用户名: 密码: 验证码:
基于锁相红外热像理论的无损检测及疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料网格加筋结构是目前认为有前景的新一代先进复合材料构型,它综合了新材料技术和新结构设计的优点,以可设计性和多种优良性能而得到广泛应用。然而,复合材料网格加筋结构在研制、生产、应用的过程中,会不可预知的产生各类缺陷,这将严重限制其使用性能和应用前景。疲劳破坏是飞机、船舶、汽车以及建筑物等重要的失效形式之一,疲劳破坏经常发生在低应力水平下,而且具有突然性和不可预知性,因此并未得到人们的足够重视。鉴于以上因素,本研究基于锁相红外热成像理论对含不同缺陷类型的复合材料网格加筋结构试件进行了无损检测,并对含缺陷的疲劳试件和焊接接头进行了实时健康检测,在此基础上进而得到了其相关疲劳性能指标。本文的研究工作是基于国家自然科学基金“先进复合材料网格结构共固化工艺与软模成型参数优化分析”(N0.10702012)、工业装备分析国家重点实验室自主研究课题“基于热像法测定金属疲劳特性的实验与机理研究”(S08204)以及国家自然科学基金“基于能量耗散与结构损伤的金属疲劳机理研究与工程应用”(N0.11072045)展开的。本文的主要研究工作如下:
     1.基于锁相红外热成像理论的复合材料网格加筋结构的无损检测
     复合材料网格加筋结构由于其自身优良性能得到了广泛的应用,但常规检测方法并不能有效地对其可能存在的各种缺陷进行无损检测,这样就限制了它的适用范围和应用领域。本文基于锁相红外热成像理论,对其可能存在的夹杂、开裂、脱粘等缺陷进行了无损检测,并用法国Cedip公司开发的红外热像系统进行了验证。讨论了检测时选取的加载频率、加载强度等参数对检测结果的影响,并结合拉伸力学实验,对帽型加筋复合材料层合板进行检测,实现了未知缺陷的锁相红外热成像无损检测。
     2.含缺陷疲劳试件的无损检测及其疲劳性能分析
     疲劳破坏大量存在于工业生产和人们的日常生活中,疲劳事故的发生危险性和破坏性都很大,然而对疲劳情况进行实时监测并预知其发生是很困难的。本文对含不同缺陷类型的疲劳试样进行了光激励加载下的无损检测,讨论了检测频率、缺陷面积等因素和检测精度之间的关系,指出检测频率是检测成功与否的关键因素。确定了热弹性应力集中系数并分析了加载应力幅对其影响,通过Lung法快速测定了构件的疲劳极限,并讨论了缺陷深度对疲劳极限的影响。
     3.基于定量热像法的焊接构件疲劳性能评估
     焊接构件疲劳性能评估是焊接结构设计需要考虑的重要环节,焊缝区存在应力集中和残余应力是焊接结构最危险的区域,目前对焊接结构寿命预测要求准确可靠,需要发展新的有效的评估体系以解决传统方法的不足。作者基于焊接构件的实际工作环境,考虑恒定平均应力的影响,建立了快速预测疲劳参数和残余寿命的模型。通过红外热像仪监测焊接接头表面局部热点的变化,定性分析了损伤演变过程,克服了传统疲劳试验方法的局限性,实现了实时健康检测。
The grid stiffened composite structure is the next generation of advanced composite infrastructure with very promising future. Combining advantages of new material techniques and new structure design, it is widely used in industries due of its designable ability and various other advanced features. However, during design, production and implementation processes, unpredictable defects could be generated in grid stiffened composite structures, which seriously restrict their practical applications and the future of implementation. Fatigue failure is one of the most important failure modes for aircrafts, ships, motors and buildings. Fatigue failure often occurs in low stress level and it is unpredictable. Thus, it doesn't capture as much attention as it should. In this paper, based on lock-in infrared imaging theory, the non-destructive testing is applied to grid stiffened composite specimen with different kinds of defects. We also performed real time detection to fatigued specimen with defects and welded joint. The parameters of fatigue performance are also obtained. The study is supported by National Natural Science Foundation of China (No.10702012), a independent research project State Key Laboratory of Structural Analysis for Industrial Equipment (S08204) and National Natural Science Foundation of China (No.11072045). Major study of this thesis is as follows.
