用户名: 密码: 验证码:
AZ91D镁合金—漂珠复合材料的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基复合材料具有高的比强度和比刚度,可以改善镁合金的耐热和耐磨损性能,是汽车、电子工业及航空航天领域中最有希望采用的一种复合材料。镁基复合材料的成本主要取决于增强相和制备工艺,针对不同工作条件的要求,研发高性能、低成本、易规模化生产的镁基复合材料仍是当前研究的主要任务。研究表明,采用廉价的增强相是降低镁基复合材料成本的最有效途径,因此,寻找成本更低的增强相制备颗粒增强镁基复合材料,使之满足不同工况的使用需求,具有重要的实用价值。本文采用搅熔铸造法,以资源丰富、成本低廉的粉煤灰漂珠为添加物,开发了一种新型的AZ91D镁合金-粉煤灰漂珠复合材料,并对其开展了室温准静态、动态和高温压缩变形行为以及摩擦磨损性能的研究。采用光学显微镜、扫描电镜(SEM)和透射电镜(TEM)等方法,研究了铸态复合材料的显微组织和界面结构;同时,以漂珠为反应物,通过调控制备工艺,原位制备出内生Mg2Si/AZ91D复合材料。
     在研究过程中,设计了用于镁合金熔体浇注的底注式低碳钢模具,有效地节省了镁合金原料,避免了在试样浇注过程中因熔体保护不好而出现氧化的情况,使试样制备简便易行。
     本文主要研究内容和研究结果如下:
     (1)计算了AZ91D镁合金-漂珠体系中各组元之间可能发生的反应的吉布斯自由能,建立了该体系反应的动力学模型,导出了漂珠在基体中沉降的速度方程。通过调控制备工艺参数,成功制得了漂珠/AZ91D复合材料,得到了有关参数对体系反应动力学的影响规律。
     (2)系统地研究了在半固态温度区间内,搅拌温度、时间和速度对漂珠/AZ91D复合材料组织的影响,获得了制备该复合材料的最佳工艺;研究了该复合材料的密度和热膨胀系数等物理性能以及硬度和拉伸强度等力学性能。结果表明:随着漂珠质量分数的增加,漂珠/AZ91D复合材料的密度增大、热膨胀系数降低;漂珠粒径越小,复合材料的热膨胀系数越小。随着漂珠质量分数的增加,漂珠/AZ91D复合材料的布氏硬度增加,当漂珠质量分数超过12wt.%时,复合材料布氏硬度开始下降。漂珠/AZ91D复合材料的拉伸断裂强度因漂珠的加入而降低,它的屈服强度随漂珠的粒径减小和质量分数的增加而提高,但其延伸率表现出与屈服强度相反的趋势。复合材料的弹性模量因漂珠质量分数的增加而提高。
     (3)利用MTS810-22M试验机和分离式Hopkinson压杆系统研究了漂珠/AZ91D复合材料在准静态和动态条件下的压缩性能,获得了复合材料在准静态条件下和高应变率下的压缩力学性能的变化规律。在本试验条件下,漂珠/AZ91D复合材料的室温准静态压缩断裂强度高于基体,增加漂珠的质量分数或减小漂珠的粒径或降低应变率均能提高复合材料的室温准静态压缩强度。室温动态压缩试验表明,漂珠/AZ91D复合材料具有显著的应变率效应和小尺寸效应,即复合材料的动态压缩强度随应变率的增加及漂珠粒径的减小而增大。复合材料室温准静态压缩和动态压缩断口均为脆性断口。
     (4)利用Instron-5500热模拟试验机研究了漂珠/AZ91D复合材料的高温压缩变形行为。采用幂指数方程计算得到其变形激活能的最小值为199.33kJ/mol、最大值为292.45kJ/mol。显微组织观察表明,低应变率较高温度下,复合材料发生了较充分的再结晶转变,而且再结晶晶粒的尺寸也随应变率增加而变大。高应变率下,在漂珠周围与基体中产生大量的条带状组织和孪晶,条带状组织由许多再结晶晶粒组成。透射电镜(TEM)证实了复合材料经高温压缩变形后发生动态再结晶和形成较高的位错密度。
     (5)研究了漂珠/AZ91D复合材料在干摩擦磨损条件下的磨损行为,获得了载荷、时间等外部试验参数以及漂珠含量等内部因素对复合材料摩擦磨损行为的影响规律。结果表明:漂珠/AZ91D复合材料的摩擦磨损表面存在大量的平行沟槽,表现为犁沟特征。在低载荷时复合材料的磨损方式以磨粒磨损为主;而在高载荷时,复合材料的磨损机制转变为以粘着、氧化磨损为主。
     (6)在较高温度下对AZ91D-漂珠熔体进行长时间等温,并采用分离浇注的方法,原位制备出Mg2Si/AZ91D复合材料。探索了AZ91D-漂珠熔体等温温度、等温时间、熔体搅拌时间及固溶处理等因素对Mg2Si形貌的影响。Mg2Si/AZ91D复合材料经固溶处理后,抗拉强度显著提高,最高达到184MPa。挤压态Mg2Si/AZ91D复合材料的抗拉强度为302MPa,比铸态(123MPa)提高了2.45倍。铸态Mg2Si/AZ91D复合材料具有较高的高温拉伸强度,在200oC下,抗拉强度为132MPa,比基体提高了约24%。铸态、固溶处理以及高温拉伸条件下,Mg2Si/AZ91D复合材料的拉伸断口均表现为脆性断裂方式,挤压态Mg2Si/AZ91D复合材料拉伸断口表现为韧性断裂方式。
Magnesium matrix composites (MMCS) can improve the heat resistant and wearresistance properties of Mg alloy and are promising materials in the automotive andaerospace industries and electron products because of the combination properties ofhigh specific strength and specific stiffness. The cost of MMCs depends mainly onreinforcements and preparation process. It is still primary jobs at present to researchand develop MMCs with the low cost, high performance and easy to scale productionaccording to the requirement of the different working conditions. The researchindicated that the use of cheap reinforcement was the most effectual way to reduce thecost of MMCs. So, it was of important practical value to seek the lowest costreinforcements and prepare the particle reinforced MMCS in order to meet thedemand in different application conditions. A new type of AZ91D Mg alloy-flyashcenosphere (FAC/AZ91D) composites was developed by adding the flyashcenospheres (FAC) which were rich in natural resources and low cost, by means ofcompo-casting technology, and the room quasi-static compression, dynamiccompression and hot compression behaviour and friction and wear properties of thecomposites were studied. Optical microscopy, scanning electronic microscopy (SEM)and transmission electronic microscopy (TEM) were employed to study themicrostructure and interface structure of the as-cast composites; in the mean time,FAC were used as reactants, in situ Mg2Si/AZ91D composites were prepared bycontrolling the fabrication prarameters.
