用户名: 密码: 验证码:
大跨度悬索桥现场实测数据、风雨激励响应及风振疲劳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着悬索桥跨径的日益增大,结构趋于轻柔,对风的作用更加敏感,风作用下桥梁结构的安全性已成为人们极为关注的重要问题。桥梁抗风属于起步较晚的学科领域,仍存在许多需要精细化研究以及尚未解决的问题。依托国家自然科学基金重点项目《大跨度桥梁结构风致动力灾变的原型观测与验证》(项目编号:90815022),结合现场实测及理论分析方法,本文对某大跨度悬索桥的风环境及响应实测、风雨共同激励、风振疲劳寿命以及构件在极值风作用下的安全评定等进行了研究,主要内容如下;
     (1)结合东海某大跨度悬索桥的风场监测系统,同步实测了桥面及桥塔处的风速,针对两年的实测结果,采用统计及频谱分析方法对桥位处风场特性进行了研究。结果表明,无量纲幂指数随风速增大而减小并趋于平稳;湍流强度亦随风速增大而减小且统计结果大于规范值;水平及竖向风谱与规范吻合较好,但实测谱值在低频段偏低;风场流过断面后下游平均风速减少、湍流强度显著增大、相关性明显减小、频谱特性亦发生明显改变。
     (2)结合东海某大跨度悬索桥的振动监测系统,同步实测了加劲梁及吊索的风振响应,并探讨了风振响应的理论分析及其与实测值的对比。结果表明,加劲梁的加速度响应RMS值与垂直桥面平均风速基本呈线性关系,其动力特性随风速变化基本稳定;吊索振动主要是某一高频范围内的共振,共振频率随风速增大基本呈线性;抖振时域响应的理论分析结果与实测值仍难以完全吻合,且理论结果要明显大于实测值。
     (3)基于降雨的基本特性,得到雨滴对桥面的冲击力,同时考虑雨滴作用与桥面运动之间的耦合,提出了降雨的冲击荷载及降雨阻尼单元模型,并以东海某大跨度悬索桥为对象探讨了风雨共同作用对加劲梁抖振响应的影响。结果表明,考虑强降雨的作用会增大结构顺风向的位移响应均值,竖向及扭转位移响应均值则影响较小,同时由于降雨产生阻尼作用,响应的RMS值均会减少。
     (4)基于降雨的阻尼模型,建立风-雨-桥梁耦合系统的颤振运动方程,提出了考虑降雨影响的颤振分析方法,并以东海某大跨度悬索桥为对象进行了探讨。结果表明,由于降雨产生阻尼作用,结构的颤振临界风速会进一步提高,然而由于雨滴的质量较小且垂直降落的速度不大,因此对颤振风速的影响程度有限。
     (5)基于东海某大跨度悬索桥桥位处平均风速的现场连续观测结果,探讨了疲劳风的风速风向分布,结果表明,疲劳风速分布能很好地符合威布尔分布;采用时域方法对该桥加劲梁的风振疲劳寿命进行了分析,同时针对大跨度悬索桥的风振特点提出了频域内仅考虑共振响应的疲劳分析简化方法;跨海悬索桥长期处于海洋性的腐蚀环境之中,腐蚀疲劳的共同作用会大大降低吊索的风振疲劳寿命。
     (6)提出服役吊索考虑腐蚀和断丝的强度模型,结合Monte-Carlo方法,探讨了极值风作用下吊索的可靠度分析方法,并以东海某大跨度悬索桥为对象进行了分析。结果表明,吊索强度可靠指标随断丝率的增长基本呈线性衰减,钢丝的腐蚀对吊索可靠度的影响不容忽视,且腐蚀钢丝变异系数的改变对可靠指标的影响更为显著。
With the rapid increase of bridge spans over years, the suspension bridge becomes more flexible and especially more sensitive to the wind action; the structural safety of long span suspension bridge under wind action has become an important issue of great concern. The wind resistant study of long-span bridge belongs to the late started research areas and there are still many unresolved issues. Relying on the Natural Science Fund Project " prototype observation and verification of dynamic disaster of long-span bridge under wind action "(item number:90815022), the long-term field observation of wind environment and structural responses of a long-span suspension bridge, wind-rain combination, fatigue life of wind-induced vibration and safety assessment of bridge component under extreme wind load are studied by using the field measurement and theoretical analysis methods, the main researches and conclusions are as follows:
     (1) In order to provide reliable basis for wind resistant evaluation of a long-span suspension bridge, the structural health monitoring system was installed and the long-term wind data at the bridge deck and the top of bridge tower were recorded. The average wind speeds and directions, variation of wind speeds with height, turbulent characteristics and spatial correlation are analyzed by using statistical methods and spectral analysis. It is found that the dimensionless exponent decreases with the average wind speed increases; the measured turbulence intensities are greater than the recommended values, the turbulence power spectrum can well fit the standard spectrum, however, the measured spectral values are considerably smaller in low frequency ranges; the mean wind speed of downstream reduces and the turbulence intensity increases significantly, the spectral characteristics of downstream also change obviously.
