用户名: 密码: 验证码:
沙棘木蠹蛾种群遗传结构与灾害发生机制的分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙棘木蠹蛾(Holcocerus hippophaecolus Hua, Chou, Fang et Chen)属鳞翅目(Lepidoptera)木蠹蛾科(Cossidae)线角木蠹蛾属(Holcocerus)。它主要危害沙棘(Hippophae rhamnoides L.),是我国近15年来新出现的暴发性害虫。木研究利用分子生态学的研究方法分析了不同地区、不同寄主种群沙棘木蠹蛾的遗传结构,以及影响因子。结合系统发育的分析方法,探讨沙棘木蠹蛾与其近缘种的遗传关系,揭示了寄主适应性在沙棘木蠹蛾进化历史中的重要作用。主要研究结果如下:
     1.建立了沙棘木蠹蛾AFLP多态性荧光标记体系。选取三对引物组合,采用AFLP荧光标记和银染法对相同的沙棘木蠹蛾全基因组DNA样品的多态性进行了分析。结果显示荧光标记法在精确度和检测效果方面都较为理想。因此,木研究建立了一套以银染法AFLP技术筛选引物,荧光标记法进行种群多样性分析的沙棘木蠹蛾AFLP研究体系。从100对AFLP引物组合中筛选出9对条带清晰、多态性较高的引物组合。
     2.利用AFLP分子标记技术揭示了我国沙棘木蠹蛾不同地区种群间分化明显的遗传特性,明确了沙棘木蠹蛾种群遗传结构受到多种因素的综合影响。较高的遗传分化可能与不同地区长时间的地理隔离、不同的环境条件以及沙棘木蠹蛾扩散能力较弱等影响有关。进一步分析沙棘木蠹蛾种群遗传结构和多样性参数与地理距离、干旱因子以及暴发因子的相关性。结果表明,种群遗传结构并不符合地理隔离的模式,而暴发因子和干旱因子对其遗传结构的影响也不显著。沙棘木蠹蛾种群平均杂合度与干旱、历史暴发事件均无显著相关。说明沙棘木蠹蛾的种群遗传结构是受到了多种因素综合影响的结果。
     3.明确了在种群遗传变异水平不存在与暴发相关的显著分化,但少数位点可能与沙棘木蠹蛾的暴发相关。根据沙棘木蠹蛾的历史发生情况,将十个不同地区种群划分为“曾暴发地区种群”和“未曾暴发地区种群”两组。遗传距离的聚类和分子方差分析结果表明,两组间混合聚类,组间遗传变异百分比很小且不显著。但是,我们在组间检测到了少数(4个)可能与暴发相关的受选择位点,说明沙棘木蠹蛾的基因组中可能存在某些特异位点与种群数量的波动相关。
     4.明确了沙棘木蠹蛾的暴发源于本地种群的数量增长。AFLP分子标记分析十个不同地区人工林的沙棘木蠹蛾种群遗传关系的结果表明,该害虫的灾害发生并非源于同一致害能力强的种群的扩散。基于线粒体DNA COⅠ序列的遗传变异分析结果证实,代表性地区沙棘人工林中危害的沙棘木蠹蛾样本的基因型与当地天然林中样本较为一致,证实了沙棘木蠹蛾人工林中的种群来源于本地。
     5.利用AFLP分子标记分析建平地区不同寄主种群沙棘木蠹蛾的遗传结构,推测其在沙棘上大面积暴发的内因基础,明确了沙棘木蠹蛾对沙棘的适应性分化。通过检测不同寄主种群的遗传多样性水平和种群间的遗传分化,揭示出沙棘上的沙棘木蠹蛾种群比其它寄主上种群更高的遗传多样性水平,较丰富的遗传变异对应着更强的适应能力,有利于该害虫的生存与繁殖。另外,寄主选择对沙棘木蠹蛾种群的分化作用大于地理隔离,沙棘木蠹蛾的“寄主族”现象很可能存在于沙棘与其他寄主之间,而这种对寄主的适应性分化很可能早在沙棘引进到建平地区之前就已形成。
     6.初步明确了沙棘木蠹蛾与部分近缘种的遗传关系。利用线粒体DNA CO I基因的部分序列对沙棘木蠹蛾同属的4个近缘种以及3个外群种进行遗传关系的研究。系统发育树的结果显示沙棘木蠹蛾与榆木蠹蛾以中度的置信度聚为一支。AMOVA分析的结果表明也这两个物种在COⅠ基因序列上没有显著的分化。结合AFLP标记对沙棘木蠹蛾与榆木蠹蛾混合集群基因组DNA的扫描,在242个AFLP位点中发现了5个可能与寄主相关的选择性位点,这一结果为沙棘木蠹蛾进化过程中寄主适应性的重要作用提供了线索。
     木研究揭示了沙棘木蠹蛾暴发成灾的虫源、内在遗传因素以及寄主选择性的分子机理,同时为它区域成灾调控和制定行之有效的防治策略等方面提供理论基础。
The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua. Chou, Fang et Chen) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. in last 15 years. The influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus were assessed by using Amplified Fragment Length Polymorphism (AFLP). The phylogenetic relationships among H. hippophaecolus and its closely related species were analyzed, the results uncovered important role of host selection in the evolutionary history of H. hippophaecolus.
     1. The fluorescence labeling technique of AFLP was established. Three primers combinations were used for amplification of genomic DNA by both fluorescence labeling technique and silver staining technique. The results showed that, compared with silver staining technique, using fluorescence labeling work efficiency and could get much more bands. Nine selective primer combinations which revealed sufficient amplified bands with high resolution and polymorphism were selected from 100 pairs of primer and clear fingerprints were obtained. The fluorescence labeling technique AFLP analyze system can be used to study population genetic diversity and structure.