     In the course of the study, a low carbon steel mold with bottom pouring systemwas designed and used for pouring the molten Mg alloy, which saved efficiently theraw material of magnesium alloy and avoided the oxidation of the Mg alloy in thecourse of pouring and made the preparation of specimens simple and available.
     The main results were as follows:
     (1) The Gibbs free energy of the possible reactions was thermodynamicallycalculated between the various components in FAC/AZ91D Mg alloy systems. The kinetic model of the reaction of this system was established,and the sedimentationvelocity equation of the cenospheres was deduced. The FAC/AZ91D Mg alloycomposites were successfully prepared by controlling the process parameters, and theeffects of the related parameters on the reaction kinetics were obtained.
     (2) The effects of the stirring temperature, time and rate on the microstructures ofthe FAC/AZ91D Mg alloy composites were systematically studied in the semi-solidtemperature range, and the best techniques was obtained about this composite; thephysical properties (the density and thermal expansion coefficient) and themechanical properties (the hardness and tensile strength) were investigated. Theresults showed the densities of FAC/AZ91D Mg alloy composites increased andthermal expansion coefficient reduced with increasing cenospheres mass fraction; thelarger the size of cenospheres, the smaller the thermal expansion coefficient. TheBrinell hardness of the FAC/AZ91D Mg alloy composites increased with increasingthe mass fraction of the cenospheres, and the Brinell hardness began to reduce whenthe mass fraction of the cenospheres exceeds12wt.%. The ultimate tensile strength ofthe FAC/AZ91D Mg alloy composites reduced owing to adding the cenospheres, itsyield strength was enhanced with decreasing size of the cenospheres and increasingcenospheres mass fraction, however, its the elongation appeared the contrary trends toits yield strength. The elastic modulus increased due to the increase in the massfraction of the cenospheres.
     (3) The properties of quasi-static compression and dynasmic compression of theFAC/AZ91D Mg alloy composites were systematically studied by MTS810-22Mtesting machine and Split Hopkinson Press Bar (SHPB) system, the variation rules ofthe compressive properties under the conditions of the quasi-static compression anddynasmic compression were obtained. Under the conditions of this experiment, theroom quasi-static compression fracture strength of the FAC/AZ91D Mg alloycomposites was higher than that of the matrix Mg alloy and increased with increasingmass fraction of cenospheres or decreasing size of cenospheres or decreasing strainrate. The dynasmic compression test results showed that FAC/AZ91D Mg alloycomposites had obviously strain rate effect and small size effect, namely, thedynasmic compressive strength of the composites increased with increasing strain rateor decreasing size of cenospheres. The room quasi-static or dynasmic compressivefracture was brittle one.
     (4) The hot compression deformation behaviors of the FAC/AZ91D composites were studied by means of Instron-5500type thermal simulation machine. Theminimal value of the true activation energy of the hot compression deformation of thecomposites was199.33kJ/mol and the maximum value was292.45kJ/mol bycalculation according to the power law equation. The microstructures investigationshave demonstrated that the full dynamic recrystallization (DRX) was found in thiscomposite, and size of DRX increased with increasing strain rate at lower strain rateand high temperature. Lots of brand structures and twins were observed in matrix andaround cenospheres, and the brand structures consist of the lots of DRX grains. DRXand high dislocation density were comfirmed by TEM in hot compressive deformationcomposites.
