用户名: 密码: 验证码:
滚摆式导引头过顶跟踪控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚-摆式导引头框架角大,结构紧凑,能够实现对前半球视场的覆盖。但是其特有的过顶跟踪问题,即在小离轴角对目标跟踪时会产生奇异这一点制约了滚-摆式导引头的应用。针对滚-摆式导引头的过顶跟踪问题,本文从系统数学描述、跟踪策略制定、控制器设计、跟踪实验几个方面展开了相关的研究。
     论文首先分析了由图像处理器提供的脱靶量信息解算出导引头角位置指令的解析算法,说明了过顶问题的产生根源,给出了过顶跟踪问题的数学描述,为解决滚-摆式导引头的过顶跟踪问题提供了基本理论依据。
     在以上分析的基础上,设计了滚转框和摆动框控制器,首先使伺服系统满足给定的稳态和动态指标。分析了影响系统精度的主要误差源,着重研究了微机械陀螺的误差项和误差模型,以及陀螺输出精度对伺服系统速度误差的影响。然后提出了基于摆动框角度、目标脱靶量、目标运动速度及系统指标的滚-摆式导引头过顶控制策略。最后,为减小目标进出过顶盲区时的指令的阶跃,设计了基于“当前”加速度模型的机动目标卡尔曼滤波器,实时预测出目标下一时刻的位置、速度和加速度信息,增加了过顶跟踪过程中运动的稳定性。
     为验证和测试滚-摆式导引头过顶控制器的性能,搭建了导引头伺服系统通用开发平台。平台集成了数据转换卡、串口卡、电机驱动器等硬件资源,可以完成通信协议测试、机电系统模型测试、控制器开发与测试以及导引头整机联调等功能。在此平台的基础上,设计目标多次进出过顶盲区的运动方式,实验表明,在没有应用过顶跟踪控制器的情况下,系统的盲区约为±2.5°;应用过顶跟踪控制器后,系统可以实现平稳过顶跟踪,盲区内跟踪误差y方向为1.8mrad,z方向为2.2mrad。实验结果证明,控制器可以实现对目标的过顶跟踪。
With its advantages of big gimbal angle and smart size, the Roll-Pitch seeker caneasily cover hemisphere of a seeker. On the contrary, the particular disadvantage ofRoll-Pitch seeker is the zenith pass problem that is when a manoeuvreable target ismoving in the range of small abaxial angle, the calculated servo command willbecome singular which will result in the loss of target. The application of Roll-Pitchseeker in the Air-to-Air is severely restricted by its zenith pass problem. Aimed atsolving the zenith pass problem in a Roll-Pitch seeker, this paper is consist ofmodeling of zenith pass problem, tracking strategy analysis, servo controller design,tracking test and conclusions.
     The algorithm of getting angle increment command from deviation pixels on theimage plane is presented at the beginning. The presented algorithm is the origin ofzenith pass problem, so the description of zenith pass problem is given in sequence.This section is the theory basis of solving zenith pass problem.
     For solving the zenith pass problem in Roll-Pitch seeker, roll gimbal controllerand pitch gimbal controller are designed first to satisfying dynamic and steady staterequirement of the servo system. Errors that mainly influent the tracking precision arepresented as follows, gyroscope error, servo error and image error. Gyroscope error isemphatically studied as well as its impact in the servo control system. And then thecontrol strategy for zenith pass problem is introduced, and the strategy is based on three input conditions which are pitch angle, target deviation pixels on image planeand target moving rate. Although the strategy works effectively, but it is notsufficiently effective. There is still risk of loss of target, so the self adaptive Kalmanfilter is designed here to predict the next time position, velocity and acceleration oftarget. With the predicted information target tracking process can be more smoothlyachieved.
     In order to verify and test performance of the zenith pass strategy controller, aplatform consist of AD/DA conversion card, serial communication card, motor driverand so on is built. With this platform it is convenient to do jobs such ascommunication protocol test, seeker model identification, servo controller design andtest. A target movement manner is set that the target passes through the zenith zoneseveral times. Validity of the strategy for zenith pass problem is tested and the resultindicates that it works well.