     2. The population genetic variation and structure of H. hippophaecolus from 10 different areas across its range with contrasting historical patterns of outbreak events were described by using AFLP markers. The evidence of limited gene flow among samples collected from 10 locations was detected. Independent population structure of H. hippophaecolus can be explained by geographical isolation, environmental heterogeneity and low dispersal capacity. H. hippophaecolus did not follow an isolation-by-distance pattern. The results also rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors.
     3. The hypothesis that outbreak-associated genetic divergence exist among populations was rejected, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. AMOVA results confirmed the presence of mild and nonsignificant genetic differentiation total variability was due to the variation between outbreak and non-outbreak groups. A small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities.
     4. Our results support the notion that outbreak events were likely to be endemic population changes from latent to epidemic rather than being due to insects with an outbreak-associated genotype spreading to outbreak areas. H. hippophaecolus samples were collected from both plantation and natural forestry in two different locations. The genetic relationship among samples based on mtDNA CO I sequences indicated that H. hippophaecolus in plantation are indigenous to those two locations respectively.
     5. Genetic diversity and differentiation of H. hippophaecolus sympatric populations from four different host trees were detected in Jianping. Higher Nei's heterozygosity was found in the population feeding on seabuckthorn than other hosts populations. There were detectable genetic differences between H. hippophaecolus populations occupying different host trees. Host races might exist in H. hippophaecolus used seabuckthorn and other host plant. In Jianping, genetic divergence pre-dating the introduction of seabuckthorn, the possibilities of an ancestral host shift in seabuckthorn carpenter moth are suggested.
     6. Based on MP and Bayes tree reconstructed from the mtDNA CO I sequences. The H. hippophaecolus and H. vicarious were interspersed throughout the tree indicated they are the most closely related. Variation within and between species from population genetic perspectives were detected. Divergence between H. hippophaecolus and H. Vicariou has been relatively recent. There is little phylogenetic resolution and no significant genetic variance between species. Genome scan approach was further used to detect positive loci under divergent selection among populations of H. hippophaecolus / H. vicariou complex feeding on different host plant. Based on 242 Amplified Fragment Length Polymorphism (AFLP) markers, four loci (1.6%) were identified as candidates for adaptation to host plants. The evidence for positive selection suggests an important role of host selection in the evolutionary history of H. hippophaecolus.
     The results provide scientific evidence in revealing the molecular mechanism of outbreak of H. hippophaecolus disaster. Furthermore, they are also useful in establishing control measures to H. hippophaecolus.
引文
1.安榆林,王保德,杨晓军,林晓佳,陈建东,黄晓明,Victor CM.光肩星天牛种群间及其近缘种遗传关系的RAPD研究[J].昆虫学报,2004,47(2):229-235.
    2.陈学林,马瑞君,孙坤,廉永善.中国沙棘属中指资源极其生境类型的研究[J].西北植物学报,2003,23(3):451-455.
    3.褚栋,张友军,丛斌.烟粉虱不同地理种群的mtDNA COI基因序列分析及其系统发育[J].中国农业科学,2005, 38(1):79-85.
    4.邓小娟,司传领,刘忠等.沙棘的药理作用研究进展[J].中国药业,2009,18(1):63-64.
    5.付景,张迎春.27种瓢虫mtDNA-COI基因序列分析及系统发育研究[J].昆虫分类学报,2006,28(3):179-186.
    6.盖宇.粉虱拟寄生蜂丽蚜小蜂不同品系的分子生态学研究[J].北京师范大学博士论文,1999.
    7.龚鹏,杨效文,谭声江等.分子遗传标记技术及其在昆虫科学中的应用[J].昆虫知识,2001,38(2):86-91.
    8.郝晨阳,王兰芬,贾继增,董玉琛,张学勇.SSR荧光标记和银染技术的比较分析[J].作物学报,2005,31(2):144-149.
    9.花保祯,周尧,方德齐等.中国木蠹蛾志(鳞翅目:木蠹蛾科)[M].陕西杨陵:天则出版社,1990,56-57.
    10.胡建忠,闫晓玲.沙棘饲料价值评价及开发利用探讨[J].沙棘,2000,13(4):21-25.
    11.胡忠郎,陈孝达,杨鹏辉,工兆玺,姬祥洲.沙柳木蠹蛾的研究[J].昆虫学报,1987:30(3):259-265.
    12.胡志昂, 王洪新.分子生态学研究进展[J].生态学报,18(6): 565-573.
    13.吉亚杰,张德兴.鳞翅目昆虫基因组中微卫星DNA的特征以及对其分离的影响[J].动物学报,2004,50(4):608-614.
    14.李日胜,田秀梅,李静等.防治上地沙漠化的先锋树种—沙棘[J].内蒙古林业,2002,28.
    15.李珊,赵桂仿AFLP分子标记及其应用[J].西北植物学报,2003,23(5):830-836.
    16.李宗顺,贺桂先.萧氏松茎象的早期寄主研究[J].华东昆虫学报,2001,10(1):100-102.
    17.郎杏茹,孙普,吴建宁,张娟.光肩星天牛与黄斑星天牛交配试验初报[J].西北林学院学报,1997,12(增):58-60.
    18.廉永善,陈学林.沙棘属植物的研究[J].甘肃科学学报,1991,3(2):13-23.
    19.路常宽,宗世祥,骆有庆.沙棘木蠹蛾成虫行为学特征及性诱效果研究[J].北京林业大学学报,2004,26(2):280-282.
    20.路常宽.沙棘木蠹蛾灾害监测和综合管理策略研究[D].北京林业大学博士论文,2005
    21.骆有庆,黄少鸣等.光肩星天牛和黄斑星天牛混合种群的系统聚类分析[M].防护林杨树天牛持续控制技术专题论文集,2000.