     (5) The wear behavior of FAC/AZ91D composites was studied under theconditions of dry friction and wear. The effect of the load, wearing time and the massfraction of cenospheres on the wear behavior of FAC/AZ91D composites wereobtained. The results showed that there existed a large number of grooves on the wornsurface of the composites, which were of the furrow features. The wear mechanism ofthe composites was mainly abrasive wear under the low load, and the wearmechanism transformed into adhere abrasion and oxidation wear under high load.
     (6) The in situ Mg2Si/AZ91D composites were prepared by the means ofseparation pouring process after the AZ91D-cenosphers melt was isothermally keptfor a long time at high temperature. The effects of such as isothermal temperature,time and stirring time of the AZ91D-cenosphers melt and the solution treatment onthe mophorlogy of Mg2Si were investigated. The tensile strength of the compositeswas improved after solution treatment, and up to184MPa. The tensile srength of theextruded Mg2Si/AZ91D composites was302MPa,2.45times more than that of the ascast composites (123MPa). The as cast composites had better tensile strength at hightemperature, which was132MPa at200oC, and about increased24%than that thematrix. The tensile fracture of Mg2Si/AZ91D composites showed brittle one, and thatof the extruded composites was ductile fracture.
引文
[1]刘正,张奎,曾小勤,等.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [2] MICHALEK J J, PAPALAMBROS P Y, SKERLOS S J. A study of fuelefficiency and emission policy impact on optimal vehicle design decisions [J].Journal of Mechanical Design,2004,126(6):1062-1070.
    [3] MEDRAJ M, PARVEZ A. Analyse the importance of Magnesium-aluminium-strontium alloys for more fuel-efficient automobiles [J]. Automotive,2007:45-47.
    [4]张津,章宗和.镁合金及其应用[M].北京:化学工业出版社,2004.
    [5] DAVIES G. Magnesium materials for automotive bodies [M]. Oxford:Butterworth-Heinemann,2003.
    [6] KUO J L, SUGIYAMA S, HSIANG S H, YANAGIMOTO J. Investigating thecharacteristics of AZ61Magnesium alloy on the hot and semi-solid compressiontest [J]. International Journal of Advanced Manufacturing Technology,2006,129(7-8):670-677.
    [7] MORDIKE B L, EBERT T. Magnesium Properties-applications-potential [J].Materials Science and Engineering A,2001,302(1):37-45.
    [8] POLMEAR I J. Magnesium alloys and applications [J]. Materials Science andTechnology,1994,10(1):1-16.
    [9] BRANDES E A, BROOK G B. Smithells Light Metals Handbook [M]. Oxford:Butterworth-Heinemann,1998.
    [10] BLAWERT C, HORT N, KAINER KV. Automotive applications of magnesiumand its alloys [J]. Transactions of the Indian Institute of Metals,2004,(4):397-408.
    [11] FRIEDRICH H, SCHUMANN S. Research for a “new age of magnesium” inthe automotive industry [J]. Journal of Materials Processing Technology,2001,117(3):276-281.
    [12] KULEKCI M K. Magnesium and its alloys applications in automotive industry[J]. International Journal of Advanced Manufacturing Technology,2008,39(9-10):851-865.
    [13] IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metalmatrix composites-a review [J]. Journal of Materials Science,1991,26(5):1137-1156.
    [14] KAINER K U. Magnesium-Alloys and Technology [M]. Darmstadt: Betz-DruckGmbH,2003.
    [15]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007.
    [16] SONG M H, WU G H, YANG W S, etal. Mechanical Properties of Cf/MgComposites Fabricated by Pressure Infiltration Method [J]. Journal of MaterialsScience and Technology,2010,26(10):931-935.
    [17] SONG M H, XIU Z Y, WU G H, etal. Nonlinear temperature characteristic ofthermal expansion of Grf/Mg composites [J]. Transactions of Nonferrous MetalsSociety of China,2009,19(s2): s382-s386.
    [18] YAN B, LI G. Mg alloy matrix composite reinforced with TiNi continuous fiberprepared by ball-milling/hot-pressing [J]. Composites Part A,2005,36(1):1590-1594.
    [19] CHEN Y X, LI D X. Microstructure and orientation relationships of Mg alloymatrix composite reinforced with SiC whiskers and B4C particles [J]. MaterialsLetters,2007,61(27):4884-4886.
    [20] UGANDHAR S, M. GUPTA, SINHA S K. Enhancing strength and ductility ofMg/SiC composites using recrystallization heat treatment [J]. CompositeStructures,2006,72(2):266-272.
    [21] LEE WONBAE, LEE CHANGYONG. KIM MYOUNGKYUN.Microstructures and wear property of friction stir welded AZ91Mg/SiC particlereinforced composite [J]. Composites Science and Technology,2006,66(11-12):1513-1520.
    [22] JIANG Q C, WANG H Y, GUAN Q F, et al. Effect of the temperature ofmolten magnesium on the thermal explosion synthesis reaction of Al-Ti-Csystem for fabricating TiC/Mg composite [J]. Advanced Engineering Materials,2003,5(10):722-725.
