用户名: 密码: 验证码:
液力偶合器内部流动可视化与流速识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液力偶合器是主要依靠工作液体的动能来传递和实现能量变换的液力元件。液力偶合器作为传动元件广泛应用在车辆传动、大惯性设备的启动和大功率调速驱动方面。在国民经济众多领域中液力偶合器具有广泛的应用前景。液力偶合器内部的流动是一种极其复杂的非定常三维流动,其内部流动特性决定了液力偶合器的外部性能。加强液力偶合器内部流场的特性研究对于提高液力偶合器的工作性能,保证其运行安全性和可靠性具有极其重要的意义。随着现代科学技术的发展,流动可视化技术在研究流体机械内部流动方面取得了巨大的进展。通过流动可视化方法能够直观地观察液力偶合器内部流动全貌和流速特征,能够定性地分析液力偶合器内部流场分布并对流动参数进行识别与定量提取。同时,流动可视化与流动参数识别结果能够为液力偶合器内部流场的理论数值计算提供检验依据。为了逐步完善液力偶合器现代设计方法,必须通过流动可视化这一有力手段开展液力偶合器内部流动规律的研究,对其内部流速进行识别,进而深入研究液力偶合器的流场状态变化。粒子图像测速技术(Particle Image Velocimetry,简称PIV)是一种全新的无扰、瞬态、全流场速度测量的流动可视化方法。它不仅能够显示流体流场、流动的物理形态,而且能够提供瞬时全场流动的定量信息。由于PIV在流体机械流场测量方面具有很多优点,所以在液力元件内部流动可视化研究中,PIV成为主要的一种研究方法,并得到广泛的应用。
     本文结合国家高技术研究发展计划(863计划)专题课题“大型泵与风机液力调速节能关键技术研究”(2007AA05Z256),论文围绕液力偶合器内部流动可视化方法,基于粒子图像测速技术开展液力偶合器内部流动可视化和流速识别方法研究,通过数字图像处理技术,并结合单帧图像PTV算法和连续帧图像的PIV互相关算法,识别并提取了液力偶合器二维切面流场上的流动速度矢量,实现了液力偶合器内部二维切面流场可视化与流速的量化。本文的研究内容主要有以下几个方面:
     1.液力偶合器内部流动可视化
     基于粒子图像测速技术实现液力偶合器内部流动可视化。在设计工况(i=0.97)、中间工况(i=0.6)和制动工况(i=0)下,采集在不同粒子浓度下液力偶合器内部流动图像,可视化液力偶合器内部流场,直接观察到所要研究流动区域上的流动现象和流动特征。通过对采集图像进行图像预处理,有效改善并提高了图像质量,使流场中示踪粒子清晰易于识别,为后续流速识别与提取的研究工作奠定了基础。
     2.基于PTV技术的液力偶合器内部流速识别方法
     研究粒子跟踪测速方法识别并提取液力偶合器内部流速。在低粒子浓度下,基于PTV技术采集泵轮和涡轮内部二维切面流场图像,采用单帧三次曝光的方法记录单个示踪粒子在流场中三段不同长度的运动轨迹——箭头、箭身和箭尾。通过图像增强、阈值分割和图像锐化进行动态图像处理,有效识别并准确判断了液力偶合器内部流速方向,实现了流场可视化。研究了基于霍夫变换直线检测理论在识别流速方向上的具体应用,实现了全流场流速方向的自动识别。运用Canny边缘检测算法,并引入双阈值法有效地检测出粒子运动轨迹的单像素边缘,提取了粒子运动位移的大小,进而获得液力偶合器内部流速,实现了流速的量化。
     流速识别的准确性和精度取决于标定。制造高精度标定盘贴附在液力偶合器外壁表面,标定盘上均匀分布有直径2mm的圆孔。通过CCD相机采集圆孔图像,经过图像处理检测图像上圆孔直径大小,将该值与圆孔的实际直径大小进行比较,获得静态图像标定系数。当液力偶合器以一定转速旋转工作时,CCD相机采集标定盘上圆孔的运动轨迹,通过角点检测算法提取图像上圆孔运动轨迹长度大小,将该值与理论计算下圆孔的运动轨迹长度进行比较,获得动态图像标定系数。通过静态标定和动态标定,确定流动图像上每个像素的大小,进而计算获得液力偶合器内部流场的速度大小。
     3.基于PIV相关算法的液力偶合器内部流速识别方法
     研究粒子图像测速方法提取液力偶合器内部速度场。为了研究制动工况(i=0)下液力偶合器涡轮内部复杂流场,在高粒子浓度下,通过PIV技术采集其内部二维切面流场图像。通过研究图像连续帧的PIV互相关算法,基于图像匹配的原则,计算了涡轮径向切面二维流场速度的分布。通过比较图像上两点之间的距离大小与实际对应的距离大小,确定标定系数,获得标定后流场速度。研究并分析了流场中错误速度矢量产生的原因,基于流场误矢量的修正准则,剔除了错误速度矢量,优化了PIV互相关计算后的速度场结果,实现了液力偶合器流场可视化与流速的量化,获得流速分布图谱,并在此基础上详细分析了涡轮内部流场结构特征与分布规律。
     4.试验测试与仿真计算对比分析
     对试验测试结果与基于CFD仿真计算的结果进行对比分析。利用UG建立液力偶合器三维计算模型,对模型进行一定的简化,抽取液力偶合器周期流道模型以进行内部流场分析。将流道模型导入到ICEM-CFD软件中,利用映射法对泵轮和涡轮流道模型进行规则的四面体网格划分。设置湍流模型为标准k-ε模型,速度-压力耦合算法为SIMPLE算法,离散格式为一阶迎风格式,使用标准的壁面函数。通过滑移网格技术来模拟泵轮和涡轮之间的相对运动,计算了液力偶合器三维流场速度分布,截取泵轮和涡轮径向、轴向剖面,剖面的位置与试验测试中激光片光的位置保持一致。通过PIV试验测试结果与CFD仿真计算结果进行对比分析,结果表明速度场分布保持一致,流速值大小相对接近,理论与试验结果达到较好的统一。详细分析了PIV试验测试过程中误差产生的原因,并给出了相应的解决方案。
Hydrodynamic coupling is hydrodynamic element which is depend on thekinetic energy of work fluid to transfer and achieve the power transmission.Hydrodynamic couplings are widely employed as transmission elements in vehicletransmission, inertial equipment start-up and high-power speed drive. They havebroad application prospects in many fields of national economy. The internal flowfield of hydrodynamic coupling is extremely complex three-dimensional unsteadyflow. The external performance of hydrodynamic components is determined by theirinternal flow characteristics. Strengthening the internal flow characteristics researchon hydrodynamic coupling has great important meanings to improve its workperformance and ensure its operational safety and reliability. With the development