    22.骆有庆,黄少鸣,赵楠,李建光.光肩星天牛和黄斑星天牛混合种群的显微特征比较[J].北京林业大学学报,2000,22(1):56-62.
    23.骆有庆,路常宽,许志春.暴发性新害虫沙棘木蠹蛾的控制技术[J].国际沙棘研究与开发.2003a,1(1):31-33.
    24.骆有庆,路常宽,许志春等.林木新害虫沙棘木蠹蛾的控制策略[J].中国森林病虫,2003b,22(5):25-28.
    25.马超德.沙棘木蠹蛾地理种群变异AFLP研究[D].北京林业大学博士论文.2008
    26.乔卿梅,程茂高,原国辉.蝗虫线粒体DNA (mtDNA)研究概况[J].河南农业科学,2006,21:—801.
    27.邱冬梅,孙继英,刘金,严亨梅.扩增片段长度多态性(AFLP)荧光标记和银染技术的比较分析[J].生命科学研究,2006,10(3):17-21.
    28.施伟,叶辉.云南桔小实蝇五个地理种群的遗传分化研究[J].昆虫学报,2004,47(3):384--388.
    29.宋玉双,王明旭,宋金秀,益延葳.森林有害生物萧氏松茎象的危险性分析[J].中国森林病虫.2001,(3):3-5.
    30.邰源临,杨万政.沙棘在我国北方地区生态建设中的作用[J].中央民族大学学报,2001,10(2):178-181
    31.田润民,唐蒙昌.沙棘木蠢蛾生物学特性的初步研究[J].内蒙古林业科技,1997(1):36-38
    32.万春玲,朱玉芳,谭远德等AFLP标记在研究家蚕遗传多态性方面的应用[J].生物技术,1999,9(5):4-9.
    33.王斌,翁曼丽AFLP |的原理及其应用[J].杂交水稻,2003,(5):27-30
    34.工东生.朔州市右玉县沙棘木蠹蛾种群变化规律研究[J].科技情报开发与经济,2007,17(16):170-171.
    35.工健伟,骆有庆,宗世祥.沙蒿木蠹蛾生物学特性研究[J].2011,54(7):809-814
    36.王志政,温俊宝,姚国龙,宗世祥,李元,骆有庆.沙棘木蠹峨对不同树种的产卵选择[J].北京林业大学学报,2010,32(4):130-135.
    37.温小遂,施明清,匡元玉.萧氏松茎象发生成因及牛态控制对策[J].江西农业大学学报,2004,26(4):495-498.
    38.尤屹.榆林市林木病虫害发生现状与防治对策[J].陕西林业科技,2000(4):35-73
    39.于亚玲,田新华,卢慧颖等.沙棘产业开发的意义[J].林业科技,2008,33(3):59-60.
    40.徐汝梅,成新跃.昆虫种群生态学——基础与前沿[M].北京:科学出版社2005
    41.张明照,康乐AFLP标记的特点及其在昆虫学研究中的应用[J].昆虫学报,2002,45(4):538-543.
    42.赵翀,刘法央,郭玉霞,严学兵AFLP荧光标记和银染技术的比较分析[J].甘肃农业大学学报,2007,42(2):125-129.
    43.赵同海,赵文霞,高瑞桐,张青文,李国宏,刘小侠.外来树种对本地林业虫害的诱发作用[J].昆虫学报,2007,50(8):826-833.
    44.赵同海.从昆虫与植物的进化关系看当今林业害虫的发生与治理对策[C].第二届中国林业学术大会—S6森林昆虫与自然调控论文集.2009
    45.郑成木等.植物分子标记原理与方法[D].海南:华南热带农业大学出版2002,85-87
    46.朱伟铨,王义权.AFLP分子标记技术及其在动物学研究中的应用[J].动物学杂志,2003,38(2):101-107.
    47.周嘉熹,杨雪彦,崔敏,樊俊杰.黄斑星天牛和光肩星天牛幼虫两种同功酶的测定[J].西北林学院学报,1995,10(2):67-70.
    48.周章义,尹伟伦,梁华军等.沙棘抗沙棘木蠹蛾的立地条件及其机理[J].北京林业大学学报.2002a,15(2):7-11
    49.周章义.内蒙古鄂尔多斯市东部老龄沙棘死亡原因及其对策[J].沙棘,2002b,15(2):7-11.
    50.宗世祥,沙棘木蠹蛾生物生态学特性研究,博士论文,北京林业大学,2006a
    51.宗世祥,骆有庆,路常宽等.沙棘木蠹蛾生物学特性的初步研究[J].林业科学,2006b,42(1):102-107.
    52.宗世祥,骆有庆,许志春,姚国龙,上玉友.沙棘主要主干害虫危害特性及种群动态变化[J].中国森林病虫,2006c,25(1):7-10.
    53.宗世祥,骆有庆,许志春等.当前沙棘木蠹蛾研究中存在的主要问题[J].中国森林病虫,2006d,25(2):29-32.
    54. Abdullahi I, Winter S, Atiri GI, et al. Molecular characterization of whitefly, Bemisia tabaci (Hemiptera, Aleyrodidae) populations infesting cassava[J]. Bulletin of Entomological Research, 2003,93:97-106.
    55. Alessandro G, Sanna B, Leena L, Anne L, Johanna M. The voyage of an invasive species across continents:genetic diversity of North American and European Colorado potato beetle populations[M]. In Molecular ecology.2005, pp.4207-4219.
    56. Alstad D N. Population structure and the conundrum of local adaptation[M]. In:Mopper S and S Y. (eds.) Genetic structure and local adaptation in natural insect populations. Effects of ecology, life history and behavior. New York:Chapman and Hall.1998,3-21.