     (2) Based on the vibration monitoring system of a long span suspension bridge, the measured wind-induced responses of stiffening girder and hangers are discussed; also the theoretical responses are analyzed and compared with the measurement. The results indicate that the RMS of acceleration response of stiffening girder has a linear relationship with the average wind speeds vertical to the bridge deck, and its dynamic characteristics are stable with the wind speed increases; the dynamic response of hanger under wind is a high frequency resonance vibration and the resonance frequency increases with the wind speed increases; the buffeting responses of theoretical analysis are significantly greater than the measured values, the buffeting analysis still need more refinement.
     (3) Based on the basic characteristics of rainfall, consider the impact effect of raindrops on the bridge deck, the impact load and element damping model of rainfall are proposed, and the wind-rain induced vibration of a long-span suspension bridge are calculated. The results indicate that, the heavy rainstorm will increase the structure's mean displacement response of along wind direction, vertical and torsion mean displacement responses are less affected, while due to the damping effect of rainfall, the RMS values of the displacement and stress responses will be reduced.
     (4) Based on the damping model of rainfall, the wind-rain flutter analysis methods are proposed, and the flutter of a long span suspension bridge is analyzed. The results indicate that due to the damping effect of rainfall, the structure's critical flutter wind velocity is further increased, however, due to the small quality and the low vertical landing speed of raindrops, the effect of rainfall to the bridge flutter is relatively small.
     (5) Based on the continuous observations of mean wind speeds at a long span suspension bridge site, the distribution of fatigue wind' speed and direction are discussed and the wind-induced fatigue life is analyzed. The results indicate that the fatigue wind speed distribution obeys the Weibull distribution, the bridge stiffening girder's wind-induced fatigue life is419.24years; the cross-sea suspension bridge locates in the marine corrosion environment, the combined effect of corrosion and fatigue will greatly reduce the hanger's wind-induced fatigue life.
     (6) Hangers are primary members for suspension bridge. The hanger's strength model is established considering broken wire and corrosion, and its reliability analysis method under extreme wind load is proposed by Monte Carlo method. The hanger of a long span suspension bridge is analyzed in detail and the results indicate that the hanger's reliable indicator has a almost linear attenuation relationship with the rate of broken wires increases, the corrosion of steel wire can not be ignored.
引文
[1]铁道部大桥工程局桥梁科学研究所编.悬索桥[M].北京:科学技术文献出版社,1996.
    [2]雷俊卿,郑明珠,徐恭义.悬索桥设计[M].北京:人民交通出版社,2002.
    [3]周孟波.悬索桥手册[M].北京:人民交通出版社,2003.
    [4]贺媛,宋锦忠,杨詠昕.桥塔自立状态下抗风性能的比较研究[J].结构工程师.2007,23(6):49-55.
    [5]项海帆,陈艾荣,葛耀君.中国大桥[M].北京:人民交通出版社,2003.
    [6]项海帆,潘洪萱,张圣城等.中国桥梁史纲[M].上海:同济大学出版社,2009.
    [7]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报.2000,33(3):1-6.
    [8]项海帆.进入21世纪的桥梁风工程研究[J].同济大学学报.2002,30(5):529-532.
    [9]陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
    [10]项海帆等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [11]A. Larsen. Aerodynamics of the Tacoma Narrows Bridge-60 Years Later [C]. SEI (IABSE). Nov.2000.
    [12]Boonyapinyo V, Yamada H, Miyata T. Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges [J]. Journal of Structural Engineering, ASCE,1994,120(2):486-506.
    [13]程进,江见鲸,肖汝诚等.大跨度桥梁空气静力失稳机理研究[J].土木工程学报.2002,35(1):35-39.