    [23] WANG Y, WANG H Y, XIU K, WANG H Y, et al. Fabrication of TiB2particulate reinforced magnesium matrix composites by two-step processingMethod [J]. Materials Letter,2006,60(12):1533-1537.
    [24] TROJANOVá ZUZANKA, G RTNEROVá VIERA, LUKá PAVEL, etal.Mechanical properties of Mg alloys composites reinforced with short Saffilfibres [J]. Journal of Alloys and Compounds,2004,378(1-2):19-26.
    [25] RUDAJEVOVá A, PADALKA O. Thermal expansion of pre-deformed, shortfibre reinforced Mg-based composites [J]. Composites Science and Technology,2005,65(6):989-995.
    [26] FUKUDA HIROYUKI, KONDOH KATSUYOSHI, UMEDA JUNKO, etal.Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6wt.%Alalloy matrix composites reinforced with carbon nanotubes [J]. CompositesScience and Technology,2011,71(5):705-709.
    [27] HABIBNEJAD-KORAYEM M, MAHMUDI R, POOLE W J. Enhancedproperties of Mg-based nano-composites reinforced with Al2O3nanoparticles [J].Materials Science and Engineering A,2009,519(1-2):198-203.
    [28] THEIN MAUNGAYE, LU L, LAI M O.Mechanical properties ofnanostructured Mg-5wt%Al-x wt%AlN composite synthesized from Mg chips[J]. Composite Structures,2006,75(1-4):206-212.
    [29] LEE C J, HUANG J C, HSIEH P J. Mg based nano-composites fabricated byfriction stir processing [J]. Scripta Materialia,2006,54(7):1415-1420.
    [30] ZHANG C F, FAN T X, CAO W, et al. Size control of in situ formedreinforcement in metal melts-theoretical treatment and application to in situ(AlN+Mg2Si)/Mg composites [J]. Composites Science and Technology,2009,69(15-16):2688-2694.
    [31] TROJANOVá Z, G RTNEROVá V, J ER A et al.Mechanical and fractureproperties of an AZ91Magnesium alloy reinforced by Si and SiC particles [J].Composites Science and Technology,2009,69(13):2256-2264.
    [32]钦征奇.新型陶瓷材料手册[M].江苏:江苏科学技术出版社,1996.
    [33] WANG X J, WU K, HUANG W X, et al. Study on fracture behaviorof particulate reinforced magnesium matrix composite using in situ SEM[J]. Composites Science and Technology,2007,67(12):2253-2260.
    [34] CHUA B W, LU L, LAI M O. Infuence of SiC particles on mechanicalproperties of Mg based composite [J]. Composite Structures,1999,47(1-4):595-601.
    [35] LLOYD D J. Particle reinforced rluminum and magnesium matrix composites[J]. International Materials Reviews,1994,39(1):1-23.
    [36]艾云龙,杨国超,张建平,等. B4CP/AZ91D复合材料的制备及力学性能[J].铸造技术,2008,29(10):1369-1371.
    [37] CONTRERAS A C, LEON A, DREW R A L, BEDOLLA E.Wettability andspreading kinetics of Al and Mg on TiC [J]. Scripta Materialia,2003,48(12):1625-1630.
    [38] CONTRERAS A, LóPEZ V H, BEDOLLA E. Mg/TiC compositesmanufactued by pressureless melt infiltration [J]. Scripta Materialia,2004,51(3):249-253.
    [39]王彬,滕新营,神祥博. TiCp/AZ91复合材料微观断裂机制的研究[J].铸造,2007,56(10):1069-1071.
    [40] JIANG Q C, LI X L, WANG H Y. Fabrication of TiC particulate reinforcedmagnesium matrix composites [J]. Scripta Materialia,2003,48(6):713-717.
    [41] MANDAL A, CHAKRABORTY M, MURTY B S. Effect of TiB2particles onsliding wear behaviour of Al-4Cu alloy [J]. Wear,2007,262(1-2):160-166.
    [42] TEE K L, LU L, LAI M O. In situ processing of Al-TiB2composite by thestir-casting technique [J]. Journal of Materials Processing Technology,1999,89-90:513-519.
    [43] BRINKMAN H J, DUSZCZYK J, KATGERMAN L. In-situ formation of TiB2in a P/M aluminum matrix [J]. Scripta Materialia,1997,37(3):293-297.
    [44] TEE K L, Lü L, LAI M O. Improvement in mechanical properties of in-situAl-TiB2composite by incorporation of carbon [J]. Materials ScienceEngineering A,2003,339(1-2):227-231.
    [45] MILI KA K, ADEK J, RY P. High temperature creep mechanisms inmagnesium [J]. Acta Materialia,1970,18(10):1071-1082.
    [46] FROMMEYER G, BEER S, VON OLDENBURG K. Microstructure andmechanical properties of mechanically alloyed intermetallic Mg2Si-Al alloys [J].Z Metallkde,1994,85(5):372-377.
    [47] ZHANG J, FAN Z, WANG Y Q, et al.Microstructure and mechanical propertiesof in situ Al-Mg2Si composites [J]. Materials Sicence and Technology,2000,16(7-8):913-918.
