用户名: 密码: 验证码:
汽油发动机中若干非线性估计与控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油发动机中若干非线性估计与控制问题研究
     随着油耗、排放法规的不断升级以及人们对汽车驾驶舒适型及动力性要求的不断提高,国内外很多学者和汽车生产厂商联合起来不断加快对汽车发动机新技术及相关电控技术产品的研究和开发,新技术的应用引入了诸多新型电控执行器,增加了动力学耦合的复杂程度,使得汽油机电控系统的设计越来越复杂。为了缩短控制系统设计的开发周期,减小标定的工作量,并提高控制性能,各国汽车研究机构在基于模型的控制系统设计方面展开了大量研究。本文结合非线性控制理论,基于反馈线性化、Backstepping和输入到状态稳定性(Input to State Stability, ISS)的设计理论,围绕汽油发动机中的典型控制问题展开研究,其中包括发动机气路控制系统设计、电子节气门控制、怠速控制以及发动机有效扭矩估计。
     本文以传统的4缸进气道喷射汽油发动机为研究对象,利用平均值建模机理,将模型中不易考虑的容积效率、摩擦扭矩等非线性因素以工程中常用的数据图表map的形式保留在所搭建的模型中,建立面向控制器设计的机理/map混合描述的汽油机模型。将高精度发动机动力学模型enDYNA作为虚拟发动机,对建模和控制中所需的map及发动机模型基本参数进行标定和模型验证。在此基础上,采用以扭矩需求为中心的发动机控制思想,通过气路控制实现发动机的扭矩需求。首先设计了基于逆动力学的气路控制系统,包括进气歧管压力规划、节气门开度规划和节气门开度跟踪控制,该方法结构简单、易于工程实现,但是低转速工况时,稳态误差较大。为了提高发动机的扭矩输出性能,利用反馈线性化方法,设计了外环进气歧管压力跟踪控制器,结合电子节气门跟踪控制器,构成了双闭环气路控制系统。接着通过离线仿真说明双闭环气路控制系统具有更好的跟踪性能。为进一步验证双闭环气路控制系统的实时性及在更真实环境下的控制器效果,在基于xPC-Target和dSPACE实时系统的发动机硬件在环仿真台架上,进行了控制器快速原型试验和HiL试验,验证了双闭环气路控制器的实时性和有效性。
     电子节气门作为气路控制的最终执行机构,其控制效果对气路控制起到了至关重要的作用。因此,本文以某款轿车中的节气门为被控对象,建立了面向控制器设计的非线性电子节气门模型,通过与节气门实物的正负阶跃响应对比,完成了模型校验。针对电子节气门系统的非线性特性,采用Backstepping方法设计电子节气门跟踪控制器,同时设计了一个降阶观测器估计不可测的状态变量,进而构成了基于观测器的输出反馈电子节气门控制系统。将模型不确定性和观测器误差等看作外部扰动,在ISS理论框架下分析了跟踪误差系统的鲁棒性,并据此给出了选择控制器参数的指导性原则。为了减小系统的跟踪静差,在控制器中引入了跟踪误差的积分项以抑制跟踪静差。最后,通过离线仿真验证了控制系统的有效性,进一步,通过快速原型试验及HiL试验验证控制系统能够很好的满足电子节气门的跟踪控制要求。
     怠速控制是发动机控制领域最具挑战性的控制问题之一,怠速控制的质量对燃油经济性、排放、燃烧稳定性及舒适性产生重大的影响。本文基于机理/map混合描述的发动机模型,针对发动机模型的非线性特性,将Backstepping和ISS理论相结合的控制系统设计方法应用于汽油机怠速控制器设计,并给出了控制器参数的设计流程,同时针对已知的外部负载扭矩,通过点火提前角的前馈补偿抑制负载扭矩的影响,最后通过机理/map混合模型和enDYNA模型的离线仿真验证控制算法的有效性。
     发动机的扭矩信息在基于扭矩的发动机管理系统中起到了至关重要的作用。在实验室中,通常是通过气缸压力传感器测量气缸的压力计算得到发动机的指示扭矩,有效扭矩可以通过指示扭矩减去损失扭矩得到。然而,气缸压力传感器过于昂贵,而且在技术上并不适用于批量生产的发动机。因此,需要采用间接的方法来估计得到发动机的有效扭矩。本文在机理/map混合模型的基础上,采用反馈线性化方法设计了非线性发动机转速跟踪控制器,进而通过发动机转速跟踪控制对扭矩产生模型中的有效扭矩进行动态补偿,得到实际发动机的有效扭矩。仿真结果表明,该方法可以准确的估计发动机的扭矩信息。进一步,通过enDYNA模型仿真,验证了估计方法的有效性。
     本论文将非线性的控制理论与方法用于发动机控制系统中控制与估计问题。采用反馈线性化方法设计气路控制算法和扭矩估计算法;同时将ISS理论和Backstepping技术相结合,设计了电子节气门控制算法和怠速控制算法,使得考虑模型不确定性的Backstepping设计更加条理化,并给出了部分控制器参数选取的设计流程,取得了较好的控制效果。本文中尚有部分内容需要进一步探讨和深究:(1)电子节气门控制器设计时忽略了齿轮齿隙非线性影响,需要进一步研究以提高电子节气门的控制效果;(2)本文的扭矩估计算法和怠速控制算法只进行离线仿真,因此,需要进一步通过快速原型试验和HiL试验验证控制算法的有效性及实时性;(3)本文的气路控制算法和电子节气门控制算法并没有进行联合仿真,因此,有待进一步研究;(4)上述控制与估计方法均未进行实车验证,今后将围绕部分算法的台架试验及实车试验展开研究。
To improve fuel economy, reduce emission and enhance driving performance, manyscholars and car manufacturers get together to accelerate the research and developmentof the automobile engine control systems and related technology products. The applica-tion of new technologies relay on many new electronic control actuators, which make thegasoline electrical control system more and more complex. In order to shorten the devel-opment cycle of the control system design, reduce the calibration of the development ofcontrol software and improve the control performance, a large number of automotive re-searchers focus on model-based control system design method. This thesis uses the newlydeveloped robust nonlinear control theory, including feedback linearization, Backsteppingtechnology and input to state stability (ISS) theory, to address some typical estimationand control issues of gasoline engine. The following issues are investigated: estimation ofengine torque, airpath control system design of gasoline engine, electronic throttle controland idle speed control.