ofmodern science and technology, a lot of important achievements have been made inthe study of the internal flow of fluid machines based on flow visualizationtechniques. The whole internal flow of hydrodynamic coupling and the characteristicsof flow velocity can be directly observed by the method of flow visualization. On thisbasis, the internal flow distribution of hydrodynamic coupling can be qualitativeanalyzed, the flow parameters of flow field can be identificated and quantitativeextracted. At the same time, the results of flow visualization and recognition of flowparameters can be provided to verify the theoretical numerical calculation of internalflow field in hydrodynamic coupling. In order to consummate the modern designmethod of hydrodynamic coupling step-by-step, as a powerful means, the study ofinternal flow law must be carried out by flow visualization. Particle ImageVelocimetry (PIV) is a new method of flow visualization. Its characteristics are non-invasive, transient and full field measurement with no interference. It can notonly show such as flow field and the physical form of the flow, but also providequantitative informations of the instantaneous flow field. Because there are manyadvantages to measure the flow field in fluid machines, PIV technology is becominga main flow visualization method in the study of internal flow in hydrodynamiccomponent.
     This paper associates with the special subject “Key Technological Research onHydrodynamic Variable Speed and Saving Energy of Large Pump and Fan” of theNational High-tech Research Development Plan (863Plan). This thesis is mainlyconcerned with the internal flow visualization method of hydrodynamiccoupling.Study on visualization of internal flow in hydrodynamic coupling andrecognition method of flow velocity are carried out based on Particle ImageVelocimetry technology. Velocity vector on two-dimensional crosssection ofhydrodynamic coupling is identified and extracted by digital image processingtechnology. Single image PTV algorithm and consecutive frames of PIVcross-correlation algorithm are study deeply. Visualization of internal flow field inhydrodynamic coupling and quantitative measurement of flow velocity ontwo-dimensional crosssection are achieved. This paper is mainly about the followingaspects:
     1. Internal flow visualization of hydrodynamic couplnig
     The internal flow visualization of hydrodynamic couplnig is achieved based onParticle Image Velocimetry (PIV). Three typical working conditions ofhydrodynamic coupling are chosen as the measurement conditions. Whenhydrodynamic couplnig is working on rated condition (i=0.97), middle workingcondition (i=0.6) and braking condition (i=0), flow images with different particleconcentrations of hydrodynamic couplnig are recorded. Visualization of the internalflow field in hydrodynamic couplnig is achieved. The flow phenomena and flowcharacteristics on the flow area are observed directly. The quality of flow images areimproved and enhanced effectively through image preprocessing, tracer particles inflow field become much clearer and they are easily identified. All of these laid afoundation for recognition and extraction of flow velocity.