    [14]杨詠昕,葛耀君,项海帆.大跨度桥梁典型断面颤振机理[J].同济大学学报(自然科学版).2006,34(4):455-460.
    [15]Tamura T, Itoh Y. Unstable aerodynamic phenomena of a rectangular cylinder with critical section [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1999,83 (4):121-133.
    [16]钟万勰,林家浩,吴志刚等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报.2000,40(2):127-135.
    [17]Davenport A. G. The Spectrum of Horizontal Gustiness Near the Ground in High winds [J]. Journal of the Royal Meteorological Society.1961 (87):194-211.
    [18]Kaimal J. C. Spectral Characteristics of Surface-Layer Turbulence [J]. Journal of the Royal Meteorological Society.1972(98):563-589.
    [19]Panofsky H. A., Singer I. A. Vertical Structure of Turbulence [J]. Journal of the Royal Meteorological Society.1965 (91):339-344.
    [20]Harris R. I. Some further thoughts on the spectrum of gustiness in strong winds [J]. Journal of Wind Engineering and Industrial Aerodynamics.1990,33(3):461-477.
    [21]E.Simiu, R H.Scanlan. Wind effects on structures [M]. New York:John Wiley and Sons,1996.
    [22]M. Shiotani, Y. Iwatani. Horizontal Space Correlations of Velocity Fluctuations during Strong Winds [J]. Journal of the Meteorological Society of Japan. 1976,54(1):59-67.
    [23]Shuyang Cao, Yukio Tamura, Naoshi Kikuchi et al. Wind characteristics of a strong typhoon [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2009,97(1):11-21.
    [24]T. Amano, H. Fukushima, T.Ohkuma et al. The observation of typhoon winds in Okinawa by Doppler sodar [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1999,83(1):11-20.
    [25]Y. L. Xu, S. Zhan. Field measurements of Di Wang Tower during Typhoon York [J]. Journal of Wind Engineering and. Industrial Aerodynamics.2001,89(1):73-93.
    [26]J. Y. Fu, Q.S.Li, J. R Wu et al. Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics.2008,96(8):1332-1358.
    [27]宋丽莉,毛慧琴,黄浩辉等.登陆台风近地层湍流特性观测分析[J].气象学报.2005,63(6):915-921.
    [28]庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究[C].第九届全国大气环境与污染学术会议论文集.2001:10-18.
    [29]李宏海,欧进萍.基于实测数据的台风风场特性分析[C].第二届结构工程新进展国际论坛论文集.2008:299-307.
    [30]肖仪清,孙建超,李秋胜.台风湍流积分尺度与脉动风速谱—基于实测数据的分析[J].自然灾害学报.2006,15(5);45-53.
    [31]徐安,傅继阳,赵若红等.土木工程相关的台风近地风场实测研究[J].空气动力学学报.2010,28(1):23-31.
    [32]武占科,赵林,朱乐东等.“罗莎”(0716)台风高空实测脉动风特性分析[J].空气动力学学报.2010,28(3):291-296.
    [33]J. Bietry, D. Delaunay, E. Coti. Comparison of full-scale measurement and computation of wind effects on a cable-stayed bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics.1995(57):225-235.
    [34]T. Miyata, H. Yamada, H. Katsuchi et al. Full-scale measurement of Akashi-Kaikyo Bridge during typhoon [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002(90):1517-1527.
    [35]J. M. W. Brownjohn, M. Bocciolone, A.Curami et al. Humber bridge full-scale measurement campaigns 1990-1991 [J]. Journal of Wind Engineering and Industrial Aerodynamics.1994(52):185-218.
    [36]J. B. Frandson. Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics.2001 (89):95-129.
    [37]John. H. G Macdonald. Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements [J]. Journal of Wind Engineering and Industrial Aerodynamics.2003(91):1465-1483.
    [38]Y. L Xu, L. D.Zhu. Buffeting response of long-span cable-supported bridges under skew winds. Part 2:case study [J]. Journal of Sound and Vibration. 2005(281):675-697.
    [39]Z. X. Li, T. H. T. Chan, J. M. Ko. Evaluation of typhoon induced fatigue damage for Tsing Ma Bridge [J]. Engineering Structures.2002(24):1035-1047.
    [40]李爱群,王浩,谢以顺.基于SHMS的润扬悬索桥桥址区强风特性[J].东南大学学报(自然科学版).2007,37(3):508-511.