    57. Arnaud JF. Metapopulation genetic structure and migration pathways in the land snail Helix aspersa:influence of landscape heterogeneity[J]. Landscape Ecology,2003,18:333-346.
    58. Antao T, Beaumout MA. Mcheza:A workbench to detect selection using dominant markers[J].Bioinformatics,2011,27:1117-1118.
    59. Arencibia A, Gentinetta E, Cuzzoni E, Castiglione S, Kohli A, Vain P,Leech M, Christou P, Sala F, Molecular analysis of the genome of transgenic rice (Oryza satira L.) plants produced via particle bom2 bardment or intact cell electroporation[J]. Molecular Breeding,1998,4(2):99-109.
    60. Ayala FJ, Genetic differentiation during the speciation process[M]. In Evolutionary Biology. 8:1-78.
    61. Balkenhol N, Waits LP, Dezzani RJ. Statistical approaches in landscape genetics:an evaluation of methods for linking landscape and genetic data[J]. Ecography,2009,32:818-830.
    62. Bailey NW, Gwynne DT, Ritchie MG. Are solitary and gregarious Mormon crickets(Anabrus simplex, Orthoptera, Tettigoniidae) genetically distinct?[J]. Heredity,2005,95:166-173.
    63. Barker JSF.1994. A global protocol for determining genetic distances among domestic livestock breeds[C]. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph and Ontario, Canada 21:501-508.
    64. Bartlett A C. Isozyme polymorphism in populations of the pink bollworm[J]. Annals of Entomological Society of America,1981,7:49-13.
    65. Beaumont MA., Nichols RA. Evaluating Loci for Use in the Genetic Analysis of Population Structure[J]. Proceedings:Biological Sciences,1996,263:1619-1626.
    66. Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans[J]. Molecular Ecology,2004,13:969-980.
    67. Behura S K, Sahu SC, Rajamni S et al. Differentiation of Asian rice gall midge, Orseolia oryzae (Wood Mason), biotypes by sequence characterized amplified regions (SCARs) [J]. Insect Molecular Biology,1999,8:391-397.
    68. Behura S K, Nai S, Sahu SC et al. An AFLP marker that differentiates biotypes of the Asian rice gall midge(Orseolia oryzae Wood Mason) is sex-linked and also linked to avirulence[J]. Molecular and General Genetics,2000,263:328-334.
    69. Behura S K, Nai S, Mohan M. Polymophisms flanking the mariner integration sites in the rice gall midge(Oresolia oryzae Wood-Mason) genome are biotype-specific[J]. Genome,2001, 44:947-954.
    70. Behura S K. Molecular marker systems in insects:current trends and future avenues[J]. Molecular Ecology,2006,15:3087-3113.
    71. Bekkevold D, Andre C, Dahlgren TG, Clausen LAW, Torstensen E, et al. Environmental correlates of population differentiation in Atlantic herring[J]. Evolution,2005,59:2656-2668.
    72. Benjamini Y, and Hochberg Y. Controlling the False Discovery Rate:A Practical and Powerful Approach to Multiple Testing[J]. Journal of the Royal Statistical Society Series B (Methodological),1995,57:289-300.
    73. Bernays EA, Chapman RF. Host-plant selection by phytophagous Insects[M]. New York. Chapman & Hall.1994
    74. Berryman AA. Towards a theory of insect epidemiology[J]. Research in Population Ecology, 1978,19:181-196.
    75. Bonizzoni M, Malacrida A R, Gugliemino CR, et al. Microsatellite polymorphism in the Mediterranean fruit fly, Ceratitis capitata[J]. Insect Molecular Biology,2000,9(3):251-261.
    76. Bonizzoni M, Zheng L, Gugliemino CR, et al. Microsatellite analysis of medfly bioinfestations in California[J]. Molecular Ecology,2001,10(10):2515-2524.
    77. Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms[J]. American journal of Human Genetics,1980,32:314-331.
    78. Brunner PC, Chatzivassiliou EK, Katis NI, Frey JE. Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data[J]. Heredity, 2004,93:364-370.
    79. Burke T, Seidler R, Smith H. Editorial. Molecular Ecology,1992 1:1.
    80. Bush G. Modes of animal speciation[J]. Annual Review of Ecology and Systematics 1975, 6:339-364.
    81. Bush GL, Smith JJ. The genetics and ecology of sympatric speciation:a case study[J]. Reseach on Population Ecology,1998,40,175-187.
    82. Carroll SP, Boyd C. Host race radiation in the soapberry bug:natural history with the history[J]. Evolution,1992,46,1052-1069.
    83. Caterino M S, Cho S, Sperling F A N. The current state of insect molecular systematics:A thriving Tower of Babel[J]. Annual Review of Entomology,2000,45:1-54.
    84. Carter M, Smith M, Harrison R. Genetic analyses of the Asian longhorned beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North American, Europe and Asia[J]. Biological Invasion,2010,12:1165-1182.
    85. Cervera M T, Cabezas J A, Simon B, et al. Genetic ralationships among biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae) based on AFLP analysis[J]. Bulletin of Entomological Research, 2000,90:391-396.
    86. Chalhoub B A, Thibault S, Laucou V, Rameau C, Hofte H, Cousin R. Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels[J]. Biotechniques,1997,22 (2):216-220.
    87. Chapuis MP, Estoup A, Auge SA, Foucart A, Lecoq M, et al.. Genetic variation for parental effects on the propensity to gregarise in Locusta migratoria[J]. BMC Evolutionary Biology,2008, 8:37.
    88. Chapuis MP, Loiseau A, Michalakis Y, et al. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria:a regional-scale comparative survey[J]. Molecular Ecology,2009,18:792-800.
    89. Cheng XY, Cheng FX, Xu RM, et al.. Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida:Aphelenchoididae) and its possible spread routes in China[J]. Heredity,2007,100:356-365.
