranks the first among the oral cancer in China. TSCC is known for its invasive nature, propensity for lymph node metastasis, and poor prognosis. Comprehensive treatment usually involves surgery, radiotherapy, chemotherapy etc., but the five-year survival of TSCC patients is still low. To explore positively effective preventive measures and drugs becomes very urgent and necessary.
     The thioredoxin (Trx) system, comprising Trx and Trx reductase (TrxR) plus a reduced form of NADPH, is a major antioxidant system integral to maintenance of the intracellular redox state. Trx protein is one of the most important regulators of redox balance and, thus, of redox-controlled cell functions. The oxidized form of Trx can only be reduced by TrxR within the cell. Several studies have investigated Trx system function or expression in a variety of human tumors and overexpression of Trx was related to poor prognosis and increased proliferation of tumor cells. Therefore, the Trx system protein may play an important role in proliferation and differentiation of tumor cells. Inhibition of the Trx system protein function may induce growth-inhibition of tumor cells. Therefore, the purpose of the present study was to investigate the expression levels of Trx and TrxR-1in human TSCC tissues and the relationships with clinicopathological features and clinical outcome, as well as its role in development of TSCC. The study was divided into three parts as follows:
     Part One:Overexpression of thioredoxin system proteins predicts poor prognosis in patients with squamous cell carcinoma of the tongue
     Objective To evaluate the expression of Trx and TrxR-1and the relationships with clinicopathological features and clinical outcome in TSCC. Materials and Methods Immunohistochemistry was employed to analyze the protein expression levels of Trx and TrxR-1in65TSCC tissue samples and10normal oral mucosa samples. The results were then evaluated semiquantitatively and compared to other clinicopathological variables. Statistical analysis was performed with the SPSS16.0. P <0.05was considered statistically significant. Results The expression of Trx and TrxR-1was predominantly manifested in the cytoplasm of tumour cells, with diffuse distribution in nuclei. The percentages of TSCC specimens with Trx and TrxR-1expression were100%(65/65) and95.4%(62/65), respectively, whereas the corresponding rates of expression in normal tissues were almost low, with Trx (9/10) and TrxR-1(10/10). Both Trx and TrxR-1expression levels were significantly higher in TSCC tissues as compared with the10normal oral mucous samples (P<0.01). A highly significant association between Trx and TrxR-1expression in TSCCs was revealed (P=0.001), and the expression of Trx was correlated with tumour cell differentiation (P=0.001). Moreover, Kaplan-Meier analysis revealed that Trx expression and TNM stage were significantly related with5-year survival rate (P=0.033,0.000), while TrxR-1expression was not associated with survival (P=0.092).
     Conclusion The results indicated that high expression of Trx and TrxR-1was associated with tumourigenesis in TSCC, and overexpression of Trx might predict poor prognosis. Much additional studies into these areas are required to fully elucidate the role of the Trx system in tumourigenesis and as a possible therapeutic target.
     Part Two:Induction of apoptosis of human tongue squamous cell carcinoma cells by myricetin targeting thioredoxin reductase
     Objective To detect the proliferative and apoptotic effect on CAL-27cells when treated with myricetin. Materials and Methods Morphology changes of CAL-27cells treated or without treated by myricetin were observed by optical microscope; the changes of ultramicrostructure in the cells treated with myricetin at120μmol/L for12h were observed by transmission electron microscope; tumor cells were treated with different concentrations of myricetin for6,12, and24h and detected the growth inhibition by MTT assay; cancer cells were treated with Hoechst33258for12h and fluorescent microscopy was used to observe the morphological feature; cells were treated with0,40,80,120,160, and200μmol/L of myricetin for12h and stained with Annexin V and PI, and florescence intensity was measured by flow cytometry; SPSS16.0was used for all analysis and data was indicated by mean±standard deviation (χ±S). Results The morphology changes of CAL-27cells treated with myricetin was observed. When treated with certain myricetin, we observed the cancer cells developed morphological changes, including chromatin condensation, nuclear fragmentation, and apoptotic bodies by transmission electron microscope and fluorescent microscopy. To determine the proliferative activity of HOSCC cells, we found that cell viability was inhibited by myricetin in a time-, and dose-dependent manner. There were significant differences between different concentration-groups and time-groups (P<0.05). The percentage of growth inhibition of the cancer cells treated with200μmol/L myricetin for24h reached to94.21%. Flow cytometry showed that the apoptosis rate of CAL-27cells increased from (14.60%±2.44%) to (62.91%±3.54%) gradually, with the prolonging of myricetin role. There were significant differences (P<0.05). Conclusion Being treated with myricetin induced growth-inhibition and apoptosis of human tongue squamous cell carcinoma (HTSCC) CAL-27cells.