     1. Non-destructive testing on grid stiffened composite structure specimen based on Lock-in infrared Imaging theory
     Grid stiffened composite structure is widely used because of its outstanding capabilities. However, regular testing method can not effectively detect defects inside of the material in a non-destructive way. Hence the application scope of grid stiffened composite structure is limited. In this thesis, based on Lock-in infrared Imaging theory, non-destructive testing is performed to detect potential defects, such as inclusion、crack and deboning. The result is verified by a Lock-in infrared Imaging system developed by Cedip, a French company. The impacts of different loading frequencies and loading strength have been studied. Combined with the tensile mechanical experiment, a testing on hat stiffened composite laminated plates has been performed. The results show that the non-destructive testing based on Lock-in infrared Imaging can successful detect unknown defects in grid stiffened composite structures.
     2. Non-destructive testing on specimen with defects and analysis of its parameters of fatigue performance
     Fatigue defects exist widely in industrialized manufacturing and human lives. Accidents caused by fatigue defects are extremely dangerous and destructive. However, it is challenging to predict the fatigue defects and it is difficult to conduct real-time monitoring. In this paper, non-destructive testing is applied to photo-stimulated loading on fatigue specimen with different defects. The relationships between testing accuracy and testing parameters such as testing frequency and defects size are studied. The study concludes that proper testing frequency is the key to success. TESCC is found out and the impact of loading stress amplitude on TESCC is analyzed. The fatigue life of the specimen is calculated using Lung method and the impact of defect depth on fatigue life is studied.
     3. Evaluation of fatigue performance for welded joints based on quantitative infrared thermography
     Evaluation of fatigue performance of welded joints is very important and critical during the design of the welded joint structure, especially for the areas with stress concentration and residual stress. Currently the traditional methods are not able to accurately predict the life of welded joint structures, hence new evaluation system has to be developed. Based on the actual working environment of welded joint and considered the impact of constant mean stress, a model to rapidly predict parameters of fatigue performance and remaining life is developed. From the change of local hot spots detected by infrared camera, the evolution of defects is simulated and analyzed. This new methodology overcomes the restrictions of traditional fatigue testing methods and makes real-time testing possible.
引文
[1]Okada R K. M. T. The role of the resin fillet in the delamination of honeycomb sandwich structures[J]. Composites Science and Technology,2002,62:1811-1819.
    [2]Short G J, Pavier M J. The effect of delamination geometry on the compressive failure of composite laminates[J]. Composites Science and Technology,2001,61:2075-2086.
    [3]杜善义.先进复合材料与航天航空[J].复合材料学报,2007,24(1):1-12.
    [4]沈关林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [5]张存林王金.红外热波无损检测技术及其发展[J].无损检测,2004,26(10):497-501.
    [6]Hung Y Y, Chen Y S, Ng S. P. Review and comparison of shearography and active thermography for nondestructive evaluation[J]. Materials Science and Engineering:R:Report,2009,64(5-6):73-112.
    [7]Meola C, Carlomagno G M. Recent advances in the use of infrared thermography.[J]. Measurement Sciense and Technology,2004,15:27-58.
    [8]Schroeder J A, Ahmed T, Chaudhry B, et al. Non-destructive testing of structural composites and adhesively bonded composite joints:pulsed thermography [J]. Composite:Part A,2002,33:1511-1517.
    [9]Baughman S R. Applications for thermal NDT on advanced composites in aerospace structures[C]. SPIE,1998:311-319
    [10]Prati J. Detecting hidden exfoliation corrosion in aircraft wing skins using thermography[C]. SPIE,2000,4020:200-209.