    [48] SCHMID E E, OLDENBURG K V, FROMMEYER G. Microstructure andproperties of as-cast intermetallic Mg2Si-Al alloys [J]. Z Metallkde,1990,81:809-815.
    [49] MABUCHI M, HIGASHJ K. Strengthing mechanisms of Mg-Si alloys [J]. ActaMaterialia,1996,44(2):4611-4618.
    [50] LU L, THONG K K, GUPTA M. Mg-based composite reinforced by Mg2Si [J].Composites Science Technology,2003,63(5):627-632.
    [51] LU L, LAI M O, HOE M L. Formation of nanocrystalline Mg2Si and Mg2Sidispersion strengthened Mg-Al alloy by mechanical alloying [J]. NanostructuralMaterials,1998,10(4):551-563.
    [52] MABUCHI M, KUBOTA K, HIGASHI K. High strength and high strain ratesuperplasticity in a Mg-Mg2Si composite [J]. Scripta Materialia,1995,33(2):331-335.
    [53] MABUCHI M. Tensile strength, ductility and fracture of magnesium-siliconalloys [J]. Journal of Material Science,1996,31(6):1529-1535.
    [54] HASSAN S F, GUPTA M. Development of a novel magnesium-copper basedcomposite with improved mechanical properties [J]. Materials Research Bulletin,2002,37(2):377-389.
    [55] PAN Y C, LIU X F, YANG H. Microstructural formation in a hypereutecticMg-Si alloy [J]. Materials Characterization,2005,55(3):241-247.
    [56] GUO E J, MA B X, WANG L P. Modification of Mg2Si morphology in Mg-Sialloys with Bi [J]. Journal of materials processing technology,2008,206(1-3):161-166.
    [57] JIANG Q C, WANG H Y, WANG Y, et al. Modification of Mg2Si in Mg-Sialloys with yttrium [J]. Materials Science and Engineering A,2005,392(1-2):130-135.
    [58] LIAO L H, ZHANG X Q, WANG H W, et al. Influence of Sb on dampingcapacity and mechanical properties of Mg2Si/Mg-9Al composite materials [J].Journal of Alloys and Compounds,2007,430(1-2):292-296.
    [59] ZHENG N, WANG H Y, WANG W, et al. Invalidation of KBF4modification onthe primary Mg2Si in Mg-Si alloys by Al addition [J]. Journal of Alloys andCompounds,2008,459(1-2): L8-L12.
    [60] WANG H Y, JIANG Q C, MA B X, et al. Modification of Mg2Si in Mg-Sialloys with K2TiF6,KBF4and KBF4+K2TiF6[J]. Journal of Alloys andCompounds,2005,387(1-2):105-108.
    [61] YUANG G Y, LIU M P, DING W J, et al. Microstructure and mechanicalproperties of Mg-Zn-Si-based alloys [J]. Materials Science and Engineering A,2003,357(1-2):314-320.
    [62] YANG M B, PAN F S, CHENG R J, et al. Comparison about effects of Sb, Snand Sr on as-cast microstructure and mechanical properties of AZ61-0.7Simagnesium alloy [J]. Materials Science and Engineering A,2008,489(1-2):413-418.
    [63] Lü Y Z, WANG Q D, ZENG X Q, et al. Behavior of Mg-6Al-xSi alloys duringsolution heat treatment at420°C [J]. Materials Science and Engineering A,2001,301(2):255-258.
    [64] GUTMAN I, KLINGGER L, GOTMAN I. Model for evolution of periodiclayered structure in the SiO2/Mg system [J]. Solid State Ionics,2009,180(26-27):1350-1355.
    [65] UMEDA JUNKO, KONDOH KATSUYOSHI, KAWAKAMI MASASHI.Powder metallurgy magnesium composite with magnesium silicide in using ricehusk silica particles [J]. Powder Technology,2009,189(3):399-403.
    [66] GUTMAN I, GOTMAN I, SHAPIRO M. Kinetics and mechanism of periodictructure formation at SiO2/Mg interface [J]. Acta Materialia,2006,54(18):4677-4684.
    [67]杜文博,严振杰,吴玉锋,等.镁基复合材料的制备方法与新工艺[J].稀有金属材料与工程,2009,38(3):559-564.
    [68] SHENG S D, CHEN D, CHEN Z H. Effects of Si addition on microstructureand mechanical properties of RS/PM (rapid solidification and powdermetallurgy) AZ91alloy [J]. Journal of Alloys and Compounds,470(1-2):L17-L20.
    [69]师昌绪,李德恒.材料工程手册(下卷)[M].北京:化学工业出版社,2004.
    [70] FERKEL H, MORDIKE B L. Magnesium strengthened by SiC nanoparticles [J].Materials Science and Engineering A,2001,298(1-2):193-199.
    [71] XI Y L, CHAI D L, ZHANG W X, et al. Ti-6Al-4V particle reinforcedmagnesium matrix composite by powder metallurgy [J]. Materials Letters,2005,59(14-15):1831-1835.