     Part Three:The apoptotic mechanisms of human tongue squamous cell carcinoma CAL-27cells treated with myricetin
     Objective To investigate the TrxR activity in CAL-27cells treated with certain myricetin and explain the possible molecular mechanism with special emphasis on the downstream regulator of Trx and caspase for induction of apoptosis of human tongue squamous cell carcinoma (HTSCC) CAL-27cells by myricetin. Materials and Methods CAL-27cell were treated with different concentrations of myricetin in serum-free medium for6,12, and24hours and the cells lysates were subjected to TrxR activity assay; the protein expression status of p-ASK1, ASK1, p-p38, p38, p-JNK and JNK in the CAL-27cells treated with myricetin at40,80,120,160, and200μmol/L for12h, or120μmol/L for30min,1,6, and12h was respectively detected by western blotting assay and the test results were investigated through semi-quantitative analysis; CAL-27cell were treated with different concentrations of myricetin for6,12, and24hours and the cells lysates were subjected to caspase3activity assay; SPSS16.0was used for all analysis and data was indicated by mean±standard deviation (χ±S).
     Results TrxR activity of CAL-27was decreased when treated with myricetin in a time-, and dose-dependent manner. When treated with120μmol/L myricetin for12h, the rate of inhibition exceeded90%;200μmol/L myricetin for24h, the TrxR activity was almost absent. Western blotting analysis demonstrated that myricetin treatment increased protein phosphorylation of ASK1, p38, and JNK in CAL-27cells with a time-, and dose-dependent manner. Caspase3activity was also increased when treated with myricetin in CAL-27cells with a time-, and dose-dependent manner. There was also statistical difference (P<0.05). Conclusion Myricetin-exerted apoptotic effects on human tongue squamous cell carcinoma CAL-27cells involve TrxR/Trx/ASK1/p38/JNK signaling pathway.
引文
[1]. Kaimul AM, Nakamura H, Masutani H, Yodoi J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med 2007; 43(6):861-868.
    [2]. Tonissen KF, Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 2009; 53(1):87-103.
    [3]. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000; 267(20):6102-6109.
    [4]. Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, et al. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol Cell Biol 2007; 27(23):8152-8163.
    [5]. Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci USA 2007; 104(28):11609-11614.
    [6]. Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation:A question of life or death. J Biochem Mol Biol 2002; 35(1):28-40.
    [7]. Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxinl in human breast carcinoma. J Exp Clin Cancer Res 2009; 28(1):93.
    [8]. Lincoln DT, Al-Yatama F, Mohammed FM, Al-Banaw AG, Al-Bader M, Burge M, et al. Thioredoxin and thioredoxin reductase expression in thyroid cancer depends on tumour aggressiveness. Anticancer Res 2010; 30(3):767-775.
    [9]. Kim HJ, Chae HZ, Kim YJ, Kim YH, Hwangs TS, Park EM, et al. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues. Cell Biol Toxicol 2003; 19(5):285-298.
    [10]. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM. The thioredoxin-thioredoxin reductase system:over-expression in human cancer. Anticancer Res 2003; 23 (3B): 2425-2433.
    [11]. Raffel J, Bhattacharyya AK, Gallegos A, Cui H, Einspahr JG, Alberts DS, et al. Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. J Lab Clin Med 2003; 142(1):46-51.