    90. Chitty D (1971) The natrual selection of self-regulatory behavior in animal populationsfM]. In McLaren IA, editors. Natrual Regulation of Animal Populations. New York, Atherton Press.
    91. Coote T, Bruford MW. Universally applicable microsatellites for analysis of genetic variation in old world monkeys[J]. Heredity,1996,87:406-410.
    92. Coyne J Orr HA. The evolutionary geneties of speciation[M]. In Magurran AE and May RM., editors. Evolution of Biological Diversity. Oxford University Press. PP.1-36.
    93. Crispo E, Bentzen P, Reznick DN, Kinnison MT, Hendry AP. The relative influence of natural selection and geography on gene flow in guppies[J]. Molecular Ecology,200615:49-62.
    94. Crister S (1991) Unusual weather and insect population dynamics:Lygaeus equestris during an extinction and recovery period[J], Oikos,60:343-350.
    95. De Barro PJ, Driver F, Trieman JWH, et al. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS 1[J]. Molecular Phylogenetics and Evolution, 2000,16(1):29-36.
    96. Dempster J, Mclean I. Insect populations[M]. In theory and in Practice. Kluwer Academic Publishers, Boston, Massachusetts.1999.
    97. Desmarais E, Lanneluc I, Lagnel J. Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species[J]. Nucleic Acids Reseach,1998, 26(6):1458-1465.
    98. Dres M, Mallet J. Host races in plant-feeding insects and their importance in sympatric speciation[J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Science,2002,357:471-492.
    99. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distance among DNA haplotypes:Application to human mitochondrial DNA restriction data[J]. Genetics,1992,131:479-491.
    100. Fang YL, Sun JH, Zhao CH, Zhang ZN. Sex pheromone components of the sandthorn carpenterworm Holcocerus hippophaecolus[J]. Journal of Chemical Ecology,2005,31:39-48.
    101. Feder JL, Chilcote CA, Bush GL. Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletispomonella[3]. Nature,1988,336:61-64.
    102. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, et al.. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100:10314-10319.
    103. Forneck A, Wallker MA, Blaich R. Genetic structure of an introduced pest, grape phylloxera (Daktulospharia vitifoliae Fitch)[J]. Genome,2000,43(4):669-678.
    104. Funk DJ, Filchak KE, Feder JL. Herbivorous insects:model systems for the comparative study of speciation ecology[J]. Genetica,2002,116:251-267.
    105. Gasperi G, Bonizzoni M, Gomulski L M, et al. Genetic differentiation, gene flow and the origin of infestations of the Medfly, Ceratitis capitata[J]. Genetica,2002,116(1):125-135.
    106. Gaines MS, McClenaghan LR, Rose RK. Temporal patterns of allozymic variation in fluctuating populations of Microtus ochrogaster[J]. Evolution,1978,32:723-739.
    107. Genner MJ, Taylor MI, Cleary DFR, Hawkins SJ, Knight ME, et al.. Beta diversity of rock-restricted cichlid fishes in Lake Malawi:importance of environmental and spatial factors[J]. Ecography,2004,27:601-610.
    108. Grant V. The Evolutionary Process A Critical Study of Evolutionary Theory (2nd ed.)[M]. 1991, New York:Columbia University Press.
    109. Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucl. Acids. Symp. Ser.,1999,41:95-98.
    110. Hamrick JL, Godt MJ. Allozyme diversity in plant species[M]. In:Brown AHD, Clegg MT, Kahler AL, Weir BS. Plant Population Genetics Breeding and Genetic Resources Sinauer Associates Inc. Sunderland,1990,43-63.
    111. Hance T, Baaren J, Vernon P, Boivin G. Impact of Extreme Temperatures on Parasitoids in a Climate Change Perspective[J]. Annual Review Of Entomology 2007,52:107-26.
    112. Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life:cytochrome coxidase subunit I divergences among closely related species[J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,2003,270:S96-S99.
    113. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101:14812-14817.
    114. Hoelzer GA, Drewes R, Meier J, Doursat R. Isolation-by-Distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences[J]. PLoS Computational Biology,2008,4:e 1000126.
    115. Hoy MA. Insect Molecular Genetics, (2nd edn.) [M]. Academic Press, San Diego, California. 2003.
    116. Ikawa T, Okabe H, Hoshizaki S, et al.. Species composition and distribution of ocean skaters Halobates (Hemiptera:Gerridae) in the western Pacific Ocean[J]. Entomological Science,2002, 5:1-6.
    117. Iwahori H, Kanazki N, Futai K. Bursaphelenchus xylophilus and B. mucronatus in Japan, Where Are They From?[C]. Fourth International Congress of Nematology:Spain.2002.
    118. Janike J. Host specialization in phytophagous insects[J]. Annual Review of Ecology and Systematics,1990,21:243-273.
    119. John LM, Susan H, Mary G. Origin of an insect outbreak:escape in space or time from natural enemies?[J]. Oecologia,2001,126:595-602.
    120. Jones CJ. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories[J]. Molecular Breeding,1997,3:381-390.
    121. Kang L, Chen X Y, Zhou Y, et al. The analysis of large scale gene expression correlated to the phase changes of migratory locust[J]. Proceedings of the National Academy of Sciences.2004, 101:17611-17615.
    122. Kelly ST, Farrel BD, Mitton JB. Effects of specialization on genetic differentiation in sister species of bark beetles[J]. Heredity,2000,34(8):288-292.
    123. Kennedy GG, Storer NP. Life systems of polyphagous arthropod pests in temporally unstable cropping systems[J]. Annual Review of Entomology,2000,45:467-493.