     2. Recognition method of flow velocity in hydrodynamic coupling based onPTV technology
     The internal flow velocity of hydrodynamic coupling are identified and extractedbased on the study on Particle Tracking Velocimetry (PTV) method. When theconcentration of particles is low, flow images on two-dimensional crosssection ofpumb and turbine are recorded by PTV technology. Triple exposure technique onsingle frame is used to record three different length motion track of particles, they arecalled arrow head, arrow body and arrow tail. Motion trajectories of particles becomemuch clearer and easier to identify through dynamic image processing, includingimage enhancement, threshold segmentation and image sharpening. The flowdirections of hydrodynamic coupling are determined accurately and directly, flowvisualization becomes true. Hough transform straight line detection theory is studiedto identity flow velocity direction. Flow velocity directions of the whole flow fieldare identified automatically by this method. Particle motion trajectory is extracted byedge detection algorithm, double threshold method is used to detect single-pixel edgeof particle trajectories efficiently. The displacements of particles are extracteddirectly, then the internal flow velocimetry is acquired, quantitative measurement ofvelocity is achieved.
     The accuracy and precision of flow velocity recognition are depeond oncalibration. High-precision calibration plate is manufactured and it is attached to theouter wall surface of hydrodynamic coupling. Holes of2mm diameter are distributedevenly on the calibration plate. Images of holes are recorded by CCD camera, andthen pixel size of holes are detected after image processing, the sizes of them arecompared with the actual diameters of holes. Static image calibration coefficient isacquired. When hydrodynamic coupling is working on a certain rotating speed, themotion trajectories of holes on the calibration plate are record by CCD camera. Thelength of the trajectories are extracted through the corner detection, the values arecompared with the length of the trajectories by theoretical calculation. Dynamicimage calibration coefficient is acquired. The size of each pixel in the images isdetermined through static calibration and dynamic calibration, then the internal flowvelocity are extracted.
     3. Recognition method of flow velocity in hydrodynamic coupling based onPIV correlation algorithm
     Internal flow field of hydrodynamic coupling is extracted based on ParticleImage Velocimetry. In order to study the complex unsteady flow characteristics inturbine of hydrodynamic coupling on braking condition (i=0), when the concentrationof particles is high, the flow images of internal flow field are recorded by PIVtechnology. Two-dimensional flow velocity distribution on radial section of turbine isextracted based on the principle of image matching and PIV cross-correlationalgorithm of two continuous images. Two points of image are chosen and the distancebetween them is calculated. Then the actual distance between the two pionts ofhydrodynamic coupling model is compared with the theoretical calculated value. Onthis basis, calibration coefficient is acquired, flow field velocity after calibration areobtained. Reasons of error velocity vector in the flow field are studied and analyzed.Spurious vectors are removed based on correction criteria of error vector. The resultsof the flow field are optimized. Visualization and quantitative measurement ofinternal flow field in hydrodynamic coupling are achieved. A high-precision flowvelocity distribution map is obtained. Flow structure and velocity distribution ofinternal flow field in turbine on the braking condition are analyzed in detail.
     4. Comparative analysis between experiment and simulation
     Three-dimensional model of hydrodynamic coupling is built by UG(Unigraphics NX). The internal flow channel model of hydrodynamic coupling isextracted for CFD analysis after simplifying the model. The extracted flow channelmodel is imported into ICEM-CFD. The regular hexahedral mesh of flow channelmodel is obtained with reflection method. The sliding mesh is chosen for simulationof relative movement between pump wheel and turbine wheel. The turbulent model isset as standard k-ε model in FLUENT, SIMPLE velocity-pressure coupling algorithm,the first order upwind scheme and standard wall function are chosen for thecalculation. Three-dimensional flow velocity distribution is calculated by CFDsimulation, radial cross-section and axial cross-section of pump wheel and turbinewheel are selected, the position of them are the same as the experiment's. Flowvelocity distribution of CFD simulation is compared with the results of PIVexperiment, it shows good agreement between them. The reliability of simulationmethod and the accuracy of calculated results are verified by PIV experimental results.The reasons of error in PIV experiment are analyzed in detail and some corresponding solutions are given.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]刘应诚,杨乃乔.液力偶合器应用与节能技术[M].北京:化学工业出版社,2006.
    [3]刘应诚.液力偶合器实用手册[M].北京:化学工业出版社,2008.
    [4]杨贵华.液力传动节能装置:液力偶合器、液黏调速离合器[M].北京:化学工业出版社,2010.
    [5]马文星,何延东,刘春宝.液力传动研究现状分析与展望[J].农业机械学报,2008,39(7):51-55.
    [6]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [7]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [8] Fiebig M, Mitra N K, Kost A N. Numerical Investigation of Unsteady Incompressible3-Dflow in Hydrodynamic Couplings[C]//Proc.1st European Comp. Fluid conference.Brussels:1992.
    [9]马文星,成凯,高秀华.液力传动元件内部流场测量的激光切面法[J].农业工程学报,1997(6):144-147.