    [12]. Noike T, Miwa S, Soeda J, Kobayashi A, Miyagawa S. Increased expression of thioredoxin-1, vascular endothelial growth factor, and redox factor-1 is associated with poor prognosis in patients with liver metastasis from colorectal cancer. Hum Pathol 2008; 39(2):201-208.
    [13]. Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM, Saluja AK. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 2011; 308(2):181-188.
    [14]. Morales P, Haza AI. Selective apoptotic effects of piceatannol and myricetin in human cancer cells. J Appl Toxicol 2011 Sep 20. doi: 10.1002/jat.1725.
    [15]. Chobot V, Hadacek F. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep 2011; 16(6):242-247.
    [16]. Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin Exp Med 2011 Nov15.
    [17]. Chen W, Li Y, Li J, Han Q, Ye L, Li A. Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem Toxicol 2011; 49(9):2439-2444.
    [18]. Jung SK, Lee KW, Byun S, Lee EJ, Kim JE, Bode AM, et al. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis 2010; 31(5):911-917.
    [19]. Fresco P, Borges F, Diniz C, Marques MP. New insights on the anticancer properties of dietary polyphenols. Med Res Rev.2006; 26(6):747-766.
    [20]. Ramos S. Effects of dietary f lavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 2007; 18(7):427-442.
    [21]. Ramos S. Cancer chemoprevention and chemotherapy:dietary polyphenols and signalling pathway. Mol Nutr Food Res 2008; 52(5):507-526.
    [22]. Siegelin MD, Gaiser T, Habel A, Siegelin Y. Myricetin sensitizes malignant' glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Lett 2009; 283(2):230-238.
    [23]. Fresco P, Borges F, Marques MP, Diniz C. The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr Pharm Des 2010; 16(1):114-134.
    [24]. Pan MH, Lai CS, Wu JC, Ho CT. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res.2011; 55(1): 32-45.
    [25]. Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of Mammalian thioredoxin reductase by some flavonoids:implications for myricetin and quercetin anticancer activity. Cancer Res 2006; 66(8):4410-4418.
    [26]. Arner ES, Holmgren A. The thioredoxin system in cancer. Semin Cancer Biol 2006; 16(6):420-426.
    [27]. Powis G, Kirkpatrick DL. Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 2007; 7(4):392-397.
    [28]. Holmgren A. Thioredoxin. Annu Rev Biochem 1985; 54:237-271.
    [29]. Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem 2002; 277(36):33249-33257.
    [30]. Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem 1999; 261(2):405-412.
    [31]. Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 2000; 275(24):18121-18128.
    [32]. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 1997; 272(5):2936-2941.
    [33]. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL et al. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 1999; 274(35):24522-24530.
    [34]. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991; 1072(2-3): 129-157.
    [35]. Yoshioka J, Schreiter ER, Lee RT. Role of Thioredoxin in Cell Growth Through Interactions with Signaling Molecules. Antioxid Redox Signal 2006; 8(11-12): 2143-2151.
    [36]. Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 1999; 274(50):35809-35815.
    [37]. Hwang CY, Ryu YS, Chung MS, Kim KD, Park SS, Chae SK et al. Thioredoxin modulates activator protein 1 (AP-1) activity and p27Kipl degradation through direct interaction with Jabl. Oncogene 2004; 23(55):8868-8875.
    [38]. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus:a two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 1999; 274(39): 27891-27897.
    [39]. Chen KS, DeLuca HF. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxy vitamin D-3. Biochim Biophys Acta 1994; 1219(1): 26-32.
    [40]. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000; 164(12):6287-6295.
    [41]. Nishiyama A, Ohno T, Iwata S, Matsui M, Hirota K, Masutani H et al. Demonstration of the interaction of thioredoxin with p40phox, a phagocyte oxidase component, using a yeast two-hybrid system. Immunol Lett 1999; 68(1):155-159.
    [42]. Yamanaka H, Maehira F, Oshiro M, Asato T, Yanagawa Y, Takei H et al. A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem Biophys Res Commun 2000; 271(3):796-800.