    124. Kirk AA, Lacey LA, Brown JK, et al.. Variation in the Bemisia tabaci species complex (Hemiptera:Aleyrodidae) and its natural enemies leading to successful biological control of Bemisia biotype B in USA[J]. Bulletin of Entomological Research.2000,90:317-327.
    125. Kittlein MJ, Gaggiotti OE. Interactions between environmental factors can hide isolation by distance patterns:A case study of Ctenomys rionegrensis in Uruguay [J]. Proceedings of the Royal Society of London B Biological Sciences,2008,275:2633-2638.
    126. Kondrashov AS. Mina MV. Sympatric speciation:When is it Possible? [J]. Biol J. Linn. Soc, 1986,27,201-223.
    127. Krafsur E S, Bryant N L, Marquez J G, et al. Genetic distances among North American, Briyish, and West African house fly populations (Musca domestica L.) [J]. Biochemical Genetics. 2000,38 (9-10):275-284.
    128. Kuo C-H, Janzen FJ. Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata)[J]. Conservation Genetics,2004,5:425-437.
    129. Ledig FT, Conkle MT. Gene diversity and genetic structure in a narrow endemic, torrey pine (Pirnts torreyana parry ex Carr.) [J]. Evolution,1997,37(1):79-85.
    130. Lewis, Kornelia G. Random amplified polymorphic DNA reveals fine-scale genetic structure in Pissods stwi[J]. Canadian Entomologist,2001,133(2):229-238.
    131. Li JH, Zhao F, Choi YS, Kim I, Sohn HD, Jin BR. Genetic variation in the diamondback moth, Plutella xylostella (Lepidoptera:Yponomeutidae) in China inferred from mitochondrial COI gene sequence[J]. European Journal of Entomology,2006,103:605-611.
    132. Lin J J, Ma J, Kuo J. Chemiluminescent detection of AFLP markers[J]. Biotechniques,1999, 26 (2):344-348.
    133.Louy D, Habel J, Schmitt T, Assmann T, Meyer M, et al.. Strongly diverging population genetic patterns of three skipper species:the role of habitat fragmentation and dispersal ability[J]. Conservation Genetics,2007,8:671-681.
    134. Loxdale HD, Tarr U, Weber CP, Brookes CP, Digby PGN, Castanera P. Electrophoretic study of enzymes from cereal aphid populations. Spatial and temporal genetic variation of populations of Sitobion avenae (F.) (Hemipetra:Aphididae)[J]. Bulletin of Entomological Reseach, 1985,75:121-142.
    135. Luo YQ, Lu CK, Xu ZC. Control strategies on a new serious forest pest insect seabuckthorn carpenterworm, Holcocerus hippophaecolus[J]. Forest Pest Disease,2003,5:25-28.
    136. Mattel C, Rjasse A, Rousset F et al.. Host-plant-associated genetic differentiation in Northern French populations of the European corn borer[J]. Heredity,2003,90,141-149.
    137. Martinat PJ (1987) The role of climatic variation and weather in forest insect outbreaks[M]. In:Barbosa P, Schultz J, editors., Insect outbreaks:New York, Acedemic Press, pp.241-268.
    138. Mattson WJ, Haack RA. The role of drought in outbreaks of plant-eating insects[J]. BioScience,1987,37:110-118.
    139. McMichael M, Prowell D P. Differences in AFLP in fall armyworm (Lepidoptern:Noctudiae) host strains[J]. Annals of Entomological Society of America,1999,92:175-181.
    140. McPheron BA, Smith DC, Berlocher SH. Genetic differences between host races of Rhagoletis pomonella[J]. Nature,1988,336:64-66.
    141. Meixner MD, McPheron BA, Silva JG, et al. The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability[J]. Molecular Ecology.2002,11(5):891-899.
    142. Millar CL, Libby WJ. Strategies for conserving clinal ccotypic and disjunct population diversity in widespread species[M]. In Falk DA, Holsinger KE. editors. Genetics and Conservation of Rare Plants. New York:Oxford University Press,1991:149-170.
    143. Miller MP. Tools for population genetic analysis (TFPGA) 1.3:A Windows program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences, Northern Arizona University:AZ, USA,1997.
    144. Mimura M, Aitken SN. Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis[J]. Heredity,2007,99:224-232.
    145. Mock KE, Bentz BJ, O'neill EM, Chong JP, Orwin J, et al. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponder osae) [J]. Molecular Ecology.2007,16:553-568.
    146. Mopper S. Adaptative genetic structure in phytophagous insect populations[J]. Tree,1996,11: 235-238.
    147. Moritz C, Dowling TE, Brown WM. Evolution of Animal Mitochondrial DNA:Relevance for Population Biology and Systematics[J]. Annual Review of Ecology and Systematics,1987, 18:269-292.
    148. Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting[J]. Trends Ecology Evolution,1999,14 (10):389-394.
    149. Myers JH. Can a general hypothesis explain population cycles of forest Lepidoptera:San Diego, Academic Press Inc.1988, pp.179-242.
    150. Nair KSS. Pest outbreaks in tropical forest plantations:Is there a greater risk for exotic tree species? [C]. Center for international forestry research.2001.
    151. Nei M. Estimation of heterozygosity and genetic distance from a small number of individuals[J]. Genetics,1978,89:583-590.
    152. Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD. Response to Comment on "'Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests?"[J]. Science,2006,315:1055-1057.
    153. Papura D, Simon JC, Halkett, Delmotte F. Predominance of sexual reproduction in Romanian populations of the aphid Sitbion avenae inferred from phenotypic and genetic structure[J]. Heredity,2003,90:397-404.
    154. Percy DM, Page RDM, Cronk QCB. Plant-insect interactions:Double-dating associated insect and plant lineages reveals asynchronous radiations[J]. Systematic Biology,2004,53(1): 120-127.