    [41]王浩,李爱群,黄瑞新等.润扬悬索桥桥址区韦帕台风特性现场实测研究[J].工程力学.2009,26(4):128-133.
    [42]谢静,李爱群,王浩.基于SHMS的润扬悬索桥桥址区北风特性的研究[J].防灾减灾工程学报2009,29(2):213-218.
    [43]王浩,李爱群,谢以顺.台风“麦莎”作用下润扬悬索桥抖振响应实测研究[J].空气动力学学报.2008,26(3):706-712.
    [44]王浩,李爱群,谢静等.基于斜风分解的台风韦帕作用下润扬悬索桥抖振响应现场实测研究[J].振动工程学报.2009,22(4):430-437.
    [45]李杏平,李爱群,王浩等.基于长期监测数据的苏通大桥桥址区风特性研究[J].振动与冲击.2010,29(10):82-85.
    [46]赖马树金.基于现场监测技术的某斜拉桥风场特性及风效应分析[D].哈尔滨:哈尔滨工业大学土木工程学院,2009.
    [47]陈政清,柳成荫,倪一清等.洞庭湖大桥拉索风雨振中的风场参数[J].铁道科学与工程学报.2004,1(1):52-57.
    [48]王修勇,陈政清,倪一清等.环境激励下斜拉桥拉索的振动观测研究[J].振动与冲击.2006,25(2):138-144.
    [49]Q.S.Li, Y.Q.Xiao, J. Y. Fu et al. Full-scale measurements of wind effects on the Jin Mao building [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2007(95):445-466.
    [50]Q. S. Li, Y. Q. Xiao, C. K. Wong et al. Field measurements of typhoon effects on a super tall building [J]. Engineering Structures.2004(26):233-244.
    [51]Q. S. Li, J. R. Wu, S. G. Liang et al. Full-scale measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete tall building [J]. Engineering Structures.2004(26):1779-1794.
    [52]Davenport A G. Buffeting of a suspension bridge by storm winds [J]. J Struct Engrg Div ASCE.1962,88(6):233-264.
    [53]Scanlan R H, Gade R H. Motion of suspended bridge spans under gusty wind [J]. J Struct Engrg Div ASCE.1977,103(9):1867-1883.
    [54]Jain A, Jones N P, Scanlan R H. Coupled flutter and buffeting analysis of long-span bridges [J]. J Struct Engrg Div ASCE.1996,122(7):716-725.
    [55]Y.K.Lin, J.N.Yang. Multi-mode bridge response to wind excitation [J]. J. Eng. Mech. Div. ASCE.1983,109(2):586-603.
    [56]项海帆,陈伟,顾明.桥梁抖振反应谱的实用计算方法[J].土木工程学报.1995,28(3):3-8.
    [57]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析[D].上海:同济大学土木工程学院,1999.
    [58]Jiahao Lin, Dongke Sun. Application of pseudo excitation method to 3-D buffeting analysis of the Tsing Ma long-span suspension bridge [J]. Journal of Dalian University of Technology.1999,39(2):172-179.
    [59]刘高,王秀伟.基于虚拟激励法的大跨桥梁抖振内力分析[J].计算力学学报.2003,20(6):649-654.
    [60]Rice S 0. Mathematic analysis of random noise [C]. Selected papers on noise and stochastic processes, N. Wax, ed., Dover publish Inc., New York, N. Y.,1954, 133-294.
    [61]Deodatis G. Simulation of ergodic multivariate stochastic processes [J]. J Engrg Mech ASCE,1996,122(8):778-787.
    [62]Cao Y H, Xiang H F, Zhou Y. Simulation of stochastic wind velocity field on long-span bridges [J]. J Engrg Mech ASCE,2000,126(1):1-6.
    [63]丁泉顺,陈艾荣,项海帆.大跨度桥梁空间脉动风场的计算机模拟[J].力学季刊.2006,27(2):184-189.
    [64]陈艾荣,王毅.基于小波方法的随机脉动风模拟[J].同济大学学报(自然科学版).2005,33(4):427-431.
    [65]李永乐,周述华,强士中.大跨度斜拉桥三维脉动风场模拟[J].土木工程学报.2003,36(10):60-65.