    [11]Busse G, Wu D, karpen W. Thermal wave imaging with phase sensitive modulated thermography [J]. J. Appl. Phys,1992,71:3962-3965.
    [12]陈传尧.疲劳与断裂[M],武汉:华中科技大学出版社,2002.
    [13]张小川.红外热波无损检测技术中缺陷尺寸的确定[D].北京:2006.
    [14]田裕鹏.红外辐射成像无损检测关键技术研究[D].南京:2009.
    [15]穆玉伟.基于ANSYS的锁相红外无损检测数值模拟及分析[D].大连:大连理工大学,2007.
    [16]洪毅,缪鹏程,张仲宁.超声红外热像技术及其在无损检测中的应用[J].南京大学学报(自然科学),2003,39(4):547-552.
    [17]Josep N, Nik R, William P. A comparison of image proceesing algorithms for thermal nondestructive evaluation[J]. Thermosence XXV.SPIE,2003:374-385
    [18]Avdelidis N P, Almond D P, Dobbinson A. Airctaft composites assessment by means of trasient theramal NDT[J]. Progress in Aerospace Sciences,2004,40:143-162.
    [19]Avdelidis N P, Ibarra-Castanedo C, Maldague X. A thermographic comparison study for the assessment of composite patches[J]. Infrared Physics Technology,2004, 45:291-299.
    [20]Takahide S, Shiro K, Takeshi E. Development of a new processing technique of sequential temperature data after pulse heating for quantitative nondestructive testing[J]. Thermosense XXVI.SPIE,2004:357-365.
    [21]Carlaw H S. Conduction of Heat in Solids.London[D]. London:Oxford Universicy,1959.
    [22]Lehto A, Jaarinen J, Tiusanen T. Magnitude and Phase in Thermal Wave imaging[J]. Electronics Letters,1981,17(11):364-365.
    [23]Vavilov V P, Shiryaev V V, Grinzato E. Detection of Hidden Corrosion in Metals by using Transient Infrared Thermography[J]. Insight,1998,40(6):408-410.
    [24]Favro L D, Han X. Y, Kuo P K, et al. Defect Depth Determination by Thermal-wave Imaging[J]. Prog.in Natural Science,Suppl,1996,6:139-141.
    [25]Milne J M, Carter P. A Transient Thermal Method of Measuring the Depths of Sub-surface Flaws in Metals[J]. British J.of NDT,1988,30(5):333-336.
    [26]Almond D P, Lau S K. Edge Effects and a Method of Defect Sizing for Transient Thermography [J]. Appl.Phys.Lett,1993,62(25):3369-3371.
    [27]Ludwig N, Teruzzi P. Heat Losses and 3D Diffusion Phenomena for Defect Sizing Procedures in Video Pulse Thermography[J]. Infrared Physics & Technology, 2002,43:297-301.
    [28]Maldague X, Ziadi A, Klein M. Double Pulse Infrared Thermography[J]. NDT&E International,2004,37:559-564.
    [29]Busse G, Wu D, karpen W. Thermal Wave Imaging With Phase Sensitive Modulated Thermography[J]. J.Appl.Phys,1992,71:3962-3965.
    [30]Zweschper T, Wu D, Busse G. Detection of Tightness of Mechanical Joints using Lockin Thermography[C]. Proc.SPIE,1999:16-21
    [31]Salerno A, Dillenz A, Wu D. Progress in Ultrasound Lockin Thermography[C]. QIRT98,1999:154-160
    [32]Dillenz A, Busse G, and Wu D. Ultrasound Lockin Thermography:Feasibilities and Limitations[C]. Proc.SPIE,1999:10-15
    [33]Bai W, Wong B S. Non-destructive Evaluation of Aircraft Structure using Lock-in Thermography[C]. Proc.SPIE,2000:37-46
    [34]Sakagami T, Kubo S, Teshima Y. Fatigue Crack Identification using Near-tip Singular Temperature Field Measured by Lock-in Thermography[C]. Proc.SPIE,2000:37-46
    [35]Bai W, Wong B S. Photo thermal Models for Lock-in Thermographic Evaluation of Plates with Finite Thickness under Convection Conditions[J]. Appl. Phys,2001, 89(6):3275-3282.