    [43]. Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT. Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 2002; 91(8): 689-695.
    [44]. Wang Y, De Keulenaer GW, Lee RT. Vitamin D(3)-upregulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 2002; 277(29):26496-26500.
    [45]. Yamawaki H, Pan S, Lee RT, Berk BC. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest 2005; 115(3):733-738.
    [46]. Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y, Nishio K et al. Importin alphal (Rchl) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-upregulated protein 1. J Biol Chem 2004; 279(36): 37559-37565.
    [47]. Filby CE, Hooper SB, Sozo F, Zahra VA, Flecknoe SJ, Wallace MJ. VDUP1:a potential mediator of expansion-induced lung growth and epithelial cell differentiation in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 2006; 290(2): L250-258.
    [48]. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A 2002; 99(18):11700-11705.
    [49]. Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS et al. VDUP1 upregulated by TGF-betal and 1,25-dihydorxyvitamin D3 Inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 2003; 22(26):4035-4046.
    [50]. Yang X, Young LH, Voigt JM. Expression of a vitamin D-regulated gene (VDUP-1) in untreated-and MNU-treated rat mammary tissue. Breast Cancer Res Treat 1998; 48 (1): 33-44.
    [51]. Takahashi Y, Nagata T, Ishii Y, Ikarashi M, Ishikawa K, Asai S. Up-regulation of vitamin D3 up-regulated protein 1 gene in response to 5-fluorouracil in colon carcinoma SW620. Oncol Rep 2002; 9(1):75-79.
    [52]. Gasdaska JR, Berggren M, Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ 1995; 6(12): 1643-1650.
    [53]. Rhee SG, Chae HZ, Kim K. Peroxiredoxins:A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Radic Biol Med 2005; 38(12):1543-1552.
    [54]. Stadtman ER, Moskovitz J, Berlett BS, Levine RL. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biochem 2002; 234-235(1-2):3-9.
    [55]. Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem 1977; 252(13):4600-4606.
    [56]. Arner ES, Nordberg J, Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem Biophys Res Commun 1996; 225(1): 268-274.
    [57]. Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: Purification and characterization. Biochemistry 1982; 21(26):6628-6633.
    [58]. Cenas N, Nivinskas H, Anusevicius Z, Sarlauskas J, Lederer F, Arner ES. Interactions of quinones with thioredoxin reductase:A challenge to the antioxidant role of the mammalian selenoprotein. J Biol Chem 2004; 279(4):2583-2592.
    [59]. Bjornstedt M, Kumar S, Holmgren A. Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J Biol Chem 1992; 267(12):8030-8034.
    [60]. Kumar S, Bjornstedt M, Holmgren A. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large nonstoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 1992; 207(2):435-439.
    [61]. Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M et al. Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res 1995; 55(19):4293-4296.
    [62]. Arner ES, Holmgren A. The thioredoxin system in cancer. Semin Cancer Biol 2006; 16(6):420-426.
    [63]. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12(9):440-450.
    [64]. Park JH, Kim YS, Lee HL, Shim JY, Lee KS, Oh YJ et al. Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung. Respirology 2006; 11(3):269-275.
    [65]. Xiaojie Zhu, Congfa Huang, Bin Peng. Overexpression of thioredoxin system proteins predicts poor prognosis in patients with squamous cell carcinoma of the tongue. Oral Oncol 2011; 47(7):609-614.
    [66]. Kim WJ, Cho H, Lee SW, Kim YJ, Kim KW. Antisense-thioredoxin inhibits angiogenesis via pVHL-mediated hypoxia-inducible factor-1 alpha degradation. Int J Oncol 2005; 26(4):1049-1052.
    [67]. Welsh SJ, Bellamy WT, Briehl MM, Powis G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor lalpha protein expression:Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 2002; 62(17):5089-5095.
    [68]. Kirkpatrick DL, Ehrmantraut G, Stettner S, Kunkel M, Powis G. Redox active disulfides:The thioredoxin system as a drug target. Oncol Res 1997; 9(6-7): 351-356.