    155. Peterson MA, Denno R F. The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects[J]. The American Naturalist,1998,152:428-446.
    156. Peterson MA, Denno RF. Life-histrory strategies and the genetic structure of phytophagous insect populations[M]. In:Mopper S, Strauss SY, editors. Genetic Structure and Local Adaptation in Natural Insect Population New York, Chapman & Hall.1998, pp.236-322.
    157. Ranamukhaarachchi D G, Kane M E, Guy C L, et al. Modified AFLP technique for rapid genetic characterization in plants[J]. Biotechniques,2000,29(4):858-859.
    158. Reineke A, Karlovsky P, Zebitz CPW, Amplified fragment length polymorphism analysis of different geographic populations of gypsy moth, Lymantria dispar (Lepidoptera:Noctuidiae)[J]. Bulletin of Entomological Reseach,1999,89(5):79-88.
    159. Richardson B J, Baverstock P R, Adams M. Allozyme electrophoresis:a handbook for animal systematics and population studies[M]. London Academic Press.1986.
    160. Riginos C, Nachman MW. Population subdivision in marine environments:the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus[J]. Molecular Ecology,2001,10:1439-1453
    161. Roman B L, Pham V N, Bennett P E, Weinstein B M. Non-radio isotopic AFLP method using PCR primers fluorescently labeled with Cy5[J]. Biotechniques,1999,26 (2):236-238
    162. Rongsen LV. Sea Buckthorn-A Multipurpose Plant Species for Fragile Mountains[C]. ICIMOD Occasional Paper, no.20, Kathmandu, Nepal,1992,1-60.
    163. Rossiter M. The impact of resource variation on population quality in herbivorous insects:a critical aspect of population dynamics[M]. In:Hunter MD, Ohguhi T, Price PW, editors. Effects of resource distribution on animal-plant interactions, New York, Academic Press.1992, pp.13-42.
    164. Rousi A. The Genus Hippophae L., A Taxonomic Study[J]. Annales Botanic Fen,1971, 8:177-277
    165. Price PW. The role of natural enemies in insect populations[M]. In:Barbosa P, Schultz J, editors. Insect outbreaks:New York, Academic Press.1987, pp.208-312
    166. Rubinoff D, Holland BS. Between Two Extremes:Mitochondrial DNA is neither the Panacea nor the Nemesis of Phylogenetic and Taxonomic Inference[J]. Systematic Biology,2005, 54:952-961.
    167. Salvato P, Battisti A, Concato S, Masutti L, Patarnello T, et al.. Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers[J]. Molecular Ecology,2002,11:2435-2444.
    168. Sander AC, Purtauf T, Wolters V, Dauber J. Landscape genetics of the widespread ground-beetle Carabus auratus in an agricultural region[J]. Basic and Applied Ecology,2006,7: 555-564.
    169. Scheffer SJ, Lewis ML. Mitochondrial phylogeography of vegetable pest Liriomyza sativae (Diptera:Agromyzidae):divergent clades and invasive populations[J]. Annals of Entomological Society of America.2005,98(2):181-186.
    170. Schneider S, Roessli D, Excoffier L. Arlequin, Version 2.0:a Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory. University of Geneva:Switzerland. 2000.
    171. Shufran KA, Payton TL. Limited Genetic Variation Within and Between Russian Wheat Aphid (Hemiptera:Aphididae) Biotypes in the United States[J]. Journal of Economic Entomology. 2009,102,440-445
    172. Simchuk APV, Ivashov A, Companiytsev VA. Genetic patterns as possible factors causing population cycles in oak leafroller moth, Tortrix Viridana L.[J]. Forest Ecology and Management 1999,113:35-49.
    173. Simon C, Frati F, Beckenbach A et al.. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J]. Annals of the Entomological Society of America.1994,87:651-701.
    174. Simon J C, Leterme N, LaTorre A. Molecular markers linked to breeding system differences in segregating and natural population of the cereal aphid Rhopalosiphumpadi. L.[J]. Molecular Ecology,1999,8:965-973
    175. Slatkin M. Gene flow and population structure[J]. Ecological genetics. Princeton New Jersey: Princeton University Press.1994.
    176. Soltis PS, Soltis DE. Genetic variation in endemic and widespread plant species example from Saxifragaceae and Polystichum[J]. Aliso,1991,13:215-223.
    177. Speight M R, Watt A, Hunter M. Ecology of insects:concepts and applications. (2nd edn.)[M]. Blackwell Science, London,2005.
    178. Suazo A, Hall H G, Modification of the AFLP protocol applied to hon2 ey bee (Apis mellifera L.) DNA[J]. Biotechniques,1999,26 (4):704-705.
    179. Sullivan J, Swofford DL. Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics[J]. Journal of Mammalian Evolution,1997,4:77-86.
    180. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4. Sunderland, MA:Sinauer Associates.2002.
    181. Sword GA, Joern A, Senior LB. Host plant-associated genetic differentiation in the snakeweed grasshopper, Hesperotettix viridis (Orthoptera:Acrididae)[J]. Molecular Ecology,2005, 14:2197-2205.
    182. Tan Y D, Wan C, Zhu Y, et al. An amplified fragment length polymorphism map of the silkworm[J]. Genetics,2001,157(3):1277-1285.
    183. Tamura K, Dudley J, Nei M, Kumar S MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution,2007,24:1596-1599.
    184. Jing Tao, Yi-Wen Ai, You-Qing Luo, Liu Yang, Wei Yan, Min Chen, AFLP analysis of genetic variation of Hyphantria cunea (Drury) populations in Beijing and a nearby site[J]. Forestry Study in China,2009,11(1):14-19.
    185. Thaler R, Brandstatter A, Meraner A, et al. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe:Ⅱ. AFLP analysis reflects human-aided local adaptation of a global pest species[J]. Molecular Phylogenetics and Evolution,2008,48: 838-849.