    [36]Swiderski W. Lock-in Thermography to Rapid Evaluation of Destruction Area in Composite Materials Used in Military Application[C]. Proc.SPIE,2003:506-517
    [37]Krapez J C, Taillade F, Balageas D. Untrasound-lockin-thermography NDE of Composite Plates with Low Power Actuators. [J]. Experimrntal Investigation of the Influence of the Lamb Wave Frequency. QRIT,2005,2(2):191-206.
    [38]Mulaveesala R, Tuli S. Phase Sensitive Digitized Thermal Wave Imaging and Pulse Compression for NDE Applications[C]. Proc.SPIE,2006:620515
    [39]Mulaveesala R, Tuli S. Theory of Frequency Modulated Thermal Wave Imaging for Nondestructive Subsurface Defect Detection.[J]. Appl.Phys.Lett,2006,89:1-3.
    [40]Toubal L, Karama M, Lorrain B. Damage Evolution and Infrared Thermography in Woven Composite Laminates under Fatigue Loading[J]. International Journal of Fatigue,2006,28:1867-1872.
    [41]Forsyth D S, Genest M, Shaver J. Evaluation of Nondestructive Testing Methods for the Detection of Fretting Damage[J]. International Journal of Fatigue,2007, 29:810-821.
    [42]Choi M, Kang K, Park J, et al. Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography[J]. NDT&E International,2008, 41:119-124.
    [43]Mabrouki F, Genest M, Shi G. Numerical Modeling for Thermographic Inspection of Fiber Metal Laminates[J]. NDT&E International,2009,42:581-588.
    [44]Schmidt C, Naumannl F, Altmannl F, et al. Thermal Simulation of Defect Localisation using Lock-In Thermography in Complex and Fully Packaged Devices[C].10th Int.Conf.on Thermal,Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems,2009:1-7
    [45]Navaranjan N, Jones R. Lock-in infrared thermography for the evaluation of the structural performance of corrugated paperboard structures [J]. Composite Structures, 2010,92:2525-2531.
    [46]Maldague X P, Martens S. Pulse Phase Infrared Thermography [J]. Appl. Phys,1996, 79(5):2694-2698.
    [47]Dillenz A, Zweschper T, Busse G. Burst Phase Angle Thermography with Elstic Waves[C]. Proc.SPIE,2002:572-577.
    [48]Ibarra-Castanedo C, Maldague X. Pulsed Phase Thermography Inversion Procedure using Normalized Parameters to Account for Defect Size Variations[C]. Proc.of SPIE, 2005:334-341.
    [49]Zauner G, Mayr G, Hendorfer G. Comparative Defect Evaluation of Aircraft Components by Active Thermography[C]. Proc.of SPIE-IS&T,2009:1-9
    [50]Valluzzi M R., Grinzato E, Pellegrino C, et al. Modena.IR Thermography for Interface Analysis of FRP Laminates Externally Bonded to RC BeamS[J], Materials and Structures,2009,42:25-34.
    [51]Montanini R. Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography[J]. Infrared Physics & Technology,2010,53:363-371.
    [52]Chatterjee K, Tuli S, Pickering S G., et al. A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J]. NDT&E International,2011,44:655-667.
    [53]王祥林,姜涛,王裕文,等.非晶硅太阳能电池的电加载热象无损检测[J].西安交通大学学报,1996,30(12):82-86.
    [54]王祥林,刘伟,王裕文,等.复合材料红外无损检测技术研究[J].西安交通大学学报,1994,28(1):121-126.
    [55]梅林,陈自强,王裕文,等.脉冲加热红外热成像无损检测的有限元模拟及分析[J].西安交通大学学报,2000.34(1):66-70.
    [56]梅林,吴立德,王裕文.一种基于遗传算法的红外无损检测缺陷的新方法[J].光学学报,2002,22(12):1452-1456.