    [69]. Kirkpatrick DL, Kuperus M, Dowdeswell M, Potier N, Donald LJ, Kunkel M et al. Mechanisms of inhibition of the thioredoxin growth factor system by antitumor 2-imidazolyl disulfides. Biochem Pharmacol 1998; 55(7):987-994.
    [70]. Zhang C, Richon V, Ni X, Talpur R, Duvic M. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells:Relevance to mechanism of therapeutic action. J Invest Dermatol 2005; 125(5):1045-1052.
    [71]. Witte AB, Anestal K, Jerremalm E, Ehrsson H, Arner ES. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic Biol Med.2005; 39(5):696-703.
    [72]. Zhong L, Arner ES, Ljung J, Aslund F, Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem 1998; 273(15):8581-8591.
    [73]. Urig S, Becker K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin Cancer Biol 2006; 16(6):452-465.
    [74]. Lu J, Chew EH, Holmgren A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci U S A 2007; 104(30):12288-12293.
    [75]. Magda D, Miller RA. Motexafin gadolinium:A novel redox active drug for cancer therapy. Semin Cancer Biol 2006; 16(6):466-476.
    [76]. Magda D, Lepp C, Gerasimchuk N, Lee I, Sessler JL, Lin A et al. Redox cycling bymotexafin gadoliniumenhances cellular response to ionizing radiation by forming reactive oxygen species. Int J Radiat Oncol Biol Phys 2001; 51(4):1025-1036.
    [77]. Fang J, Lu J, Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin:A novel molecular mechanism for its anticancer activity. J Biol Chem 2005; 280(26):25284-25290.
    [78]. Burke-Gaffney A, Callister ME, Nakamura H. Thioredoxin:friend or foe in human disease? Trends Pharmacol Sci 2005; 26(8):398-404.
    [79]. Grogan TM, Fenoglio-Prieser C, Zeheb R, Bellamy W, Frutiger Y, Vela E, et al. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Hum Pathol 2000; 31(4):475-481.
    [80]. Kakolyris S, Giatromanolaki A, Koukourakis M, Powis G, Souglakos J, Sivridis E, et al. Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer. Clin Cancer Res 2001; 7 (10):3087-3091.
    [81]. Kahlos K, Soini Y, Saily M, Koistinen P, Kakko S, Paakko P, et al. Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. Int J Cancer 2001; 95(3):198-204.
    [82]. Ueno M, Matsutani Y, Nakamura H, Masutani H, Yagi M, Yamashiro H, et al. Possible association of thioredoxin and p53 in breast cancer. Immunol Lett 2000; 75(1):15-20.
    [83]. Iwasawa S, Yamano Y, Takiguchi Y, Tanzawa H, Tatsumi K, Uzawa K. Upregulation of thioredoxin reductase 1 in human oral squamous cell carcinoma. Oncol Rep 2011; 25(3):637-644.
    [84]. Okada Y. Relationships of cervical lymph node metastasis to histopathological malignancy grade, tumor angiogenesis, and lymphatic invasion in tongue cancer. Odontology 2010; 98(2):153-159.
    [85]. Hoogsteen IJ, Marres HA, Bussink J, van der Kogel AJ, Kaanders JH. Tumor microenvironment in head and neck squamous cell carcinomas:predictive value and clinical relevance of hypoxic markers. A review. Head Neck 2007; 29(6):591-604.
    [86]. Ko CD, Kim JS, Ko BG, Son BH, Kang HJ, Yoon HS, et al. The meaning of the c-kit proto-oncogene product in malignant transformation in human mammary epithelium. Clin Exp Metastasis 2003; 20(7):593-597.
    [87]. Soini Y, Kahlos K, Napankangas U, Kaarteenaho-Wiik R, Saily M, Koistinen P, et al. Widespread expression of thioredoxin and thioredoxin reductase in nonsmall cell lung carcinoma. Clin Cancer Res 2001; 7(6):1750-1757.
    [88]. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease:induction, repair and significance. Mutat Res 2004; 567(1):1-61.