    [10]褚亚旭,刘春宝,马文星.液力耦合器三维瞬态流场大涡模拟与特性预测[J].农业机械学报,2008,39(10):160-173.
    [11]杨乃乔.液力传动的今昔及对节能事业的贡献[J].液压气动与密封.2010,31(2):38-40.
    [12]杨乃乔.液力偶合器的新发展[J].液压气动与密封.2010,30(9):55-58.
    [13]刘应诚.大力发展液力传动工业为国家节能事业作贡献[J].液压气动与密封.2010,30(5):3-5.
    [14]中国液压气动密封件工业协会液力专业分会.液力传动应用与节能论文集[C].2010.
    [15] Lakshminarayana B. An Assessment of Computational Fluid Dynamic Techniques in theAnalysis and Design of Turbomachinery-The1990Freeman Scholar Lecture[J].Journal ofFluids Engineering,1991,113:315-352.
    [16]蔡兆麟,罗晟.用有限体积法计算叶轮机械内三维粘性流动[J].华中理工大学学报,2000,28(9):72-75.
    [17]侯树强,王灿星,林建忠.叶轮机械内部流场数值模拟研究综述[J].流体机械,2005,33(5):30-33.
    [18] Chima Rodrick V, Yokota Jeffrey W. Numerical Analysis of Three Dimensional ViscousInternal Flows[J]. AIAA Journal,1990,28(5):798-806.
    [19] Chemobrovkin A, Lakshminarayana B. Development and Validation of Navier StokesProcedure for Turbomachinery Unsteady Flow[J]. AIAA Journal,1999,37(5):557-563.
    [20] Van Doormaal J P, Raithby G D. Enhancement of the SIMPLE Method for PredictingIncompressible Fluid Flows [J]. Numerical Heat Transfer, Part B:Fundamentals:AnInternational Journal of Computation and Methodology,1993,24(1):147-163.
    [21] Ruben S, Stephane Z. Direct Numerical Simulation of Free-surface and Interfacial Flow[J].Annu. Rev. Fluid Mech.,1999,31:567-603.
    [22] Goto A, Nohmi M, Sakurai T. Hydrodynamic Design System of for Pumps Based on3-DCAD, CFD and Inverse Design Method[J]. Journal of Fluids Engineering,2002,124(2):329-335.
    [23] Kost A, Bai L, Mitra N K. Calculation Procedure for Unsteady Incompressible3D Flows inArbitrarily Shaped Domains[C]. Proc.9th GAMM Conference on Numerical Methods inFluid Dynamic, Notes on Numerical Fluid Mechanics35, Braunschweig:Vieweg,1992,269-278.
    [24] Kost A, Mitra N K, Fiebig M. Computation of Unsteady3D Flow and Torque Transmissionin Hydrodynamic Couplings[C]. International Gas Turbine and Aeroengine Congress andExposition,1994-GT-70.
    [25] Bai L, Blomerius H, Mitra N K. Numerical Simulation of Unsteady Incompressible3DTurbulent Flow in Fluid Coupling with Inclined Blades[C]//presented in ASME-WinterAnnual Meeting, Chicago:published in DSC,1994,55(2):609-616.
    [26] Bai L, Fiebig M, Mitra N K. Numerical Analysis of Turbulent Flow in Fluid Couplings[J].Journal of Fluids Engineering,1997,119(3):569-576.
    [27] Huitenga H, Mitra N K. Improving Startup Behavior of Fluid Couplings ThroughModification of Runner Geometry: Part I—Fluid Flow Analysis and ProposedImprovement[J]. Journal of Fluids Engineering,2000,122(4):683-688.
    [28] Huitenga H, Mitra N K. Improving Startup Behavior of Fluid Couplings ThroughModification of Runner Geometry: Part II—Modification of Runner Geometry and ItsEffects on the Operation Characteristics[J]. Journal of Fluids Engineering,2000,122(4):689-693.
    [29] Mckinnon C N, Brennen D, Brennen C E. Hydraulic Analysis of a Reversible FluidCoupling[J]. ASME Journal of Fluids Engineering,2001,123(2):249-255.
    [30]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算[C].第四届全国流体传动及控制学术会议.2006,659-664.
    [31]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [32]王峰.基于流场分析的液力减速器制动性能研究[D].北京:北京理工大学,博士论文,2007.
    [33]陈见.基于三维流动计算的液力减速器性能仿真研究[D].武汉:武汉理工大学,硕士论文,2008.
    [34]杨威嵬,吴凡,虞俊.液力偶合器流场的技术仿真[J].机械设计与研究,2009,25(2):79-82.
    [35]何延东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学,博士论文,2009.
    [36]宋彬,吕建刚,郭劭琰.液力偶合器制动工况流场仿真与特性分析[J].机械设计与研究,2011,27(1):26-30.
    [37]盛森芝,徐月亭,袁辉靖.日新月异的现代流动测量技术.内部材料,2000.