    [72]潘复生,张津.轻合金材料新技术[M].北京:化学工业出版社,2008.
    [73] MEHRABIAN R, RIEK R G, FLEMINGS M C. Preparation and Casting ofMetal-Particulate Non-Metal Composites [J]. Metallurgical and MeterialsTransactions B,1974,5(8):1899-1905.
    [74] SPENCER D B. MEHRABIAN R,FLEMINGS M C. Rheological behavior ofSn-15pct Pb in the crystallization range [J]. Metallurgical and MeterialsTransactions B,1972,3(7):1925-1932.
    [75] SKIBO M D, SCHUSTER D M. Process for production of metal matrixcomposites by casting and composite therefrom: US,4759995[P].1988-07-26.
    [76] ROHATGI P K, PAI B C, PANDA. Preparation of cast Aluminum-Silicaparticulate composites [J]. Journal of Materials Science,1979,14(10):2277-2283.
    [77] SURAPPA M K, ROHATGI P K. Preparation and properties of cast Aluminum-ceramic particle composites [J]. Journal of Materials Science,1981,16(4):983-993.
    [78] BANERJI A, SURAPPA M K, ROHATGI P K. Cast aluminum alloyscontaining dispersions of zircon particles [J]. Metallurgical and MeterialsTransactions B,1983,14(2):273-283.
    [79]谢国宏.搅拌铸造法制造颗粒增强铝基复合材料的研究与发展[J].材料工程,1994,(12):5-7.
    [80]张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-39.
    [81]陈子勇,陈玉勇,舒群.原位反应法制备Al/Al3Ti复合材料组织和性能[J].复合材料学报,1997,14(2):66-70.
    [82] MIKUCKI B A, SHOOK S O, MERCER W E, et al. Magnesium matrixcomposites at Dow: Status Update [J]. Light Metall Age,1986,44(9-10):16-20.
    [83] MARTíN A, LIORCA J. Mechanical behaviour and failure mechanisms of abinary Mg-6%Zn alloy reinforced with SiC particulates [J]. Materials Scienceand Engineering A,1995,201(1-2):77-87.
    [84] LUO. Processing, Magnesium Microstructure, and mechanical metal matrixcomposites behavior of cast [J]. Metallurgical and Materials Transactions A,1995,26(9):2445-2455.
    [85] HENRY H.Grain microstructure evolution of Mg (AM50A)/SiCp metal matrixcomposites [J]. Scripta Materialia,1998,39(8):1015-1022.
    [86] HONMA T, NAGAI K, KATOU A, et al. Synthesis of high-strength magnes-ium alloy composites reinforced with Si-coated carbon nanofibres [J]. ScriptaMaterialia,2009,60(6):451-454.
    [87]马立群,陈锋,舒光冀.用高能超声法制备微细颗粒增强金属基复合材料[J].材料研究学报,1995,9(4):372-375.
    [88] BANERJI ABINASH, REIF WINFRIED. Producing titanium carbide particlesin metal matrix and method of using resulting product to grain refine: US:4748001[P].1988-05-31.
    [89] LI G R, WANG H M, ZHAO Y T, et al. Microstructure of in situAl3Ti/6351Alcompositesfabricated with electromagnetic stirring and fluxes [J].Transactions of Nonferrous Metals Society of China,2010,20(4):577-583.
    [90] WU G Q, LING Z H, ZHANG X, et al. Research on YAl2intermetallicsparticles reinforced Mg-14Li-3Al matrix composites [J]. Journal of Alloys andCompounds,2010,507(1):137-141.
    [91] HABIBNEJAD-KORAYEM M, MAHMUDIA R, POOLE W J. Enhancedproperties of Mg-based nano-composites reinforced with Al2O3nano-particles[J]. Materials Science and Engineering A,2009,519(1-20):198-203.
    [92]谭彦显,周劲辉,蔡叶. SiCp/Mg(AZ81)镁基复合材料制备工艺的优化[J].热加工工艺,1998,4:22-24.
    [93]张发云,闫洪,陈国香. SiCp/A Z61镁基复合材料制备工艺和性能的研究[J].铸造,2007,56(6):611-614.
    [94]胡强,揭小平,闫洪,等. SiCp/AZ61镁基复合材料的力学与阻尼性能[J].锻压技术,2008,33(2):106-109.
    [95]李奎,汤爱涛,潘复生.金属基复合材料原位反应合成技术现状与展望[J].重庆大学学报,2002,25(9):155-160.
    [96]蔡利芳,张永忠,席明哲,等.原位合成法在材料制备中的应用及进展[J].金属热处理,2005,30(10):1-6.
    [97] BRUPBACHER J M, CHRISTODOULOU L, NAGLE D C. Process forforming metal-ceramic composites: US,4710348[P].1987-12-01.
    [98] BRUPBACHER J M, CHRISTODOULOU L, NAGLE D C. Rapidsolidification of metal-second phase composites: US,4836982[P].1989-06-06.
    [99] XU W Q, ZHENG R K, LAWS K J, et al. In situ formation of crystalline flakesin Mg-based metallic glass composites by controlled inoculation [J]. ActaMaterialia,2011,59(20):7776-7786.