     The whole paper is focused on how to deal with zentith pass problem, andmainly discusses the following content, description of zenith pass problem, gyroscopeerrors, self adaptive Kalman filter and strategy design for zenith pass problem. Thefinal experiment said that without using strategy for zenith pass problem the zenithblind zone is about±2.5°while with using the strategy target can be smoothly trackedand the tracking error in y direction is1.8mrad as well in z direction2.2mrad. It isproved that zenith pass tracking controller can solve the zenith pass problem.
引文
[1]樊会涛.空空导弹21世纪展望[J].航空兵器,2001,1:1-4.
    [2]王祖典.空空导弹发展今昔[J].航空兵器,2004,2:1-9.
    [3]王丽霞.美国空空导弹研制新动向[J].导弹大观,2008,5:2-4.
    [4]郑志伟,扬晨.走向新世纪的空空导弹[J].航空兵器,1998,1:1-3.
    [5]李立坤.新一代空空导弹关键技术和发展战略[J].航空科学技术,2003,3:25-28.
    [6]王秀萍.2007年国外空空导弹发展综述[J].航空兵器,2008,2:3-7.
    [7]王祖典.发展中的第四代空空导弹[J].航空兵器,1996,2:1-9.
    [8]程松.凌翼五虎将—世界先进中距空空导弹TOP5[J].现代兵器,2006,6:51-54.
    [9]樊会涛,刘代军.红外近距格斗空空导弹发展展望[J],红外与激光工程,2005,34(5):564-568.
    [10]高智.彩虹杀机[J].国际展望,2007,5:86-93.
    [11]穆学桢,周树平,赵桂瑾. AIM-9X空空导弹位标器新技术分析和评价[J].红外与激光工程,2006,35(4):392-400.
    [12]侯晓燕,朱爱平.乌克兰展出新型空空导弹导引头[J].飞航导弹,2009,5:23.
    [13]王志伟,祁载康,王江.滚-仰式导引头跟踪原理[J].红外与激光工程,2008,37(2):274-277.
    [14]董小萌,张平.两轴稳定平台的过顶盲区问题[J].北京航空航天大学学报,2007,33(7):811-815.
    [15]董小萌,张平,付奎生.极坐标捷联式视觉导引平台的机电建模与仿真[J].系统仿真学报,2009,21(1):262-271.
    [16] Hartmann et al. SEEKER FOR TARGET-TRACKING MISSILES[P].United States Patent,6978965B1.2005-12-27.
    [17]朱明超,贾宏光.基于Padan-Kahan子问题求解求解滚仰式导引头角增量[J].光学精密工程,2011,19(8):1838-1844.
    [18]刘慧.滚摆式导引头伺服机构稳定跟踪技术研究[D]:[博士学位论文].长春:中科院长春光学精密机械与物理研究所,2010.
    [19]魏文俭,秦石乔,张宝东,等.某导引头陀螺进动控制理论研究[J].电光与控制,2008,15(8):36-39.
    [20]沈吉,张伟,祁载康.导引头位标器陀螺控制系统设计[J].弹箭与制导学报,2001,21(3):14-17.
    [21]赵善彪,张天孝,李晓钟.红外导引头位标器陀螺的方位效应研究[J].弹箭与制导学报,2007,27(3):33-35.
    [22]张树侠,危志英.动力调谐陀螺仪动平衡若干问题探讨[J].导航与控制,2002,1(2):32-34.
    [23]孟中,张涛.降低动力调谐陀螺输出噪声的方法[J].光学精密工程,2002,10(4):420-424.
    [24]胡云中.陀螺稳定平台漂移误差参数的辨识方法研究[J].航天控制,2004,22(2):10-18.
    [25]傅建国,王孝通,李博. MEMS陀螺随机误差模型研究[J].传感器技术,2005,24(3):75-77.
    [26]李建利,房建成,盛蔚. MEMS陀螺标度因数误差分析及分段插值补偿[J].北京航空航天大学学报,2007,33(9):1064-1067.