     In this paper, we consider the traditional four-cylinder PFI gasoline engine as theresearch object, using the mean value modeling theory, the engine volumetric efciencyand which are difcult to mathematical description are considered as map experimen-tal data commonly utilized in automobile engineering, a physics/map mixed descriptionengine model is established for controller design. The engine dynamic model enDYNAwhich has high precision is used as a virtual engine to calibrate the parameters of enginemodel and data of the maps. In this case, torque-based engine control architecture iswidely adopted to manage of the engine torque output. In this paper, the airpath controlsystem is designed to achieve the engine torque demand. Firstly, the control system basedon inverse-dynamic is designed, including the intake manifold pressure planning, throttleopening planning and tracking. This method can be applied in the case of simple struc-tured controller, easy realization in hardware, and low precision of systems, but steadyerror is much larger when the engine speed is low. In order to improve the performanceof the engine torque output, a dual closed-loop airpath control system is designed, thecontrol system consists of a intake manifold pressure tracking controller which is designedusing feedback linearization method and a electronic throttle tracking controller. Fol-lowed by ofine simulation results show the dual closed-loop airpath control system hasbetter tracking performance, the hardware in-the-loop platform based on xPC-Target and dSPACE real-time system is used to verify that dual-closed-loop air path control systemnot only ensures a good quality of the performance for reliability in real-time but also theefectiveness in practical application. The experiment results show that the control sys-tem mentioned above gives a good tracking performance even in a more actual condition.And it is emphasized that this study is of great worth in practical application.
     Electronic throttle as the eventually implementing agencies, its control performanceplays a crucial role in airpath control. Therefore, we choose a electronic throttle body incommercial cars as control objective, a control-oriented nonlinear model is established.In order to verify the reliability of the model, the model validation is carried out usingthe electronic throttle body. For the nonlinear characteristics of the electronic throttlesystem, the Backstepping technology is applied to derive the nonlinear controller, and areduced-order observer is designed to estimate the unmeasurable state. Combining thenonlinear controller and the observer, an observer-based output feedback control schemeis presented. Robustness of the tracking error system is discussed in the framework of ISStheory, where model uncertainties are considered as additive disturbance inputs. Basedon this, a guideline for selecting the controller parameters is given. In order to reduce theofset, an integral action of the tracking error is introduced. On the basis of good of-linesimulation results, the rapid prototyping experiment and HiL experiments are carried outto demonstrate the efectiveness of the proposed control scheme.