    [100] NAGLE D C, BRUPBACHER J M, CHRISTODOULOU L. Metal-secondphase composites by direct addition: US,4915908[P].1990-04-10.
    [101] KENNEDY A R, WESTON D P, JONES MI, et al. Reaction in Al-Ti-Cpowders and its relation to the formation and stability of TiC in Al at hightemperatures [J]. Scripta Materialia,2000,42(12):1187-1192.
    [102]杨冠男,刘英,李卫.不同粉末冶金方法制备的Al3Ti/Mg复合材料的性能研究[J].热加工工艺,2010,39(18):79-82.
    [103] CHENG J D, WONG M L, HO M W. Formation of MgO and Mg-Zn inter-metallics in an Mg-based composite by in situ reactions [J]. Composites Part A,2005,36(5):551-557.
    [104]赵玉涛,孙国雄. Al-ZrOCl2反应体系制备ZrAl3(p)+A12O3(p)/Al复合材料[J].中国有色金属学报,2001,11(1):41-46.
    [105]陈晓,傅高升,钱匡武,等.原位反应自生MgO/Mg2Si增强镁基复合材料的热力学和动力学研究[J].铸造技术,2003,24(4):321-324.
    [106]于化顺. Mg2Si增强Mg-Al基复合材料的制备与性能研究[D].济南,山东大学,2005.
    [107] HUANG Z Q, YU S R. Microstructure and mechanical properties of in situMg2Si/AZ91D composites through incorporating fly ash cenospheres [J].Materials and Design,2011,32(10):4714-4719.
    [108]张从发.自生镁基复合材料的设计及组织调控[D].上海,上海交通大学,2010.
    [109] ZHANG C F, FAN T X, CAO W, et al.(AlN+Mg2Si)/Mg composites in situsynthesis and scale effect of particulate on damping capacity [J]. MaterialsScience and EngineeringA,2009,508(1-2):190-194.
    [110]金云学,张二林.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [111] CHOI Y, MULLINS M E. Fabrication of metal matrix composites of TiC-Althrough self-propagating synthesis reation [J]. Metallurgical and MaterialsTransactions A,1992,23(9):2387-2392.
    [112] WANG H Y, JIANG Q C, LI X L, et al. In situ synthesis of TiC fromnanopowders in a molten magnesium alloy [J]. Materials Research Bulltin,2003,38(8):1387-1392.
    [113] WANG H Y, JIANG Q C, LI X L, et al. In situ synthesis of TiC/Mg compositesin molten magnesium [J]. Scripta Materialia,2003,48(9):1349-1354.
    [114] JIANG Q C, WANG H Y, WANG J G, et al. Fabrication of TiCp/Mgcomposites by the thermal explosion synthesis reaction in molten magnesium[J]. Materials Letters,2003,57(16-17):2580-2583.
    [115] BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical and Materials Transactions B,1970,1(10):2943-2951.
    [116] MAURICE D R, COURTNERY T H. The physics of mechanical alloying: Afirst report [J]. Metallurgical and Materials Transactions A,1990,21(1):289-303.
    [117] WU N Q, LIN S, WU J M, LI Z Z. Mechanosynthesis mechanism of TiCpowder [J]. Materials Science and Technology,1997,14(4):287-291.
    [118] BENJAMIN J S, VOLIN E. The mechanism of mechanical alloying [J].Metallurgical and Materials Transactions,1974,5(8):1929-1934.
    [119] HWANG S, NISHIMURA C. Compressive mechanical properties of Mg-Ti-Cnanocomposite synthesis by mechanical milling [J]. Script Materialia,2001,44(10):2457-2462.
    [120] WANG L, QIN X Y. The effect of mechanical milling on the formation of nano-crystalline Mg2Si through solid-state reaction [J]. Scripta Materialia,2003,49(3):243-248.
    [121] El-ESKANDARANY M S, El-BAHNASAWY H N, AHMED H A. Mechani-call solid-state reduction of haematite with magnesium [J]. Journal of Alloysand Compounds,2001,314(1-2):286-295.
    [122] LAI M O, LU L, CHUNG B Y. Formation of Mg-Al-Ti/MgO composite viareduction of TiO2[J]. Composite Structures,2002,57(1-4):183-187.
    [123] LU L, LAI M O, TOH Y H, FROYEN L. Structure and properties of Mg-Al-Ti-B alloys synthesized via mechanical alloying [J]. Materials Science andEngineering A,2002,334(1-2):163-172.
    [124] MATIN M A, LU L, GUPTA M. Investigation of the reactions between boronand titanium compounds with magnesium [J]. Script Materialia,2001,45(4):479-486.
    [125] DONG Q, CHEN L Q, ZHAO M J, et al. Synthesis of TiCpreinforced agnesiummatrix composite by in Situ Reactive Infiltration Process [J]. Materials Letters,2004,58(6):920-926.
    [126] CHEN L Q, DONG Q, ZHAO M J, et al. Synthesis of TiC/Mg composites withinterpenetrating networks by in situ reactive infiltration process [J]. MaterialsScience and Engineering A,2005,408(1-2):125-130.