    [27]张延顺,周战馨,房建成.微机电陀螺随机误差的非平稳模型及滤波方法[J].数据采集与处理,2006,21:185-188.
    [28]张智永,范大鹏,李凯.微机电陀螺零点漂移数据滤波方法的研究[J].中国惯性技术学报,2006,14(4):67-69.
    [29] IEEE Aerospace and Electronic Systems Society. IEEE Std1431-2004.IEEE Standard Specification Format Guide and Test Procedure for CoriolisVibratory Gyros[S]. New York: American National Standards Institute,2004.
    [30]张文博,范大鹏,张智永,等.光电稳定跟踪装置中微机电陀螺应用研究[J].光学精密工程,2006,14(4):689-696.
    [31]王磊,夏群利,祁载康.探测器和角速度陀螺的噪声及刻度尺误差对捷联探测器积分比例导引系统的影响研究[J].电子学报,2006,34(9):1653-1658.
    [32]李岩,张智永,范大鹏.陀螺安装误差影响视轴稳定平台精度的机理研究[J].光电工程,2007,34(9):10-15.
    [33] Huhai Jiang,Qun Wei,Hongguang Jia,et al. Analysis of Impact ofGyroscope Synthetical Error on an Electric-optical Stabilization ControlSystem[C]. In:3rd International Conference on Biomedical Engineering andInformatics. Yantai,China:2010.2623-2625.
    [34]杨秀华,吉桐伯,陈涛.卡尔曼滤波器在光电经纬仪中的应用[J].测试技术学报,2003,17(4):324-328.
    [35]刘兴法.三轴光电跟踪系统对地平式天顶盲区出入点的判定方法[J].应用光学,2008,29(4):488-492.
    [36]杨秀华,吉桐伯,陈娟.预测滤波技术在光电跟踪系统的应用[J].电光与控制,2003,10(3):11-15.
    [37]杨秀华,吉桐伯,陈涛.预测滤波技术在电视跟踪系统的应用[J].吉林大学学报(信息科学版),2003,21(3):247-250.
    [38]黄永梅,马佳光,傅承毓.预测滤波技术在光电经纬仪中的应用仿真[J].光电工程,2002,29(4):5-9.
    [39] P.S.Crawford, R.J.H.Brush. Trajectory optimisation to minimiseantenna pointing error[J]. COMPUTING&CONTROL ENGINEEIUNGJOURNAL,1996,4:61-67.
    [40]吉桐伯.地平式光测跟星系统天顶盲区及跟踪算法研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [41]蒋力,苏秋萍.目标过顶的程序跟踪控制技术[J].现代电子技术,2005,8:42-44.
    [42] Zhai Kun, Baoyin Hexi. Study of Zenith Pass Problem of theInter-satellite Linkage Antenna[C]. In:200810th Intl. Conf. on Control,Automation, Robotics and Vision. Hanoi, Vietnam:2008.317-322.
    [43]林德福,王志伟,王江.滚-仰式导引头奇异性分析与控制[J].北京理工大学学报,2010,30(11):1265-1269.
    [44]吴鹏.精确制导光电导引头稳定平台数字控制技术[J].弹箭与制导学报,2002,22(3):37-41.
    [45]武文杰,李奇,杨海峰.电视导引头伺服稳定平台数字控制器的研制[J].控制工程,2007,14(2):192-194.
    [46]陈立锋,何衡湘,梅培智.图像导引头稳定平台非线性控制方法研究[J].弹箭与制导学报,2007,27(1):44-47.
    [47]姬伟,李奇,杨海峰.精密光电跟踪转台的设计与伺服控制[J].光电工程,2006,33(3):11-16.
    [48]黄永梅,张桐,马佳光.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19.
    [49]万山明,吴芳,黄声花.永磁同步电机的数字化电流控制环分析[J].华中科技大学学报(自然科学版),2007,35(5):48-51.
    [50]张智永.移动载体稳定跟踪平台测控技术研究[D]:[硕士学位论文].长沙:国防科学技术大学研究生院,2002.