    186. Thomas CD, Singer MC. Scale-dependent evolution of specialization in a checkerspot butterfly:from individuals to metapopulations and ecotypes[M]. In Mopper S, Strauss S. Genetic structure and local adaptation in natural insect populations.1998, pp.343-374.New York: Chapman & Hall.
    187. Timm A E, Geertsema H, Warnich L. Population genetic structure of Grapholita molesta (Lepidoptera:Tortricidae) in South Africa[J]. Annals of the Entomological Society of America. 2008,101:197-203.
    188. Tsutsui N D, Suarez A V,Grosberg R K. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species[J]. Proceedings of the National Academy of Sciences USA.2003,100 (3):1078-1083.
    189. Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, and Zabeau M, AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23:4407-4414.
    190. van Der Wurff A W, Chan YL, van Straalen N M, Schouten J, TE-AFLP:combining rapidity and robustness in DNA fingerprinting[J]. Nucleic Acids Research,2000,28 (24):E105
    191. Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23:4407-4414.
    192. Vos P, Hogers R, Bleeker M, Rasmusson D C, Pillips R L. Plant breeding progress and genetic diversity from the novo variation and elevated epistasis[J]. Crop Science,1997, 37:303-310.
    193. Wallner W. Factors affecting insect population dynamics:differences between outbreak and non-outbreak species[J]. Annual Review of Entomology,1987,32:317-340.
    194. Walsh PJ. Site factors, predators and pine beauty moth mortality[M]. In:Watt AD, Leather SR, Hunter MD, Kidd NAC, editors. Population dynamics of forest insects:Andover, Intercept. 1990, pp.242-252.
    195. Wang B, Porter AH. An AFLP-Based Interspecific Linkage Map of Sympatric, Hybridizing Colias Butterflies[J]. Genetics,2004,168:215-225.
    196. Wang DS. Research on the regularity for the change of the population of Holcocerus hippophaecolus in Youyu County, Shuozhou City[J]. Sci-Tech Information Development& Economy,2007,17:170.
    197. Water ER, Schaal BA. No variation is detected in the chloroplast genome of Pinus torreyana[J]. Canadian Journal of Forest Reseach,1991,21:595-608.
    198. Watts PC, Rouquette JR, Saccheri U, Kemp SJ, Thompson KJ. Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale[J]. Molecular Ecology,2004,13:2931-2945.
    199. Wellenreuther M, Sanchez-Guillen RA, Cordero-Rivera A, Svensson El, Hansson B. Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly[J]. PLoS ONE,2011,6:e20440.
    200. Welsh J, Mcckelland M. Fingerprinting genomes using PCR with arbitrary primers. N[J]. Nucleic Acids Research,1990,18(24):7213-7218.
    201. Wei G, Shen Z R, Li Z H et al.. Migration and population genetics of the grain Macrosiphum miscanthi in relation to the geographic distance and gene flow[J]. Progress in Natural Science. 2005,15:1000-1004.
    202. White TCR. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants[J]. Oecologia,1984,63:90-105.
    203. Williams J G, Kubelik A R, Licak K J et al. DNA polymorphisms amplified by arbitrary prmers are useful as genetic markers[J]. Nucleic Acids Research,1990,18:6531-6535.
    204. Wright S. The interpretation of population structure by F-statistics with special regard to system of mating[J]. Evolution,1965,19(3):395-420.
    205. Xu M, Huaracha E, Korban SS, Development of sequence-Characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple[J]. Genome,2001,44(1):63-70.
    206. Yan SC, Sun J H, Hu YY, Defu Chi, Sun F. Response Test of Cone Flies (Strobilomyia spp.) to Dahurian Larch Cone Volatiles[J]. Entomologia Sinica,1999,6(4):329-335.
    207. You Y. The present situation of forest diseases and insect pests on Yulin and the control measures[J]. Shaanxi Forest Science and Technology,2000,4:1-3.
    208. Zabeau M, Vos P. Selective restriction fragment ampliation:a general method for DNA fingerprinting[J]. European patent Application,1993, No.0534858A1.
    209. Zakharov EV, Hellmann JJ. Genetic differentiation across a latitudinal gradient in two co-occurring butterfly species:revealing population differences in a context of climate change[J]. Molecular Ecology.2008,17(1):189-208.
    210. Zhang DX, Hewitt GM. Isolation of animal cellular total DNA[M]. In:Molecular Tools for Screening Biodiversity:Plant an Animals--Karp A,-ssac PG, Ingram DS, editors. London: Chapman & Hall.1998, pp.5-9.
    211.Zhong D, Pai A, Yan G. AFLP-Based Genetic Linkage Map for the Red Flour Beetle (Tribolium castaneum)[J]. Journal of Heredity,2004,95:53-61.
    212. Zhou Z, Sakaue D, Wu B, Hogetsu T. Genetic structure of populations of the pinewood nematode Bursaphelenchus xylophilus, the pathogen of pine wilt disease, between and within pine forests[J]. Phytopathology,2007,97:204-310.
    213. Zhivotovsky LA. Estimating population structure in diploids with multilocus dominant DNA markers[J]. Molecular Ecology,1999,8:907-913.
    214. Zong SX, Luo YQ, Xu ZC, Yao GL, Wang YY. Harm characteristics and population dynamics of two important borers in Hippophae rhamnoidea[J].Forest Pest and Disease,2006,25: 7-10.
    215. Zong SX, Wang ZZ Luo YQ, Zang J, Wen J. Mechanisms underlying host plant selection by Holcocerus hippophaecolus adults[J]. Zeitschrift fur naturforsch C-a journal of biosciences,2011, 66(11-12):622-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700