    [89]. Fujino G, Noguchi T, Takeda K, Ichijo H. Thioredoxin and protein kinases in redox signaling. Semin Cancer Biol 2006; 16(6):427-435.
    [90]. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998; 17:2596-2606.
    [91]. Hattori K, Naguro I, Runchel C, Ichijo H. The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 2009; 7:9.
    [92]. Liu H, Nishitoh H, Ichijo H, Kyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 2000; 20:2198-2208.
    [93]. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57-70.
    [94]. Nakamura H, Masutani H, Tagaya Y, Yamauchi A, Inamoto T, Nanbu Y, et al. Expression and growth-promoting effect of adult T-cell leukemia-derived factor. A human thioredoxin homologue in hepatocellular carcinoma. Cancer 1992; 69(8): 2091-2097.
    [95]. Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, et al. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I-and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A 1990; 87(21):8282-8286.
    [96]. Farina AR, Tacconelli A, Cappabianca L, Masciulli MP, Holmgren A, Beckett GJ, et al. Thioredoxin alters the matrix metalloproteinase/tissue inhibitors of metalloproteinase balance and stimulates human SK-N-SH neuroblastoma cell invasion. Eur J Biochem 2001; 268(2):405-413.
    [97]. Gan L, Yang XL, Liu Q, Xu HB. Inhibitory effects of thioredoxin reductase antisense RNA on the growth of human hepatocellular carcinoma cells. J Cell Biochem 2005; 96:653-664.
    [98]. Casini A, Hartinger C, Gabbiani C, Mini E, Dyson PJ, Keppler BK, et al. Gold(III) compounds as anticancer agents:relevance of gold-protein interactions for their mechanism of action. J Inorg Biochem 2008; 102(3):564-575.
    [99]. Liao S, Xia J, Chen Z, Zhang S, Ahmad A, Miele L, et al. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J Cell Biochem 2011; 112(4):1055-1065.
    [100]. Chen HM, Liu CM, Yang H, Chou HY, Chiang CP, Kuo MY.8.5-aminolevulinic acid induce apoptosis via NF-κB/JNK pathway in human oral cancer Ca9-22 cells. J Oral Pathol Med 2011; 40(6):483-489.
    [101]. Kim JH, Jung JY, Shim JH, Kim J, Choi KH, Shin JA, et al. Apoptotic Effect of Tolfenamic Acid in KB Human Oral Cancer Cells:Possible Involvement of the p38 MAPK Pathway. J Clin Biochem Nutr 2010; 47(1):74-80.
    [102]. Yeh CC, Deng YT, Sha DY, Hsiao M, Kuo MY. Suberoylanilide hydroxamic acid sensitizes human oral cancer cells to TRAIL-induced apoptosisthrough increase DR5 expression. Mol Cancer Ther 2009; 8(9):2718-25.
    [103]. Lee YS, Choi EM. Myricetin inhibits IL-lbeta-induced inflammatory mediators in SW982 human synovial sarcoma cells. Int Immunopharmacol 2010; 10(7):812-814.
    [104]. Labbe D, Provencal M, Lamy S, Boivin D, Gingras D, Beliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 2009; 139(4):646-652.
    [105]. Delgado ME, Haza AI, Garcia A, Morales P. Myricetin, quercetin, (+)-catechin and (-)-epicatechin protect against N-nitrosamines-induced DNA damage in human hepatoma cells. Toxicol In Vitro 2009; 23(7):1292-1297.
    [106]. Nirmala P, Ramanathan M. Effect of myricetin on 1,2 dimethylhydrazine induced rat colon carcinogenesis. J Exp Ther Oncol 2011; 9(2):101-108.
    [107].常徽,糜漫天.植物黄酮抗肿瘤研究进展.国外医学卫生学分册,2006,33(5):296-300.
    [108]. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4):673-751.
    [109]. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids:promising anticancer agents. Med Res Rev 2003; 23(4):519-534.
    [110]. Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, et al. The antitumor activities of flavonoids. In Vivo 2005; 19(5):895-909.