    [38]陈富新,罗鹏,巴德纯.流动可视化实验技术的最新进展及应用[J].风机技术,2005(4):43-46.
    [39]陈海生,谭春青.叶轮机械内部流动研究进展[J].机械工程学报,2007,43(2):1-12.
    [40]宫武旗.几种特种测试技术在流体机械内流场测试中的应用[J].燃气涡轮试验与研究,2004,17(3):51-55.
    [41]张玮,王元,徐忠.叶轮机械内部流动测量及动静相互作用的实验研究进展[J].流体机械,2001,29(8):6-10.
    [42]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002.
    [43] Nicholas Pedersen, Poul S. Flow in a Centrifugal Pump Impeller at Design and Off-designConditions-Part: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV)Measurements[J]. Journal of Fluids Engineering,2003,125(1):61-72.
    [44]宫武旗,黄淑娟,徐忠.现代流动测试技术在流体机械流动分析中的应用[J].通用机械,2003(7):53-54.
    [45]沈熊.激光多普勒测速技术及应用[M].北京:清华大学出版社,2004.
    [46]王智迅,邵石伟,朱庭栋.二维激光多普勒测速仪用于测量旋转机械的内部流动[J].力学学报,1987,19(2):118-123.
    [47] Krain H, Hoffmann W. Verification of an Impeller Design by Laser Measurements and3D-Viscous Flow Calculations[J]. ASME,1989,89-GT-159.
    [48] Hathaway D H. Doppler Measurements of the Sun's Meridional Flow[J]. The AstrophysicalJournal,1996(460):1027-1033.
    [49]许宏庆,杨京龙,刘欣.应用PIV技术测量二维瞬时流场[J].空气动力学学报,1993,11(4):409-414.
    [50] Akin O, Rockwell D. Flow Structure in a Radial Flow Pumping System usingHigh-image-density Particle Image Velocimetry[J]. Journal of Fluids Engineering,1994,116(3):538-544.
    [51] Shepherd I C, La Fontaine R F. Mapping the velocity field in a centrifugal fan using particleimage velocimetry[J]. Journal of Wind Engineering and Industrial Aerodynamics,1993,50(11):373-381.
    [52] Oldenburg M, Pap E. Velocity measurement in the impeller and in the volume of acentrifugal pump by particle image displacement velocity[J]. Eighth InternationalSymposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal,1996,pp.8.2.1-8.2.5.
    [53]马文星.流动可视化技术在液力传动中的应用[J].液建筑机械,1993(4):22-26.
    [54] Akio Numazawa. An Experimental Analysis of Fluid Flow in a Torque converter.//SAE830571.
    [55]内山恭一.可変油量形流体継手の回転速度変動と内部流れの解明.機論(B编),1978,46(405):893-901.
    [56] Luo J, Lakshminarayana B. Three-dimensional Navier-Stokes Analysis of Turbine Rotor andTip-leakage Flow Field[J]. ASME,1997, No.97-GT-421.
    [57] Dong Y, Lakshminarayana B. Experimental Investigation of the Flow Field in an AutomativeTorque Converter stator[J]. Journal of Fluids Engineering,1999,121(4):788-797.
    [58] Dong Y, Lakshminarayana B. Rotating Probe Measurements of the Pump Passage Flow Fieldin an Automotive Torque Converter[J]. Journal of Fluids Engineering,2001,123(1):81-91.
    [59] Christen M, Kernchen R. Fluid Velocity in Constant Fill Turbo Couplings:MeasurementsUsing Laser Doppler Velocimetry[J]. Antriebstechnik,2001(40):71-74.
    [60]久保贤明,江尻英治.LDVトルクコンバ—タの内部流れ计测[C].日本机械学会论文集(B编),1998,64(626):3198-3204.
    [61]朱经昌,过学迅.用激光多普勒流速计测量液力变矩器流场的速度分布[J].工程机械,1990(3):23-26.
    [62]褚亚旭.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学,博士论文,2006.
    [63]才委,马文星,褚亚旭.液力变矩器导轮流场数值模拟与试验[J].农业机械学报,2007,38(8):11-14.
    [64]褚亚旭,马文星,王清松.液力传动元件流动图像判读系统研究[J].机床与液压,2006.
    [65] Adrian R J. Twenty Years of Particle Image Velocimetry[J]. Experiments in Fluids,2005,39(2):159-169.
    [66] LIU Ying-zheng, CAO Zhao-min. Recrnt Progress on Particle Image Velocimetry inChina[J]. Journal of Hydrodynamics, Ser.B,2006,18(1):11-19.
    [67] Wernet M P. Development of Digital Particle Image Velocimetry for Use inTurbomachinery[J]. Experiments in Fluids,2000,28(2):97-115.
    [68] Wernet M P. Development of Digital Particle Image Velocimetry for Use inTurbomachinery[J]. Experiments in Fluids,2000,28(2):97-115.