     The idle speed control is one of the most important automotive control problemsto reduce emission. In this paper, based on the physics/map mixed description enginemodel, a nonlinear idle speed controller is derived using Backstepping and the robustnessof the tracking error system is discussed in the framework of ISS theory, and a guidelinefor selecting the controller parameters is given. For the known external load torque,ignition advance angle compensation algorithm is introduced to reduce the influence ofload torque. The simulation results verify the efectiveness of the controller.
     The engine torque is a key variable in engine torque management system. In a lab-oratory, the indicated torque is usually calculated by in-cylinder pressure obtained frompressure transducers. The efective torque can be also obtained by subtracting torquelosses. However, such in-cylinder pressure sensors are too expensive and not technicallyavailable for commercial production engines. Thus, indirect methods to measure enginetorque are required. In this paper, based on the physics/map mixed description enginemodel, the feedback linearization method is adopted to design the nonlinear engine speedtracking controller. The actual engine efective torque is obtained by the efective torquegenerated by the torque production model and the torque compensation from the track-ing controller. The simulation results show that the nonlinear tracking controller has good tracking performance. Therefore, this method can be estimated the engine torqueaccurately. Furthermore, the enDYNA-based simulation results verify the validity of theestimation method.
     In this thesis, the nonlinear control theory is applied for the nonlinear control and es-timation problem of automotive engine. Airpath control algorithm and torque estimationalgorithm are designed using feedback linearization; Nonlinear method of "Backstepping+ISS" is proposed to designed the electronic throttle algorithm and idle speed algorithm.Introduction of ISS into Backstepping derivation guarantees the controller's robustnessagainst the modeling uncertainties, the above algorithms all achieve good control efect.However, further research needs to be done since some problems are still remain to besolved gradually. For example:(1)the nonlinearity of the gear backlash is ignored in theelectronic throttle controller, which needs to be considered to improve the control efect;(2)the torque estimation algorithm and idle speed control algorithm are only tested by of-line simulation and rapid prototyping experiment, therefore, the HiL experiment shouldbe carried out for further test;(3)the airpath control algorithms and electronic throttlecontrol algorithm does not co-simulate, therefore, it is waiting for being solved in thefuture study;(4)the in-vehicle test has not been carried out for all algorithms, the majorfuture work should be the implementations of bench and in-vehicle experiments.
引文