    [66]Lin Y. K, Li Q. C. New stochastic theory for bridge stability in turbulent flow [J]. Journal of Engineering Mechanics., ASCE,1993,119(1):113-127.
    [67]曹映泓,项海帆,周颖.大跨度桥梁非线性颤振和抖振时程分析[J].广东公路交通.2000,(66):38-42.
    [68]NAMINI A. Analytical Modeling of Flutter Derivatives as Finite Elements [J]. Computers & Structures,1991,41(5):1055-1064.
    [69]SU Cheng, FAN Xue-ming, HE Tao. Wind-induced Vibration Analysis of a Cable-stayed Bridge During Erection by a modified Time-domain Method [J]. Journal of Sound and Vibration,2007,303(2):330-342.
    [70]韩燕,陈政清,罗延忠.双肢薄壁墩连续刚构桥平衡悬臂施工阶段的抖振时域分析[J].中国公路学报,2008,21(1):59-64.
    [71]周述华.非线性抖振响应仿真分析[D].成都:西南交通大学土木工程学院,1993.
    [72]刘春华.大跨度桥梁抖振响应的非线性时程分析[D].上海:同济大学土木工程学院,1995.
    [73]曹映泓.大跨度桥梁非线性颤振和抖振时程分析[D].上海:同济大学土木工程学院,1999.
    [74]蒋永林.斜拉桥抖振响应分析[D].成都:西南交通大学土木工程学院,2000.
    [75]李永乐.风-车-桥系统非线性空间耦合振动研究[D].成都:西南交通大学土木工程学院,2003.
    [76]张志田.大跨度桥梁非线性抖振及其对抗风稳定性影响的研究[D].上海:同济大学土木工程学院,2004.
    [77]胡晓伦.大跨度斜拉桥颤抖振响应及静风稳定性分析[D].上海:同济大学土木工程学院,2006.
    [78]R. H. Scanlan. The Action of Flexible Bridges under wind, Ⅰ:Flutter Theory [J]. Journal of Sound and Vibration,1978,60(2):187-199.
    [79]谢霁明,项海帆.桥梁三维颤振分析的状态空间法[J].同济大学学报.1985,12(3):1-13.
    [80]于向东,陈政清.桥梁主梁断面颤振导数的强迫振动识别法[J].中国公路学报.2001,14(2):36-39.
    [81]华旭刚,陈政清,祝志文.桥梁风致颤振分析以及在ANSYS中的实现[J].重庆交通学院学报.2002,21(4):12-15.
    [82]丁泉顺,陈艾荣,项海帆.大跨度桥梁耦合颤振的全阶分析方法[J].振动工程学报.2002,15(4):436-441.
    [83]张新军,孙炳楠,项海帆.结构变形效应对大跨径悬索桥颤振的影响研究[J].公路交通科技.2003,20(3):64-68.
    [84]刘高,王秀伟,强士中.悬索桥颤振稳定性分析的精细时程积分法[J].计算力学学报.2001,18(3):316-320.
    [85]许福友,陈艾荣.苏通大桥三维颤振分析[J].工程力学.2008,25(8):139-144.
    [86]Justus C G, Hargraves WR, Yalcin A. National assessment of potential output from wind powered generators [J]. Journal of Applied Meteorology.1976,15(7):673-678.
    [87]Gupta BK. Weibull parameters for annual and monthly wind speed distributions for five locations in India [J]. Solar Energy.1986,37(6):469-471.
    [88]Corotis RB, Sigl AB, Klein J. Probability models of wind velocity magnitude and persistence [J]. Solar Energy.1978,20:483-493.
    [89]Garcia A, Torres JL, Prieto E et al. Fitting wind speed distributions:a case study [J]. Solar Energy.1998,62(2):139-144.
    [90]Rehman S, Halawani TO, Husain T. Weibull parameters for wind speed distribution in Saudi Arabia [J]. Solar Energy.1994,53(6):473-479.
    [91]Isaac Y. F. Lun, Joseph C. Lam. A study of Weibull parameters using longterm wind observations [J]. Renewable Energy.2000,20:145-153.
    [92]欧进萍,段忠东,陆钦年等.渤海海域的风特性统计分析[J].海洋通报.1997,16(1):20-28.
    [93]顾明,陈礼忠,项海帆.上海地区风速风向联合概率密度函数的研究[J].同济大学学报.1997,25(2):166-170.