    [69] Adrian R J. Particle Image Velocimetry[M]. A Particle Guide, second Edition, Springer,2007.
    [70] Adrian R J. Particle Imaging Techniques for Experimental Fluid Mechanics[J]. AnnualReview of Fluid Mechanics,1991,23:261-304.
    [71]唐洪武等.现代流动测试技术及应用[M].北京:科学出版社,2009.
    [72]段俐,康琦.PTV技术的粒子图像处理方法[J].北京航空航天大学学报,2000,26(1):79-82.
    [73]靳斌.一种利用示踪粒子群体运动特征的PTV方法[J].光学技术,2000,26(1):16-18.
    [74] Adel S, Riethmuller M L. Extension of PIV to Super Resolution Using PTV[J].Measurement Science Technology,2001,12(9):1398-1403.
    [75] Adel Stitou, Riethmuller M L. Extension of PIV to Super Resolution Using PTV[J].Measurement Science Technology,2001,12(9):1398-1403.
    [76]褚亚旭,崔志军,马文星.液力变矩器内部流场的激光切面法初步测量[J].液压与气动,2005(3):72-74.
    [77]方杰,齐迎春,马文星.液力变矩器流场的数值模拟与分析[J].同济大学学报:自然科学版,2005,33(5):673-677.
    [78]王清松.液力传动元件流场实验及流动图像判读系统研究[D].长春:吉林大学,硕士论文,2004.
    [79]禹明忠.PTV技术和颗粒三维运动规律的研究[D].北京:清华大学,博士学位论文,2002.
    [80]许联锋,陈刚.粒子图像测速技术研究进展[J].力学进展,2003,33(4):533-540.
    [81]陈俊达.数字散斑相关方法理论和应用研究[D].北京:清华大学,博士学位论文,2007.
    [82] Cenedese A, Paglialunga A. Digital Direct Analysis of a Multiexposed Photograph in PIV[J].Experiments in Fluids,1990,29(1):273-280.
    [83]谭卫军.旋转棱镜在主动式几何光学测量法中的应用[J].光学精密工程,1997,5(4):112-118.
    [84]宋哲,刘立人,周煜.非常偏振光在单轴晶体表面的反射-透射研究[J].光学学报,2004,24(12):1701-1705.
    [85] Prasad A K, Adrian R J, Landreth C C. Effect of Resolution on the Speed and Accuracy ofParticle Image Velocity Interrogation[J]. Experiments in Fluids,1992(13):105-116.
    [86] Peter W H, Ranson W F. Digtial Imaging Techniques on Experimental Stress Analysis[J].Opt.Eng.1982,21(3):427-431.
    [87] Motoo Kimura, George H. The Stepping Stone Model of Population Structure and theDecrease of Genetic Correlation with Distance[J]. Genetics,1964,49(4):561-576.
    [88] Willert C E, Gharib M. Digital Particle Image Velocimetry[J]. Experiments in Fluids,1991,10(4):181-193.
    [89]董守平.拓扑图论在PIV粒子曝光光斑匹配算法中的应用[C].第四届全国实验流体力学学术会议论文集.中国力学学会,北京,1993:320-327.
    [90] Huang H T, Fielder H F, Wang J J.Limitation and Improvement of PIV, Part I:Limitation ofConventional Techniques due to Deformation of Particle Image Patterns[J]. Experiments inFluids,1993(a),15:168-174.
    [91] Huang H T, Fielder H F, Wang J J. Limitation and Improvement of PIV, Ppart II: ParticleImage Distortion, a Novel Technique[J]. Experiments in Fluids,1993(b),15:263-273.
    [92] Tokumaru P T, Dimotakis P E. Image correlation velocimetry[J]. Experiments in Fluids,1995,19(1):1-15.
    [93]汪敏,胡小方,伍小平.物体内部三维位移场分析的数字图像相关方法[J].物理学报,2006,55(10):5135-5139.
    [94]高建新,周辛庚.数字散斑相关方法的原理与应用[J].力学学报,1995,27(6):724-731.
    [95] Yasunori K, Toshio K, TETSUO S. A Study on Internal Flow Field of Automotive TorqueConverter Three-dimensional Flow Analysis Around a Stator Cascade of Automotive TorqueConverter by Using PIV and CT Techniques[J]. JSAE Review,2001,22(4):559-564.
    [96] Yasunori K, Toshio K, TETSUO S. PIV Measurement on the Flow Field Around a StatorCascade of Automotive Torque Converter[C].//SAE,2001:01-0868.
    [97]马广云,申功忻.PIV测速技术实验参数分析[J].空气动力学学报,1995,13(3):274-282.
    [98]许洪元,焦传国.两相流研究中的PIV实验技术图像分析与处理[J].水泵技术,1997.
    [99]刘宝杰,严明,刘胤.叶轮机械复杂流动的PIV应用研究[C].中国工程热物理学会热机气动热力学学术会议中国工程热物理学会热机气动热力学学术会议论文集,2001.