[1]杨忠敏.汽车环保打造惠民工程绿色未来引领崭新时代性[J].现代零部件,2008,4:2728.[2]刘德镒,彭璐.石油、天然气漫话[J].资源与生活,2007,4:6769.[3]Average Carbon Dioxide Emissions Resulting From Gasoline and Diesel Fuel[R]. USA:EPA420-F-05-001,2009.[4]肖亚平.国外轻型汽油车排放法规及控制技术的发展概况[J].北京汽车,2000,1:2130.[5]王兆.国汽车燃料经济性标准体系及标准化工作动态[J].全国汽车标准化技术委员会,2009.[6]MURRAY R. Control in an Information Rich World:Report of the Panel on Future Directions in Control, Synamics, and Systems[M]. Philadelphia, PA:SIAM,2003.[7]ISERMANN R. Mechatronic Systems-Innovative Products with Embedded Con-trol[J]. Control Engineering Practice,2008,16:14-29.[8]YANG C. Model-Based Analysis and Tuning of Electronic Throttle Controllers [C] SAE2004World Congress. Detroit, Michigan, USA:SAE International,2004:2004-01-0524.[9]胡云峰,李超,李骏,等.基于观测器的输出反馈电子节气门控制器设计[J].自动化学报,2011,37(6):746754.[10]LEONESSA A, HADDAD W M, HAYAKAWA T. Nonlinear Model Predictive Control for Idle Speed Control of SI Engine[C] The48th IEEE Conference on Decision and Control..[出版地不详]:[出版者不详],2009:65906595.[11]Hu Y F, GONG X, LI J,等. Idle Speed Control of an SI Engine Using Nonlinear Method[C] Proceedings of the30th Chinese Control Conference. Yantai, China:[出版者不详],2011:62456251.[12]HIRAHARA H, YOSHIDA K, IWASE M. Torque Estimation based on Nonlinear Engine Model Considering Crankshaft Torsion[C]2010IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Montreal, Canada:[出版者不详],2010:682687.[13]HONG M N, SHEN T L, OUYANG M G,等. Torque Observers Design for Spark Ignition Engines With Different Intake Air Measurement Sensors [J]. IEEE Trans-actions on Control Systems Technology,2011,19:229-237.[14]胡云峰,黄贵芬,陈虹,等.汽油发动机双闭环气路控制[J].吉林大学学报(工学版),2011,41(1):240244.[15]LEROY T, CHAUVIN J, PETIT N. Motion planning for experimental airpath control of avariable-valve-timing spark ignition engine[J]. Control Engineering Practice,2009,17:1432-1439.[16]CHAUVIN J, CORDE G, PETIT N, et al. Motion planning for experimental air-path control of a diesel homogeneous charge-compression ignition engine[J]. Control Engineering Practice,2008,16:1081-1091.[17]张俊红.汽车发动机构造[M].天津:天津大学出版社,2006.[18]冯健璋.汽车发动机原理与汽车理论[J].机械工业出版社,2005.[19]刘铮,王建昕.汽车发动机原理教程[M].北京:清华大学出版社,2001.[20]WU G. Modified Nonlinear Quadratic Gaussian Control with Guaranteed Stability Margin[C] SAE2006World Congress. Detroit, Michigan, USA:SAE International,2006:2006-01-1466.[21]交通部规划研究院.汽车尾气已经成为大气污染的主要污染源[J].交通运输可持续发展研究,2004,2(7-9).[22]孙运柱,王忠举.汽车发动机电子控制技术的应用现状及展望[J].农业装备与车工程,2008,11(45-47).[23]WANG S W, YU D L, GOMM J B,等. Adaptive Neural Network Model Based Predictive Control for Air-Fuel Ratio of SI Engines[J]. Engineering Applications of Arti?cial Intelligence,2006,19:189-200.[24]YILDIZ Y, ANNASWAMY A, YANAKIEV D,等. Computation of μ with real and complex uncertainties[C] American Control Conference. Washington, USA:[出版者不详],2008:2058-2063.[25]HE B, SHEN T L, KAKO J,等. Input Observer-Based Individual Cylinder Air-Fuel Ratio Control:Modelling, Design and Validation[J]. IEEE Transactions on Control Systems Technology,2008,16:1057-1065.[26]AZZONI P, MORO D, PONTI F. Engine and Load Torque Estimation with Ap-plication to Electronic Throttle Control[C] International Congress and Exposition. Detroit, Michigan, USA:SAE International,1998:980795.[27]SCILLIERI F J, BUCKLAND J H, FREUDENBERG J S. Reference Feedforward in The Idle Speed Control of A Direct-injection Spark-ignition Engine[J]. IEEE Transactions on vehicular technology,2005,54(1):51-61.[28]BOBER T, SHIH F Y. Image Processing-Based Methodology for Optimizing Au-tomotive Ignition Timing[J]. IEEE Transactions on Vehicular Technology,2008,58(1):85-92.[29]HILLION M, CHAUVIN J, PETIT N. Analysis of linear systems with saturation using convex optimizaiton[C] The47th IEEE Conference on Decision and Control. Cancun, Mexico:[出版者不详],2008:5635-5642.[30]吴平友,黄河,程庆.汽油发动机爆震分析与控制[J].传动技术,2003,3:36-38.[31]万曼影,王俊雄,邓真全,等.汽车发动机的爆震分析与控制[J].噪声与振动控制,2001,3:43-47.[32]陈贤章,谢悦孝,杨东来,等.