    [57]梅林,王裕文,薛锦.红外热成像无损检测缺陷的一种新方法[J].红外与毫米波学报,2000,19(6):457-459.
    [58]陶宁,王迅,曾智,等.非接触超声热激励红外热成像无损检测方法和系统[P].中国,200910244001.2010,05,26.
    [59]张存林,金万平.以THz波为光源的红外热波检测系统[P].中国,03128761.2004,11,24.
    [60]冯立春,金万平,张存林,等.红外热波检测层析图像的重建方法[P].中国,200510077750.X.2005,11,16.
    [61]王迅,段玉霞,金万平,等.红外热波无损检测中提高吸收率和发射率的方法及装置[P].中国,200510125666.0.2006,05,03.
    [62]王迅,刘波,冯立春,等.用于红外热波无损检测的普通闪光灯热激励装置[P].中国,200520142433.7.2007,05,23.
    [63]王迅,段玉霞,金万平,等.红外热波无损检测中提高吸收率和发射率的装置[P].中国,200810167857.7.2006,05,03.
    [64]刘波,李艳红,张小川,等.锁相红外热成像技术在无损检测领域的应用[J].无损探伤,2006,30(3):12-15.
    [65]刘波,张存林,冯立春,等.基于红外热波无损检测系统中闪光灯阵列脉冲热激励装置的研制[J].中国仪器仪表,2006,12(38-43.
    [66]姜千辉,姜长盛,葛庆平,等.红外热波序列图像的图像分割与三维显示[J].无损检测,2008,30(2):100-103.
    [67]赵石彬,张存林,伍耐明,等.红外热波无损检测技术用于聚丙烯管道缺陷的检测[J].光学学报,2010,30(2):456-460.
    [68]李艳红,赵跃进,张存林.半透明材料涂层的红外检测[J].光学精密工程,2009,17(7):1502-1508.
    [69]李艳红,赵跃进,冯立春,等.碳纤维基体涂层质量的红外热波检测研究[J].中国激光,2009,36(6):1489-1492.
    [70]霍雁,赵跃进,李艳红,等.脉冲和锁相红外热成像检测技术的对比性研究[J].激光与红外,2009,39(6):602-604.
    [71]王永茂,郭兴旺,李日华.红外检测中缺陷大小和深度的测量[J].激光与红外,2002,32(6):404-406.
    [72]王永茂,郭兴旺,李日华.缺陷大小和深度的红外检测[J],无损检测,2003,25(9):458-461.
    [73]蒋淑芳,郭兴旺,沈京玲,等.固体火箭发动机绝热层脱粘的红外热波无损检测[J].激光与红外,2005,35(8):584-586.
    [74]郭兴旺,邵威,郭广平,等.红外无损检测加热不均时的图像处理方法[J].北京航空航天大学学报,2005,31(11):1204-1208.
    [75]郭兴旺,吕珍霞,高功臣CFRP层压板脉冲热像检测的图像重建与增强[J].红外技术,2006,28(5):299-305.
    [76]郭兴旺,高功臣,吕珍霞.基于奇异值分解的红外热图像序列处理[J].北京航空航天大学学报,2006,32(8):937-940.
    [77]刘颍韬,郭兴旺,郭广平.红外热像检测的3D建模与1D建模的对比[J].无损检测,2011,33(2):5-8.
    [78]李政,郭兴旺.因子分析法在脉冲红外热无损检测中的应用[J].北京航空航天大学学报,2010,36(5):622-626.
    [79]郭兴旺,李苒苼,丁蒙蒙.固体火箭包覆层脱粘调制红外热波检测法的数值模拟[J].机械工程学报,2011,47(2):9-15.
    [80]郭兴旺,许文浩.蜂窝结构积水的脉冲红外热像无损检测的传热分析[J].红外技术,2011,33(5):275-280.
    [81]李大鹏,赵元松,杨天任.有限元法与BP神经网络在红外检测信号处理中的应用[J].无损检测,2006,28(1):2-7.