    [111]. Lee KM, Kang NJ, Han JH, Lee KW, Lee HJ. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappaB. J Agric Food Chem 2007; 55(23):9678-9684.
    [112]. Lee KW, Kang NJ, Rogozin EA, Kim HG, Cho YY, Bode AM, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 2007; 28(9):1918-1927.
    [113]. Kumamoto T, Fujii M, Hou DX. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 2009; 275(1):17-26.
    [114]. Kumamoto T, Fujii M, Hou DX. Akt is a direct target for myricetin to inhibit cell transformation. Mol Cell Biochem 2009; 332(1-2):33-41.
    [115]. Kim JE, Kwon JY, Lee DE, Kang NJ, Heo YS, Lee KW, et al. MKK4 is a novel target for the inhibition of tumor necrosis factor-alpha-induced vascular endothelial growth factor expression by myricetin. Biochem Pharmacol 2009; 77(3):412-421.
    [116]. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, et al. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res 2008; 68(14):6021-6029.
    [117]. Kang NJ, Jung SK, Lee KW, Lee HJ. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci 2011; 1229:124-132.
    [118]. Zhang Q, Zhao XH, Wang ZJ. Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol 2008; 46(6):2042-2053.
    [119]. Shih YW, Wu PF, Lee YC, Shi MD, Chiang TA. Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells:possible mediation by blocking the ERK signaling pathway. J Agric Food Chem 2009; 57(9):3490-3499.
    [120].Ko CH, Shen SC, Lee TJ, Chen YC. Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectalcarcinoma cells. Mol Cancer Ther 2005; 4(2):281-290.
    [121].张秀娟,凌云,于华,季宇彬.杨梅树皮素诱导人肝癌HepG-2细胞凋亡机制的研究.中国中药杂志.2010,8.
    [122]. Kim W, Yang HJ, Youn H, Yun YJ, Seong KM, Youn B. Myricetin inhibits Akt survival signaling and induces Bad-mediated apoptosis in a low doseultraviolet(UV)-B-irradiated HaCaT human immortalized keratinocytes. J Radiat Res (Tokyo).2010; 51(3):285-296.
    [123]. Kerr TFR, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kineties. Br J Cancer 1972; 26(2):239-257.
    [124].高天祥,田竞生.医学分子生物学.北京:科学出版社,2000:38-39.
    [125]. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281(5381): 1309-1312.
    [126].陈津,张如松.细胞凋亡机制概述.中华中医药学刊.2011:29(4):886—888.
    [127]. Danial NN, Korsmeyer SJ. Cell death:Critical control points. Cell 2004; 116(2):205-219.
    [128]. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004; 4(12):937-947.
    [129]. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824):37-40.
    [130]. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81 (2): 807-869.
    [131]. Matsuzawa A, Ichijo H. Redox control of cell fate by MAP kinase:physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 2008; 1780(11):1325-1336.
    [132]. Du J, Cai SH, Shi Z, Nagase F. Binding activity of H-Ras is necessary for in vivo inhibition of ASK1 activity. Cell Res 2004; 14(2):148-154.
    [133]. Kuo CT, Chen BC, Yu CC, Weng CM, Hsu MJ, Chen CC, et al. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells. J Biomed Sci 2009; 16:43-57.
    [134]. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 1998; 2(3):389-395.
    [135]. Hoeflich KP, Yeh WC, Yao Z, Mak TW, Woodgett JR. Mediation of TNF receptor-associated factor functions by apoptosis signal-regulating kinase-1 (ASK1). Oncogene 1999; 18(42):5814-5820.
    [136]. Kitamura T, Fukuyo Y, Inoue M, Horikoshi NT, Shindoh M, Rogers BE, et al. Mutant p53 disrupts the stress MAPK activation circuit induced by ASK1-dependent stabilization of Daxx. Cancer Res 2009; 69(19):7681-7688.
    [137]. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis,2000; 21(3):485-495.