电喷汽油机爆燃控制的策略及试验研究[J].汽车工程,2005,27(1):31-34.[33]OGAJI S O, MARINAI L, SAMPATH S,等. Gas-turbine Fault Diagnostics:a Fuzzy-Logic Approach[J]. Applied Energy,2005,1(82):81-89.[34]WANG X, KRUGER U, IRWIN G W. Nonlinear PCA with the Local Approach for Diesel Engine Fault Detection and Diagnosis [J]. IEEE Transactions on Control Systems Technology,2008,16(1):122-129.[35]WANG M H, CHAO K H, SUNG W T,等. Using ENN-1for Fault Recognition of Automotive Engine[J]. Expert Systems with Applications,2010,37(4):2943-2947.[36]魏国凯.汽车排放法规的现状及发展[J].汽车世界,1996,6(4-6).[37]肖亚平.国外轻型汽油车排放法规及控制技术的发展概况[J].北京汽车,2000,1(20-30).[38]ROSSI C, TILLI A, TONIELLI A. Robust Control of a Throttle Body for Drive by Wire Operation of Automotive Engines [J]. IEEE Transactions on Control Systems Technology,2000,8(6):993-1002.[39]MULLER M, OLIN M P. Dynamic EGR Estimation for Production Engine Con-trol[C] SAE2001World Congress. Michigan, USA:SAE International,2001:2001-01-0553.[40]KOLMANOVSKY I, SUN J, DRUZHININA M. Charge Control for Direct Injection Spark Ignition Engines with EGR[C] IEEE Proceedings of the American Control Conference. Chicago, Illinois, USA:IEEE Press,2000:34-38.[41]LIVSHIZ M, KAO M, WILL A. Engine Torque Control Variation Analysis[C] SAE2008World Congress, Detroit, Michigan. USA:SAE International,2008,April14-17:2008-01-1016.[42]HEINTZ N, MEWS M, STIER G. An Approach to Torque-Based Engine Manage-ment Systems[C] SAE2001World Congress Detroit, Michigan. USA:SAE Interna-tional,2001:2001-01-0269.[43]SATOU S, NAKAGAWA S, KAKUYA H. An Accurate Torque-based Engine Con-trol by Learning Correlation between Torque and Throttle Position[C]2008World Congress Detroit, Michigan. USA:SAE International,2008,April14-17:2008-01-1015.[44]LEROY T, ALIX G, CHAUVIN J. Modeling Fresh Air Charge and Residual Gas Fraction on a Dual Independent Variable Valve Timing SI Engine[C] SAE Int.J.Engines. USA:2008SAE International,2008:2008-01-0983.[45]GUZZELLA L, ONDER C H. Introduction to Modeling and Control of Internal Combustion Engine Systems[M]. ETH-Zentrum,Switzerland:2010Springer-Verlag Berlin Heidelberg,2010.[46]CICHY M, KONCZAKOWSKI M. Bond Graph Model of the IC Engine as an Element of Energetic Systems[J]. Mechanism and Machie Theory,2001,36:683-687.[47]JOSEPH J S, BUCKLAND J H, FREUDENBERG J S. Reference Feedforward in the Idle Speed Control of a Direct-Injection Spark-Ignition Engine [J]. in IEEE Transactions on Control Systems Technology,2005.1,54.[48]郭宏志.汽油发动机怠速工况下控制方法的研究[M].吉林大学:博士论文,2009.[49]FONS M, MULLER M, CHEVALIER A. Mean Value Engine Modelling of an SI En-gine with EGR[C] International Congress and Exposition Detroit, Michigan. USA: SAE International,1999,March1-4:1999-01-0909.[50]HENDRICKS E, VESTERHOLM T. Modelling of the Intake Manifold Filling Dy-namics[C] International Congress and Exposition Detroit, Michigan. USA:SAE International,1996:960037.[51]HENDRICKS E, SORENSON S. Mean Value Modelling of Spark Ignition Engines[C] SAE International Congress and Exposition, Detroit,. USA:SAE International,1990:900616.[52]JUNG M. Mean-Value Modelling and Robust Control of the Airpath of a Tur-bocharged Diesel Engine[M]. Cambridge,United Kingdom:Department of Engi-neering University of Cambridge,2003.2.[53]MOSTOFI M, SHAMEKHI A, GORJI-BANDPY M. Modified Mean Value SI Engine Modeling (EGR Included)[C]//University of Mazandaran. Konya, Turkey:Pro-ceedings of the International Conference on Modeling and Simulation,2006,August28-30.