    [100]禹明忠,王兴奎.PIV流场量测中图像变形的修正[J].泥沙研究,2001(5):59-62.
    [101]王灿星,林建忠,山本富士夫.二维PIV图像处理算法[J].水动力学研究与进展,2001,16(4):399-404.
    [102]王灿星,林建忠,山本富士夫.一种基于互相关算法的三维PIV图像处理方法[J].水动力学研究与进展,2002,17(2):162-173.
    [103] Baldassarre A, De Lucia M, Nesi P. A Vision-Based Particle Tracking Velocimetry[J].Real-Time Imaging,2001,7(2):145-158.
    [104]米本和也.CCD与CMOS图像传感器基础与应用[M].北京:北京科学出版社,2006.
    [105]李国宁,刘妍妍,全龙旭.动态目标跟踪的面阵CCD成像系统[J].学精密工程,2008,16(3):558-563.
    [106]许秀真,李自田,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):343-347.
    [107]项勤建.线阵CCD参数测试方法研究与系统的建立[D].成都:电子科技大学,硕士论文,2009.
    [108]张广军.机器视觉[M].北京:科学出版社,2005.
    [109]胡国元,何平安,王宝龙.视觉测量中的相机标定问题[J].光学与光电技术,2004,2(3):9-12.
    [110]高俊钗,雷志勇,王泽民.高精度测量的相机标定[J].电光与控制,2011,18(2):93-96.
    [111] SONG Limei, WANG Mingping. High Precision Camera Calibration in VisionMeasurement[J]. Optics&Laser Technology,2007,39(7):1413-1420.
    [112]高宁.光学三坐标系统标定的研究[D].哈尔滨:哈尔滨工业大学,硕士论文,2009.
    [113]李鹏,王军宁.摄像机标定方法综述[J].山西电子科技,2007(4):77-79.
    [114]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003,29(1):110-124.
    [115]于清海,王辉,马文星.液力变矩器内部流场实验示踪粒子的选取[J].实验技术与管理,2004,21(2):8-15.
    [116]严敬,杨小林,邓万权.示踪粒子跟随性讨论[J].农业机械学报,2005,36(6):54-56.
    [117]阮驰,孙传东.水流场PIV测试系统示踪粒子特性研究[J].实验流体力学,2006,20(2):72-77.
    [118]赵宇.PIV测试中示踪粒子性能的研究[J].大连:大连理工大学,硕士学位论文,2004.
    [119] Odar F, Hamilton W S. Force on a Sphere Aeeelerating in a Viscous Fluid[J]. Journal ofFluid Mechanics,1964,18:302-314.
    [120] Huber E, Frost M. Light Scattering by Small Particles[J]. Water Supply,1998,47(2):87-94.
    [121]张伟,路远,杜石明.球形粒子Mie散射特性分析[J].光学技术,2010,36(6):936-939.
    [122] Adrian R J. Scattering Particle Characteristics and Their Effect on Pulsed LaserMeasurements of Fluid Flow: Speckle Velocimetry vs. Particle Image Velocimetry [J]. ApplOpt,1984,23:1690-1691
    [123] MELLING A. Tracer Particles and Seeding for Particle Image Veloeimetry[J]. Meas.Sci.Technol,1997,8(12):1406-1416.
    [124] Mark K, David R, Alex L. Real-time Image Processing for Particle Tracking Velocimetry[J].Experiments in Fluids,2010,48(1):105-110.
    [125] Xiong W, Hilgers S, Merzkirch W. A Video-based PIV System with Reduced Time Intervalbetween Exposures[J]. Flow Visualization Image Processing,1996,2(4):343-350.
    [126] Cowen E A, Monismith S G. A Hybrid Digital Particle Tracking Velocimetry Technique[J].Experiments in Fluids,1997,22(3):199-211.
    [127] Mei R. Velocity Fdelity of Flow Tracer Particles[J]. Experiments in Fluids,1996,22(1):1-13.
    [128] Tedeschi G, Gouin H, Elena M. Motion of Tracer Particles in Supersonic Flows [J].Experiments in Fluids,1999,26(4):288-296.
    [129]龚声蓉,刘纯平,王强.数字图像处理与分析[M].北京:清华大学出版社,2006.
    [130] Gonzalez R C, Woods R E. Digital Image Processing[M]. Prentice Hall, Upper Saddle River,NJ,2002.
    [131] Rothlübbers C, Scheffler T, Orglmeister R, et al. Particle Tracking VelocimetryMeasurements in a Radial Pump with Particle Pair Detection Using the Hough Transform[C].in Proc.8th Int. Symp. Applications of Laser Techniques to Fluid echanics, Lisbon, Portugal,1996, pp:8.6.1-8.6.2.