    [82]寇蔚,孙丰瑞,杨立.基于随机有限元与神经网络的传热参数的智能辨识[J].红外技术,2005,27(1):70-74.
    [83]Fan C, Fengli. S, and Li. Y. A Numerical Method on Inverse Determination of Heat Transfer Coefficient Based on Thermographic Temperature Measurement[J]. Chinese Journal of Chemical Engineering,2008,16(6):901-908.
    [84]陈珏.红外无损检测技术的传热学分析[J].红外与毫米波学报,2000,19(4):285-288.
    [85]陈珏,耿健.单面法红外无损检测的数学分析与计算机模拟[J].激光与红外,2001,31(3):174-176.
    [86]魏敦军.军用飞机红外热波无损检测技术研究[M].武汉:武汉理工大学,2007.
    [87]陈伟,丁沙,陈波,等.基于红外热成像与温度场有限元模拟的混凝土无损检测研究[J].混凝土,2011,262(8):140-143.
    [88]赵柯,熊艳,赵敏.基于近红外光谱技术的脐橙快速无损检测[J].激光与红外,2011,41(6):649-652.
    [89]樊丹丹.基于红外热波的界面脱粘无损检测[M].太原:中北大学,2011.
    [90]刘俊岩,王扬,王懋露.基于图像序列处理的红外锁相热波无损检测方法[P].中国,201010507836.2011,4,27.
    [91]刘俊岩,王扬,戴景民.基于图像序列的红外锁相热像检测技术研究[J].激光与红外,2008,38(7):654-658.
    [92]刘俊岩,戴景民,王扬.红外图像序列处理的锁相热成像理论与试验[J].红外与激光工程,2009,38(2):346-351.
    [93]刘俊岩,戴景民,王扬.红外锁相法热波检测技术及缺陷深度测量[J].光学精密工程,2010,18(1):37-44.
    [94]汪子君,刘俊岩,戴景民,等.相位法红外无损检测的传热学分析与有限元仿真[J].红外与毫米波学报,2008,27(5):361-364.
    [95]汪子君,刘俊岩,戴景民,等.锁相红外检测中相位检测方法[J].无损检测,2008,30(7):418-451.
    [96]刘慧,刘俊岩,王扬.超声锁相热像技术检测接触界面类型缺陷[J].光学精密工程,2010,18(3):653-661.
    [97]郭杏林,穆玉伟.锁相加热红外无损检测有限元模拟及分析[J].无损探伤,2008,32(2):1-5.
    [98]郭杏林,王晓钢.疲劳热像法研究综述[J].力学进展,2009,39(2):217-227.
    [99]尚德广,王大康,李明.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报,2002,38(1):67-70.
    [100]JMcEvily A J, Eifler D, Macherauch E. An analysis of the growth of short fatigue cracks[J]. Engineering Fracture Mechanics,1991,40(3):571-584.
    [101]Vormwald M, Seeger T. The consequences of short crack closure on fatigue crack growth under variable amplitude loading [J]. Fatigue Fracture and Engineering Material and Structure,1991,14(2):205-225.
    [102]童小燕,王德俊,徐灏.疲劳损伤过程中的热能耗散分析[J].金属学报,1992,28(4):163-169.
    [103]姚磊江,童小燕,吕胜利.金属低周疲劳的能量耗散与热发射[J].机械科学与技术,2003,22(5):799-801.
    [104]姚磊江,童小燕,吕胜利.基于能量耗散的疲劳损伤模型[J].机械强度,2004,26(5):522-525.
    [105]姚磊江,李斌,童小燕.疲劳过程热耗散于表面微观结构演化相关性的实验研究[J].西北工业大学学报,2008,26(2):225-228.
    [106]刘浩,曾伟,丁桦.利用红外热像技术快速确定材料疲劳极限[J].力学与实践,2007,29(4):36-40.
    [107]刘浩,曾伟,丁桦,等.利用红外热像技术快速确定材料的疲劳极限[J].力学与实践,2007,29(4):36-54.