[54]黄贵芬.汽油发动机气路控制算法研究[M].吉林大学:硕士论文,2011.[55]BUTTS K, SIVASHANKAR, SUN J. Feedforward and feedback design for engine idle speed control using l1optimization[C] Proceedings of the American Control Conference. USA:IEEE Press,1995:2587-2590.[56]BALLUCHI A, BENVENUTI L,DI BENEDETTO M D, et al. Nonlinear and Hybrid Systems in Automotive Control, ch. Idle speed control synthesis using an assume-guarantee approach [J]. UK:Springer-Verlag,2002:229-243.[57]BALLUCHI A, BENVENUTI L,DI BENEDETTO M. Automotive engine control and hybrid systems:challenges and opportunities[C] Proceedings of the2000IEEE. USA:IEEE Press,2000,July7:888-912.[58]李姝.基于预测控制的汽油发动机怠速控制方法研究[M].吉林大学:博士论文,2011.[59]WENDEKER M, NIEWCZAS A. A Stochastic Model of the Fuel Injection of the SI Engine[C]2000World Congress Detroit, Michigan. USA:SAE International,2000:2000-01-1088.[60]UTKIN V I. Sliding Modes in Control and Optimization[M]. Berlin:Springer-Verlag,1992.[61]郭晓林,胡纪滨,苑士华,et al. DCT系统换档品质的控制方法[J].机械科学与技术,2006,25(6):698701.[62]SWAROOP D, HEDRICK J K, YIP P P,等. Dynamic Surface Control for a Class of Nonlinear Systems[J]. IEEE Trans. Automat. Contr.,2000,45(10):1893-1899.[63]UTKIN V I, CHANG H C. Sliding mode control on electro-mechanical systems [J]. Mathematical Problems in Engineering,2002,8(4):451-473.[64]MASMOUDI R A, HEDRICK K. Estimation of vehicle shaft torque using nonlin-ear observers [J]. ASME J. Dynamic Systems, Measurement, and Control,1992,114:394-400.[65]WATECHAGIT S, SRINIVASAN K. On-line estimation of operating variables for stepped automatic transmissions[C] IEEE Conference on Control Applications (CCA2003). Istanbul, Turkey:[出版者不详],2003,第1卷:279284.[66]YOKOYAMA M. Sliding Mode Control for Automatic Transmission Systems [J]. Journal of the Japan Fluid Power System Society,2008,39(1):34-38. in Japanese.[67]SLOTINE J J E, LI W. Applied Nonlinear Control[M]. Englewood Cliffs, NJ: Prentice-Hall,1991.[68]LINDLAU J D, KNOSPE C R. Feedback linearization of an active magnetic bearing with voltage control [J]. IEEE transactions on control systems technology,2002,10(1):21-31.BUCKNER G D, SCHUETZE K T, BENO J H. Intelligent feedback linearization for active vehicle suspension control[J]. ASME Journal of dynamic systems, measure-ment, and control,2001,123(4):727-733.[70]BIN Y, LI K Q, UKAWA H, et al. Modelling and control of a non-linear dynamic system for heavy-duty trucks [J]. Proceedings of the Institution of Mechanical En-gineers, Part D:Journal of Automobile Engineering,2006,220(10):1423-1435.[71]KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P. Nonlinear and Adaptive Con-trol Design[M]. New York:Wiley-Interscience,1995.[72]HUANG C I, FU L C. Adaptive Approach to Motion Controller of Linear Induction Motor with Friction Compensation[J]. IEEE/ASME Transactions on Mechatronics,2007,12(4):480-490.[73]ALLEYNE A, LIU R. A simplified approach to force control for electro-hydraulic systems[J]. Control Engineering Practice,2000,8(12):1347-1356.[74]URSU I, URSU F, POPESCU F. Backstepping design for controlling electrohydraulic servos[J]. Journal of the Franklin Institute,2006,343(1):94-110.[75]KADDISSI C, KENNE J P, SAAD M. Identification and Real-Time Control of an Electrohydraulic Servo System Based on Nonlinear Backstepping [J]. IEEE/ASME Transactions on Mechatronics,2007,12(1):12-22.[76]陈虹,胡云峰,郭宏志,等.基于Backstepping方法的电子节气门控制[J].控制理论与应用,2011,28(4):491496.