    [132]黄桂平.圆形标志中心子像素定位方法的研究与实现[J].武汉大学学报·信息科学版,2005,30(5):388-391.
    [133]罗军辉,冯平.Matlab7.0在图像处理中的应用[M].北京:机械工业出版社,2005.
    [134] Mokhtarian F, Suomela R. Robust Image Corner Detection Through Curvature ScaleSpace[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(12):1376-1382.
    [135] Zhiqiang Zheng, Han Wang, Eam Khwang Teoh. Analysis of Gray Level Corner Detection[J].Pattern Recognition Letters,1999,20(2):149-162.
    [136]李涛.车辆液力辅助起步与制动系统偶合器内流场特性研究[D].长春:吉林大学,硕士论文,2011.
    [137]郭强.PIV图像处理技术在叶轮机械中的应用及开发[D].上海:上海交通大学,硕士论文,2004.
    [138] Tait S, Brian K. Digital Volume Correlation Including Rotational Degrees of FreedomDuring Minimization[J]. Experimental Mechanics,2002,42(3):272-278.
    [139] Chu T C, Peters W H, Ranson W F. Application of Digital Correlation Methods to RigidBody Mechanics[J]. Optical Engineering.1983,22(12):738-742.
    [140]王延珽,张永明,廖光煊.数字粒子图像速度测量原理与实现方法[J].中国科学技术大学学报,2000,30(3):302-306.
    [141] Marzouk Y M, Hart D P. Asymmetric Autocorrelation Function to Resolve DirectionalAmbiguity in PIV Images[J]. Experiments in Fluids,1998,25(5/6):401-408.
    [142] Westerweel J. Fundamentals of Digital Particle Image Velocimetry[J]. Measurement Scienceand Technology,1997,8(12):1379-1392.
    [143] Keane R D, Adrian R J. Theory of Cross-correlation Analysis of PIV Images[J]. Appl SciRes,1992,49(3):191-215.
    [144]孙鹤泉,康海贵,李广伟.基于图像互相关的PIV技术及其频域实现[J].中国海洋平台,2002,17(6):1-4.
    [145] Willert CE, Gharib M. Digital Particle Image Velocimetry[J]. Experiments in Fluids,1991,10(4):181-193.
    [146]何旭,高希彦,梁桂华.基于互相关算法的粒子图像测速技术[J].大连理工大学学报,2003,43(2):164-167.
    [147] Lourenco L M. Some Comments on Particle Image Displacement Velocimetry[J].vonKarman Institute for Fluid Dynamics.Particle Image Displacement Velocimetry,Rhode-St-Gen`ese (Belgium),1988.
    [148] Sinha S K. Improving the Accuracy and Resolution of Particle Image or Laser SpeckleVelocimetry[J]. Experiments in Fluids,1988,6(1):67-68.
    [149] Westerweel J. Theoretical Analysis of The Measurement Precision in Particle ImageVelocimetry[J]. Experiments in Fluids,2000,29(1):S003-S012.
    [150]吴龙华,严忠民,唐洪武.DPIV相关分析中相关窗口大小的确定[J].水科学进展,2002,13(5):594-598.
    [151]魏润杰,申功忻,丁汉泉.近距离DPIV粒子成像分析[J].北京航空航天大学学报,2001,27(6):662-665.
    [152] Pan B, Xie H M, Xu B Q. Performance of Subpixel Registration Algorithms in Digital ImageCorrelation[J]. Meas.Sci. Technol,2006.17(6):1615-1621.
    [153] Marxen M, Sullivan P E, Loewen M R,et al. Comparison of Gaussian Particle CentreEstimators and the Achievable Measurement Density for Particle Tracking Velocimetry[J].Experiments in Fluids,2000,29(2):145-153.
    [154] Takehara K, Etoh T. A Study on Particle Identification in PTV-particle Mask CorrelationMethod[J]. Journal of Visualization,1999,1(3):313-323.
    [155] Brun K, Flack R D, Gruver J K. Laser Velocimetry Measurements in the Pump of anAutomotive Torque Converter. Part II-Unsteady Measurements[J]. J.Fluids Eng.1996,118(3):570-577.
    [156] Gruver J K, Flack R D, Brun K. Laser Velocimetry Measurements in the Pump of anAutomotive Torque Converter. Part I-Average Measurements[J]. J.Fluids Eng.1996,118(3):562-569.
    [157]刘春波.流场可视化及DPIV图像处理[D].秦皇岛:燕山大学,硕士学位论文,2004.
    [158] Scarano F, Riethmuller M L. Advances in Iterative Multigrid PIV Image Processing[J].Experiments in Fluids,2000,29(Suppl S):51-60.
    [159] Jeong J, Hussain F. On the Identification of a Vortex[J]. Fluid Mech,1995,285:69-94.
    [160] Va′clav K. Vortex identification: New requirements and limitations[J]. Heat and Fluid Flow,2007,28:638-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700