    [51]姚秀娟,张永科,彭晓乐,等.速率陀螺稳定电视导引头平台数字控制器设计[J].电光与控制,2006,13(3):75-77.
    [52]叶明甫.红外导引头模糊控制设计[J].上海航天,2004,1:44-47.
    [53]邹东明.应用压电陀螺的舰载电视跟踪仪视轴稳定问题研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [54] Ho-Pyeong Lee, Hong-Yeon Hwang. Two-degree-of-freedom robustcontrol of a seeker scan loop system[C]. In: AIAA, Guidance, Navigationand Control Conference. San Diego, CA:1996.1-9.
    [55]宋小娜. LQG控制在电视导引头系统中的应用研究[D]:[硕士学位论文].南京:南京理工大学,2005.
    [56] Chun-Liang Lin,Yi-Hsing Hsiao. Adaptive Feedforward Control forDisturbanceTorque Rejection in Seeker Stabilizing Loop[J]. IEEETRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2001,9(1):108-121.
    [57]陈娟.伺服系统低速特性与抖动补偿研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2001.
    [58] Ji Tongbo,Yang Xiuhua,Chen Tao. Study on Factors of InfluencingAltitude2azimuth Tracking Performance Near the Zenith[J]. Journal ofOptoelectronics L aser,2004,15(3):283-286.
    [59]吉桐伯,陈娟,杨秀华.地平式光电望远镜天顶盲区影响因素[J].光学精密工程,2003,11(3):296-300.
    [60]李生良,曾峦.跟踪系统[M].总装备部指挥技术学院,1999.130-133.
    [61]王广雄,何眹.控制系统设计[M].北京:清华大学出版社,2008.37-41.
    [62]张万清.飞航导弹电视导引头[M].北京:中国宇航出版社,2007.1-3.
    [63]郭富强,于波,汪叔华.陀螺稳定装置及其应用[M].西安:西北工业大学出版社,1995.101-104.
    [64]陈佳实.导弹制导和控制系统的分析与设计[M].北京:宇航出版社,1989.29-31.
    [65]吕俊伟,何友金,韩艳丽.光电跟踪测量原理[M].北京:国防工业出版社,2010.105-107.
    [66]张秉华,张守辉.光电成像跟踪系统[M].成都:电子科技大学出版社,2003.8-12.
    [67]王建立,陈涛,陈娟.提高光电经纬仪跟踪快速运动目标能力的一种方法[J].光电工程,2002,29(1):34-37.
    [68]霍治生.一种解决过顶盲区的天线座方案[J].无线电工程,1995,25(1):56-61.
    [69]王小军,李殿璞,余宏明.顶空无盲区跟踪的舰载倾斜三轴雷达的研究[J].哈尔滨工程大学学报,2002,23(2):37-42.
    [70]严浙平,黄宇峰.基于卡尔曼滤波的动目标预测[J].应用科技,2008,35(10):28-32.
    [71]李道京,王启才.机动目标预测问题的研究[J].现代雷达,1992,10:15.
    [72]雷虎民,田昌会,刘文江.用卡尔曼滤波器估计目标机动加速度[J].飞行力学,2002,20(3):36-38.
    [73]熊茂涛,吴钦章.自适应理论在目标跟踪中的应用[J].计算机工程与应用,2009,45(2):31-33.
    [74]国防科学技术工业委员会. GJB2426A-2004光纤陀螺仪测试方法
    [S].北京:中国标准出版社,2004.
    [75] Herve C. Lefevre. The Fiber-Optic Gyroscope[M]. ARTECH HOUSEINC,1993.21-23.
    [76]潘荣霖.飞航导弹惯性器件[M].北京:中国宇航出版社,2005.82-91.
    [77]费业泰.误差理论与数据处理[M].北京:机械工业出版社,1995.2-5.
    [78]王家骐.光学仪器总体设计[M].长春:中国科学院长春光学精密机械与物理研究所,2008.19-25.