[77]GAO B Z, CHEN H, Hu Y F,等. Nonlinear Feedforward-feedback Control of Clutch-to-clutch shift technique[J]. Vehicle System Dynamics,2011:1-17.[78]GONG B, Hu Y F, SUN P Y,等2012. A Nonlinear Feedforward-Feedback Controller Design for Electronic Throttle Based on Flatness, to appear in the Proceedings of the24th Chinese Conference on Decision and Control.[79]RUAN J H, YANG F G, SONG R,等. Study on ADRC-Based Intelligent Vehicle Lateral Locomotion Control[C] Proceedings of the7th World Congress on Intelligent Control and Automation..[出版地不详]:[出版者不详],2008:26192624.[80]LIU Q F, GONG X, Hu Y F,等. Design of an ADRC Controller for Idle Speed Con-trol of an SI Engine[C]2011Chinese Automation Conference..[出版地不详]:[出版者不详],2011.[81]DUAN H D, TIAN Y T, WANG G B. Trajectory tracking Controller design of high-order Ball and Plate System based on Improved Auto-disturbance Rejection Controller [C] Proceedings of the3rd International Symposium on Systems and Con-trol in Aeronautics and Astronautics..[出版地不详]:[出版者不详],2010:8085.[82]郑大钟主编.线性系统理论(第2版)[M].北京:清华大学出版社,2002.10.[83]胡寿松主编.自动控制原理(第4版)[M].北京:科学出版社,2001.[84](美)哈里尔.非线性系统[M].北京:电子工业出版社,2007.[85]KHALIL H. Nonlinear Systems[M]. NJ:Prentice-Hall,2002.[86]SONTAG D E. Input to State Stability:Basic Concepts and Results[M]. Berlin: Lecture Notes in Mathematics,2005.[87]伍卓群,尹景学,王春朋.椭圆与抛物型方程引论[M].长春::科学出版社,2003.[88]PUSHKARAJ A P. Dynamic Modeling and Control of Port Fuel Injection En-gines [M].[出版地不详]:[出版者不详],2005.[89]黄海燕主编.汽车发动机试验学教程[M].北京:清华大学出版社,2009.1.[90]北京九州恒润科技有限公司Tesis DYNAware-基于Matlab/Simulink的车辆动力学实时仿真模型[J]. CAD/CAM与制造业信息化,2004,03:7274.[91]包重生.四缸汽油发动机电控系统设计及其仿真系统研究[M].湖南长沙:中南大学硕士学位论文,2007.4.[92]周龙保主编.内燃机学[M].北京:机械工业出版社,2005.1.[93]杨万福主编.发动机原理与汽车性能[M].北京:高等教育出版社,2004.7.[94]朱二欣.电子节气门控制系统的开发研究[M].长春:吉林大学汽车工程学院,2005.[95]杜开明.汽车电子节气门控制仿真与试验研究[M].重庆:重庆大学,2004.[96]苑青.节气门体结构简介[M].天津:天津爱三汽车附件有限公司,2004.[97]PURSIFULL R, KEENER H. Motorized Throttle Positioning Simulation Model[C] SAE2003World Congress. Detroit, Michigan, USA:SAE International,2003:2003-01-0222.[98]李超.基于观测器的输出反馈电子节气门控制器设计[M].吉林大学:硕士论文,2011.[99]LEROY T, CHAUVIN J, PETIT N. Airpath Control of a SI Engine with Vari-able Valve Timing Actuators[C] American Control Conference. USA:IEEE Press,2008:2078-2083.[100]CHAUVIN J, CORDE G, PETIT N. Experimental Motion Planning in Airpath Control for HCCI engine[C] Proceedings of the2006American Control Conference. USA:IEEE Press,2006:1874-18793.[101]SWAROOP J K D. ANDHEDRICK, YIP P P, GERDES J C. Dynamic Surface Control for a Class of Nonlinear Systems [J]. IEEE Transactions on Automatic Control,2008:1893-1899.[102]YANG C. Model-based analysis and tuning of electronic throttle con-trollers [C]//2004SAE World Congress,. Detroit, Michigan:[出版者不详],2004.March8-11.[103]黄贵芬,陈虹,胡云峰.基于模型和MAP图的汽油发动机气路控制[C]第29届中国控制会议.北京:IEEE Press,2010,July29-31:6010-6015.[104]贾秀敏.基于状态观测器的空燃比控制[M].吉林长春:吉林大学硕士学位论文,2009.[105]郭宏志.汽油发动机怠速工况下控制方法的研究[M].吉林长春:吉林大学博士学位论文,2009.4.[106]STREIB M H, BISCHOF H. Electronic Throttle Control(ETC):A Cost Effective System for Improved Emissions, Fuel Economy, and Driveability[C] International Congress Exposition. Detroit, Michigan, USA:SAE International:1996.[107]BOSCH汽车工程手册[M].北京:北京理工大学出版社,1999.[108]BOSCH. Technieal Customer Information[M]. Gennan:Bosch Corpomtion,2000.[109]ASSADI A S, BREITINGER J, MICHAEL T. Electronic Throttle Simulation Using Nonlinear Hammerstein Model[C] SAE2006World Congress. Detroit, Michigan, USA:SAE International,2006:2006-01-0112.