    [108]刘浩,赵军,丁桦.疲劳过程中生热机理的实验探讨[J].实验力学,2008,23(1):1-8.
    [109]曾伟,韩旭,丁桦,等.基于红外热像技术的金属材料疲劳性能研究方法[J].机械强度,2008,30(4):658-663.
    [110]黄毅.热弹性红外图像安全监测系统[J].中国科学院院刊,2003,2003(3):202-205.
    [111]李航.基于红外热成像技术快速测定金属材料和电阻焊点结构的疲劳极限[D].大连:大连理工大学,2007.
    [112]王晓钢.基于热像法的寿命预测与疲劳分析[D].大连:大连理工大学,2009.
    [113]张传豹.基于热像法的金属疲劳性能分析[D].大连:大连理工大学,,2010.
    [114]黄竹邻,柳刚,何兆湘,等.基于TMS320C6711DSP的红外热成像非均匀性校正技术[J].光电子技术与信息,2005,18(3):80-84.
    [115]张建奇.红外物理[M].西安:西安电子科技大学出版社,2004.
    [116]李克杰.新编传感器技术手册[M].北京:国防工业出版社,2001.
    [117]史衍丽.国外量子阱红外焦平面探测器的发展概况[J].红外技术,2005,27(4):274-278.
    [118]石岩,张天序,王岳环,等.红外焦平面非均匀性两点校正法分析及FPGA实现[J].激光与红外,2005,35(2):100-103.
    [119]欧阳容百.热力学与统计物理[M],北京:科学出版社,2007.
    [120]Stanley P. Applieationsandpotentialofthermoelastiestressanalysi[J], Journal of Materials Proeessing Teehnolog,1997,64:359-370.
    [121]Esin A. A theory of fatigue based on the microstructural accumulation of strain energy[J]. Nuclear Engineering and Design,1966,6:292-297.
    [122]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [123]黄明志,石德坷,金志浩.金属力学性能[M].西安:西安交通大学出版社,1986.
    [124]Bates D, Simith G, lu D, et al. Rapid thermal non-destructive testing of aircraft components[J]. Composites:Part B,2000,31(2000):175-185.
    [125]刘颍韬,郭广平,杨党纲.脉冲相位法用于复合材料层析检测的研究[J].激光与红外,2009,39(14):390-392.
    [126]罗英,张德银,彭卫东,等.民航飞机主动红外热波成像检测技术应用发展[J].激光与红外,2011,41(7):718-723.
    [127]邓晓东,成来飞,梅辉.C/SiC复合材料的定量红外热波无损检测[J].复合材料学报,2009,26(5):112-119.
    [128]孙磊,张立同,梅辉.2D C/SiC缺陷的无损检测与评价[J].复合材料学报,2008,25(5):85-90.
    [129]耿荣生,吴克勤,景鹏.全尺寸飞机机体疲劳试验时中央翼与外翼链接区域疲劳损伤的声发射监测[J].无损检测,2008,30(1):37-41.
    [130]吴文有,吴克勤,张瑞林.飞机关键零部件疲劳损伤的声发射实时监测[J].无损检测,2009,31(6):481-484.
    [131]Luong M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials,1998,28(1998):155-163.
    [132]Carlomagno G M, Beradi P G. Unsteady thermotopography in non-destructive testing[C]. Proceedings of the III infrared information exchange, Warren C,1976, 33-40.
    [133]LaRosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components [J]. International Journal of Fatigue,2000,22:65-73.
    [134]黄毅.热弹性红外图像安全检测系统[J].中国科学院院刊,2003,3:202-205.
    [135]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [136]彭凡,姚云建顾勇军.热点应力法评定焊接接头疲劳强度的影响因素[J],焊接学报,2010,31(7):83-86.
    [137]Maddox S J. Review of fatigue assessment procedures for welded aluminium strcutrues[J], International Journal of Fatigue,2003,25(12):1359-1378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700