    [94]徐为民,张星琳,孔新红.三种计算风速威布尔分布参数的比较[J].江西电力.2007,31(1):1-3.
    [95]林迟.基于结构全寿命设计需求的环境作用与结构性能退化研究[D].哈尔滨:哈尔滨工业大学土木工程学院,2010.
    [96]Holmes J D. Fatigue life under along-wind loading:closed-form solutions [J]. Engineering structures.2002,24:109-114.
    [97]Havard D G, Perry 0 C. Lattice tower member fatigue and its control using a novel damping scheme [J]. Power Engineering Society Summer Meeting, IEEE, Seattle, WA, USA.2000.4:2560-2565.
    [98]周春良.钢结构塔架的风振疲劳分析[D].武汉:武汉大学土木工程学院,2005.
    [99]汪之松,李正良,肖正直等.输电塔线耦合体系的风振疲劳时域分析[J].华南理工大学学报(自然科学版).2010,38(4):106-111.
    [100]欧进萍,叶骏.结构风振的概率疲劳累积损伤[J].振动工程学报.1993,6(2):164-169.
    [101]王之宏,桅杆结构的风振疲劳分析[J].特种结构,1994,11:3-8.
    [102]屠海明,邓洪洲,基于频域的桅杆结构风振疲劳分析[J].特种结构,1999,15:34-36.
    [103]邓洪洲,温应龙,何鹏飞,格构式桅杆顺风向风振疲劳可靠性分析[J].特种结构,2004,21:31-35.
    [104]M. Virlogeux. Wind design and analysis for the Normandy Bridge, in:A. Larsen(Ed.) [C]. Aerodynamics of Large Bridges, Balkema, Rotterdam,1992, pp.183-216.
    [105]陈艾荣,陈华婷,项海帆.大跨桥梁风致疲劳可靠度近似分析及寿命估算[J].土木工程学报,1999,32(3):28-33.
    [106]Gu M, Xu YL, Chen LZ, Xiang HF. Fatigue life estimation of steel girder of Yangpu cable-stayed Bridge due to buffeting [J]. Journal of Wind Engineering and Industrial Aerodynamics.1999(80):383-400.
    [107]Xu YL, T. T. Liu, W. S. Zhang. Buffeting-induced fatigue damage assessment of a long suspension bridge [J]. International Journal of Fatigue.2009,31(3):575-586.
    [108]杨咏漪,廖海黎,李永乐.大跨度桥梁风致抖振疲劳频域分析[J].空气动力学学报.2009,27(1):11-16.
    [109]卢伟,强士中,蒋永林.斜拉索抖振疲劳可靠度分析[J].中国公路学报.2001,14(4):63-66.
    [110]徐集云.舟山大陆连岛工程工程可行性研究——气象观测、风参数研究报告[R].杭州:浙江省气候中心,2002.
    [111]Edmund C.C.Choi. Wind-driven rain and driving rain coefficient during thunderstorms and non-thunderstorms [J]. Journal of Wind Engineering and Industrial Aerodynamics.2001,89:293-308.
    [112]Bert Blocken, Jan Carmeliet. High-resolution wind-driven rain measurements on a low-rise building—experimental data for model development and model validation [J]. Journal of Wind Engineering and Industrial Aerodynamics.2005,93:905-928.
    [113]周俊华.中国台风灾害综合风险评估研究[D].北京:北京师范大学资源学院,2004.
    [114]贡力.黄土高原降雨雨滴动能的侵蚀计算[J].兰州交通大学学报(自然科学版),2005,24(4):43-45.
    [115]姚文艺,陈国祥.雨滴降落速度及终速公式[J].河海大学学报.1993,21(3):21-27.
    [116]刘庆宽.斜拉索风雨振研究现状和尚待解决的问题[J].石家庄铁道大学学报(自然科学版).2010,23(2):53-58.
    [117]顾明,许树壮.风雨共同作用下平板模型的气动导数试验研究[J].土木工程学报.2004,37(10):73-77.
    [118]辛大波.桥梁风雨致颤振稳定性分析及边界层控制方法[D].哈尔滨:哈尔滨工业大学土木工程学院,2008.
    [119]N. Kikuchi, Y. Matsuzaki, T. Yukino et al. Aerodynamic drag of new-design electric power wire in a heavy rainfall and wind [J]. Journal of Wind Engineering and Industrial Aerodynamics.2003, (91):41-51.