[110]DEUR J, PAVKOVIC D, PERI N,等. An adaptive nonlinear strategy of electronic-throttlecontrol[C] SAE2004World Congress. Detroit, Michigan, USA:SAE Inter-national,2004:2004-01-0897.[111]郭孔辉,付皓,丁海涛.汽车电子节气门控制器开发[J].科学技术与工程,2008,8(2).[112]SANTIS E D, BENEDETTO M D D, BERARDI L. Computation of maximal safe sets for switching systems [J]. IEEE Transactions Automatic Control,2004,49:184-195.[113]BUTTS K R, SIVASHANKAR N, SUN J. Application of l1Optimal Control to the Engine Idle Speed Control Problem [J]. IEEE Transactions on Control System Technology,1999,7(2):258-270.[114]HROVAT D, JING S. Models and control methodologies for IC engine idle speed control design[J]. Control Engine Practice,1997,5(8):1093-1100.[115]KIENCKE U, NIELSEN L. Automotive control systems[M]. Berlin:Springer-Verlag,2000.[116]YILDIZ Y, ANNASWAMY A, YANAKIEV D,等. Adaptive Idle Speed Control for Internal Combustion Enginess[C] American Control Conference..[出版地不详]:[出版者不详],2007:37003705.[117]XUE J L, GAO Q, JU W P. Reinforcement Learning for Engine Idle Speed Control [C] International Conference on Measuring Technology and Mechatronics Automation[出版地不详]:[出版者不详],2010:10081011.[118]SHARMA R, NNSIC D, MANZIE C. Idle speed control using linear time varying model predictive control and discrete time approximations[C] IEEE International Conference on Control Applications..[出版地不详]:[出版者不详],2010:11401145.[119]BALLUCHI A, ZONCU M. A nonlinear hybrid model of a4-cylinder engine for idle speed control[M].[出版地不详]:Test Casefor the Computation and Control European Project,2004.[120]CAVINA N, MINELLI G, CAGGIANO M. Model-Based Idle Speed Control for a High Performance Engine[J]. SAE,2003,2003-01-0358.[121]MENCHER B, JESSEN H, KAISER L,等. Preparing for CARTRONIC-interface and new strategies for torque coordination and conversion in a spark ignition engine-management system[C] presentedat the SAE World Congress..[出版地不详]:[出版者不详],2001:2001010268.[122]HONG M N, SHEN T L, OUYANG M G,等. Torque Observers Design for Spark Ignition Engines With Different Intake Air Measurement Sensors [J]. IEEE Trans-actions on Control System Technology,2011,19(1):229-237.[123]AMANO N. Method of calculating engine torque[M]. U.S.:Patent,2004.[124]MOSKWA J J, HEDRICK J K. Modeling and validation of automotive en-gines for control algorithm development [J]. J. Dyn. Syst., Meas. Control,1992,114(2):278-285.[125]STOTSKY A. Computationally efficient filtering algorithms for engine torque esti-mation[J]. J. Automobile Eng.,2005,219(9):1099-1107.[126]KAO M, MOSKWA J J. Model-based engine fault detection using cylinder pressure estimates from nonlinear observers[C] Proc.33rd IEEE Conf. Dec. Control..[出版地不详]:[出版者不详],1994:2742-2747.[127]FALCONE P, FIENGO G, GLIELMO L. Non-linear net engine torque estimator for internal combustion engine[C] Proc. IFAC Symp. Adv. Autom. Control. Salerno, Italy,:[出版者不详],2004:125130.[128]LEE B, RIZZONI G, GUEZENNEC Y,等. Engine control using torque estimation[C] SAE World Congr..[出版地不详]:[出版者不详],2001.2001-01-0995.[129]CHAUVIN J, CORDE G, MOULIN P,等. Real-time combustion torque estimation on a diesel engine test bench using time-varying Kalman fitlering[C] Proc.43rd IEEE Conf. Dec. Control..[出版地不详]:[出版者不详],2004:1688-1694.[130]GRUNBACHER E, KEFER P, DELRE L. Estimation of the mean value engine torque using an extended Kalman filter[C] SAE World Congr..[出版地不详]:[出版者不详],2005:2005-01-0063.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700