    [79] Lonnie C. Lundeman. Random Processes:Filtering,Estimation,andDetection[M]. John Wiley and Sons, Inc,2005.130-135.
    [80]常建平,李海林.随机信号分析[M].北京:科学出版社,2006.158-165.
    [81]罗键.系统灵敏度理论导论[M].西安:西北工业大学出版社,1990.22-23.
    [82]刘胜,彭侠夫,叶瑰昀.现代伺服系统设计[M].哈尔滨:哈尔滨工程大学出版社,2005.53-58.
    [83]金钰,胡祐德,李向春.伺服系统设计指导[M].北京:北京理工大学出版社,2002.6-12
    [84]李发海,朱东起.电机学[M].北京:科学出版社,2009.444-451.
    []李言俊,张科.系统辨识理论及应用[M].北京:国防工业出版社,2006.1-7.
    [85]王志贤.最优状态估计与系统辨识[M].西安:西北工业大学出版社,2004.157-160.
    [86]冯国楠.现代伺服系统的分析与设计[M].北京:机械工业出版社,1990.7-12.
    [87]胡寿松.自动控制原理[M].北京:科学出版社,2001.64-69.
    [88] Peter J. Kennedy,Rhonda L. Kennedy. Direct Versus Indirect Line ofSight (LOS) Stabilization[J]. IEEE TRANSACTIONS ON CONTROLSYSTEMS TECHNOLOGY,2003,11(1):3-15.
    [89] Russell T. Rudin. Strapdown Stabilization for Imaging Seekers[C].In:2nd Annual AIAA SDIO Interceptor Technology Conference.Albuquerque,NM:1993.1-10.
    [90] Jacques Waldmann. Line-of-Sight Rate Estimation and LinearizingControl of an Imaging Seeker in a Tactical Missile Guided by ProportionalNavigation[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMSTECHNOLOGY,2002,10(4):556-567.
    [91]周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.138-142.
    [92]张嗣瀛,高立群.现代控制理论[M].北京:清华大学出版社,2007.332-336.
    [93] Bernard Friedland. Control System Design:An Introduction toState-Space Methods[M]. Mineola,New York:Dover Puclication,Inc,2005.411-418.
    [94] Katsuhiko Ogata. Modern Control Engineering[M]. PearsonEducation,Inc,2010.751-757.
    [95]樊宗臣,吴晓燕.机动目标跟踪的自适应卡尔曼滤波算法实现[J].战术导弹技术,2009,(1):79-81.
    [96]杨宜康,祝转民,黄永宣,等.利用数值微分构造机动目标跟踪的估计模型:原理和应用[J].电子学报,2002,30(12):1759-1762.
    [97] Y.T. Chan,J.B. Plant,J.R.T. Bottomley. A Kalman Tracker With aSimple Input Estimator[J], IEEE TRANSACTIONS ON AEROSPACE ANDELECTRONIC SYSTEMS,1982,18(2):235-241.
    [98] K.V.Ramachandra,B.R.Mohan,B.R.Geetha. A Three-State KalmanTracker Using Position And Rate Measurements[J], IEEE TRANSACTIONSON AEROSPACE AND ELECTRONIC SYSTEMS,1993,29(1):215-222.
    [99] Bernd Uhrmeister. Kalman Filters for a Missile with Radar and/orImaging Sensor[J], JOURNAL OF GUIDANCE,CONTROL, ANDDYNAMICS,1994,17(6):1339-1344.
    [100] Eli Brookner. Tracking and Kalman Filtering Made Easy[M]. JohnWiley&Sons,Inc,1998.69-74.
    [101] Katsuhiko Ogata. MATLAB for Control Engineering[M],PearsonEducation,Inc,2008.101-108.
    [102]魏巍. MATLAB控制工程工具箱技术手册[M].北京:国防工业出版社,2005.61-68.
    [103]贾秋玲,袁冬莉,峦云凤.基于MATLAB7.x/Simulink/Stateflow系统仿真、分析及设计[M].西安:西北工业大学出版社,2008.177-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700