    [120]任月明.风雨激励下输电塔线体系的动力响应分析[D].大连:大连理工大学土木工程学院,2007.
    [121]吴小平.低层房屋风雨作用效应的数值研究[D].杭州:浙江大学土木工程学院,2008.
    [122]M.H. Faber, S. Engelund, R. Rackwitz. Aspects of parallel wire cable reliability [J]. Structural Safety.2003(25):201-225.
    [123]C.Cremona. Prabobilistic approach for cable residual strength assessment [J]. Engineering Structures.2003(25):377-384.
    [124]John Matteo, George Deodatis, David P. Billington. Safety analysis of suspension-bridge cables:Williamsburg Bridge [J]. Journal of Structural Engineering.1994,120(11):3197-3211.
    [125]朱劲松,肖汝诚.大跨度斜拉桥拉索安全性分析方法研究[J].土木工程学报.2006,39(9):74-79.
    [126]徐伟,张敏编译.受腐蚀桥梁钢丝的力学性能和剩余强度[J].世界桥梁.2006,(2):54-58.
    [127]尚鑫,徐岳.基于灰色理论的斜拉桥拉索安全性评价[J].长安大学学报(自然科学版).2004,24(1):52-55.
    [128]赵玲,李爱群,缪长青等.大跨斜拉桥的拉索损伤识别[J].桥梁建设.2004,(5):19-22.
    [129]徐宏.桥梁拉(吊)索损伤后力学分析及安全评价[D].西安:长安大学土木工程学院,2008.
    [130]Ou Jinping. Some recent advances of intelligent health monitoring systems for civil infrastructures in mainland China [C]. Proceedings of the First International Conference on Structural Health monitoring and Intelligent Infrastructure. Tokyo, Japan,2003:131-144.
    [131]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[J].土木工程学报.2006,39(4):45-53.
    [132]杨世杰.动态测试数据中坏点处理的一种新方法—绝对均值法及应用研究[J].中国测试技术.2006,32(1):47-49.
    [133]中华人民共和国交通部[S].公路桥梁抗风设计规范(JTG/T D60-01-2004).北京:人民交通出版社,2004.
    [134]Choi. E. C. C. Wind loading in Hong Kong:commentary on the Code of Practice on Wind Effects Hong Kong-1983[R]. Hong Kong:Hong Kong Institution of Engineers,1983.
    [135]Ishizaki.H. Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions [J]. Journal of Wind Engineering and Industrial Aerodynamics.1983(13):55-66.
    [136]Cao S. Y., Tamura Y., Kikuchi N. et al. Wind characteristics of a strong typhoon [J]. Journal of Wind Engineering and Industrial Aerodynamics.2009(97):11-21.
    [137]盛裴轩.大气物理学[M].北京:北京大学出版社,2003.
    [138]曾超.钢桥构件按疲劳寿命服从威布尔分布的可靠度计算[J].西南交通大学学报,1993,5:20-23.
    [139]李冬生.拱桥吊杆损伤监测与健康诊断[D].哈尔滨:哈尔滨工业大学土木工程学院,2007.
    [140]Watson Stewart C, Stafford David. Cable in trouble [J]. Civil Engineering, ASCE,1988(4):38.
    [141]刘亚平,李晖,魏绪玲.高密度聚乙烯户外自然老化的力学性能研究[J].山东化工.2007,36(8):5-7.
    [142]徐宏.桥梁拉(吊)索损伤后力学分析及安全评价[D].西安:长安大学土木工程学院,2008.
    [143]李仲,吕国志,葛森.一种预测坑蚀腐蚀疲劳寿命的概率模型[J].机械强度.2004,26(s):226-228.
    [144]Martin A, Sanchez-Galvez V, Llorca J. Corrosion fatigue of cold drawn eutectoid steel wires in artificial seawater [C]. Environment Assisted Fatigue. London: Mechanical Engineering publications,1990:435-447.
    [145]王荣.腐蚀疲劳裂纹扩展的断裂模型[J].中国腐蚀与防护学报.1998,18(2):87-94.
    [146]陈群志,齐贤德,吴志超等.威布尔分布三参数估计的模糊—随机方法[J].强度与环境.2001,(1):43-47.
    [147]徐俊.拉索损伤演化机理与剩余使用寿命评估[D].上海:同济大学土木工程学院,2006.
    [148]欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑,1995,25(8):11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700