    [138]. Lillig CH, Holmgren A. Thioredoxin and related molecules--from biology to health and disease. Antioxid Redox Signal 2007; 9(1):25-47.
    [139]. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275(5296):90-94.
    [140]. Ichijo H. From receptors to stress-activated MAP kinases. Oncogene 1999; 18(45):6087-6093.
    [141]. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103(2):239-252.
    [142]. Sarker KP, Biswas KK, Yamakuchi M, Lee KY, Hahiguchi T, Kracht M, et al. ASK1-p38 MAPK/JNK signaling cascade mediates anandamide-induced PC12 cell death. J Neurochem 2003; 85(1):50-61.
    [143]. Sarker KP, Biswas KK, Rosales JL, Yamaji K, Hashiguchi T, Lee KY, et al. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. J Neurochem 2003; 87(6):1345-1353.
    [144]. Machino T, Hashimoto S, Maruoka S, Gon Y, Hayashi S, Mizumura K, et al. Apoptosis signal-regulating kinase 1-mediated signaling pathway regulates hydrogen peroxide-induced apoptosis in human pulmonary vascular endothelial cells. Crit Care Med 2003; 31(12):2776-2781.
    [145]. Niso-Santano M, Gonzalez-Polo RA, Bravo-San Pedro JM, Gomez-Sanchez R, Lastres-Becker I, Ortiz-Ortiz MA, et al. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic Biol Med 2010; 48(10):1370-1381.
    [146]. Li W, Whaley CD, Mondino A, Mueller DL. Blocked signal transducti on to the ERK and JNK p r otein kinase in anergrc CD+4 T cells. Science 1996; 271(5253): 1272-1276.
    [147]. Tibbles LA, Woodgett JR. The stress-activated protein kinase pathways. Cell Mol Life Sci 1999; 55(10):1230-1254.
    [148]. Iordanov MS, Magun BE. Different mechanisms of c-Jun NH2-terminal kinase-1 (JNK1) activation by ultraviolet-B radiation and by oxidative stressors. J Biol Chem 1999; 274(36):25801-25806.
    [149]. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380(6569):75-79.
    [150]. Peng J, Mao X0, Stevenson FF, Hsu M, Andersen JK. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 2004; 279(31):32626-32632.
    [151]. Niso-Santano M, Mordn JM, Garcia-Rubio L, G6mez-Martin A, Gonzalez-Polo RA, Soler G, et al. Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways:role of c-Jun N-terminal kinase in paraquat-induced cell death. Toxicol Sci 2006; 92(2):507-515.
    [152]. Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. p38MAPK kinase negatively regulates engothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biology 2002; 156(1):149-160.
    [153]. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288(5467):870-874.
    [154]. Yang DD, Kuan CY, Whitmarsh AJ, Rinc6n M, Zheng TS, Davis RJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997; 389(6653):865-870.
    [155]. Galan A, Garcla-Bermejo ML, Troyano A, Vilaboa NE, de Blas E, Kazanietz MG, et al. Stimulation of p38mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem 2000; 275(15):11418-11424.
    [156]. Cheng A, Chan SL, Milhavet 0, Wang S, Mattson MP. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells. J Biol Chem 2001; 276(46): 43320-43327.
    [157]. Sheth K, Friel J, Nolan B, Bankey P. Inhibition of p38 mitogen activated protein kinase increases lipopolysaccharide induced inhibition of apoptosis in neutrophils by activating extracellular signal-regulated kinase. Surgery 2001; 130(2):242-248.
    [158]. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38a MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11(2):191-205.
    [159].王文,任玲,王健楠.MAPK信号通路与细胞凋亡的关系.中国实用医药.2010,5(15): 260-261.
    [160]. Humke EW, Ni J, Dixit VM. ERICE, a novel FLICE-activatable caspase. J Biol Chem 1998; 273(25):15702-15707.
    [161]. Kumar S. Caspase function in programmed cell death. Cell Death Differ 2007; 14(1):32-43.
    [162]. Mazumder S, Plesca D, Almasan A, et al. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 2008; 414: 13-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700