    [127]王文明,潘复生, LU YUN,等.喷射成形技术的发展概况及展望[J].重庆大学报,2004,27(1):101-106.
    [128] SINGER A R E. Metal matrix composites made by spray forming [J]. MaterialsScience and Engineering A,1991,135:13-17.
    [129] ALAN LEATHAM. Spray Forming Technology [J]. Advanced Material&Processes,1996,(8):31-36.
    [130] ALAN LEATHAM. Spray forming: alloys, products and markets [J]. MetalPowder Report,1999,54(5):45-52.
    [131] CHANG K F, GUO M L T, KONG R H,et al. Mg–Cu–Gd layered compositeplate synthesized via the spray forming process[J]. Materials Science andEngineering A,2008,477(1-2):58-62.
    [132]杨滨,王锋,黄赞军,等.喷射沉积成形颗粒增强金属基复合材料制备技术的发展[J].材料导报,2001,15(3):4-6.
    [133] EBERT T. Spray forming of magnesium alloys and composites [J]. PowderMetallurgy,1997,40(2):126-130.
    [134] AIKIN JR R M, CHRISTODOULOU L. The role of equiaxed particles on theyield stress of composites [J]. Scripta Metallurgica et Materialia,1991,25(1):9-14.
    [135] ARMSTRONG R, CODD I, DOUTHWAITE R M. The plastic deformation ofpolycrystalline aggregates [J]. Philosophical Magazine,1962,7:45.
    [136] FROST H J, ASHBV M F. Deformation-Mechanism Maps [M]. Oiford:Pergamon Press,1982.
    [137]陈剑锋,武高辉,孙东立,等.金属基复合材料的强化机制[J].航空材料学报,2002,22(2):49-44.
    [138] NARDONE V C, PREWO K M. On the strength of discontinuous siliconcarbide reinforced aluminum composites [J]. Scripta Metallurgica,1986,20(1):43-48.
    [139] MILLER W S, HUMPHREYS F J. Strengthening mechanisms in particulatemetal matrix composites [J]. Scripta Metallurgica et Materialia,1991,25(1):33-38.
    [140] LUSTER J W, THUMANN M, BAUMANN R. Mechanical properties ofaluminum alloy6061-Al2O3composites [J]. Materials Science and Technology,1993,9:853-862.
    [141] MANOHARAN M, LIM S C V, GUPTA M. Application of a model for thework hardening behavior to Mg/SiC composites synthesized using a fluxlesscasting process [J]. Materials Science and Engineering A,2002,333(1-2):243-249.
    [142] LILHOLT H. Aspects of deformation of metal matrix composites [J]. MaterialsScience and Engineering A,1991,135:161-171.
    [143] LILHOLT H. Mechanical and physical behaviour of metallic and ceramiccomposites [M]. Roskilde, Denmark: Ris National Laboratory,1988.
    [144] KAMAT S V, MANOHARAN M. Work hardening behaviour of aluminaparticulate reinforced2024aluminium alloy matrix composites [J]. Journal ofComposite Materials,1993,27(18):1714-1721.
    [145]南宏强,李金山,巨少华,等.半固态搅拌法制备B4Cp/AZ91复合材料热挤压态的组织与性能[J].稀有金属材料与工程,2008,37(11):2041-2044.
    [146]蔡叶,苏华欣. SiCP/AZ80镁基复合材料的界面与断口特征[J].复合材料学报,1997,5(2):76-79.
    [147]杨林,张博,邹鹏,等.热处理对SiC颗粒增强AZ81镁基复合材料组织、压缩强度及耐磨性的影响[J].特种铸造及有色合金年会专刊,2008.
    [148] ION S E, HUMPHREYS F J, WHITE H. Dynamic recrystallisation and thedevelopment of microstructure during the high temperature deformation ofmagnesium [J]. Acta Metallurgica,1982,30(10):1909-1919.
    [149] GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic defor-mation and dynamic recrystallization in magnesium alloy ZK60[J]. ActaMaterialia,2001,49(7):1199-1207.
    [150] ESCAIG B. Dislocation Dynamics [M]. New York: McGraw-Hill,1968.
    [151] COURET A, CAILLARD D. An in situ study of prismatic glide in magnesium I.The rate controlling mechanism [J]. Acta Metallurgica,1985,33(8):1447-1454.
    [152] LINDHOLM U S. High strain rate test-measurement of mechanical properties
    [M]. New York: Interscience,1969.
    [153] BARBAGALLO S, CAVALIERE P, CERRI E. Compressive plastic deforma-tion of an AS21X magnesium alloy produced by high pressure die casting atelevated temperatures [J]. Materials Science and Engineering A,2004,367(1-2):9-16.
    [154]郭伟国,李玉龙,索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2007.
    [155]赵峰,李玉龙,索涛,等.高应变率下铸造镁合金AZ91的动态压缩性能及破坏机理[J].中国有色金属学报,2009,19(7):1163-1168.
    [156]梁浩,潘复生,张方举,等.3种镁合金高应变率压缩性能的比较[J].材料导报,2011,24(s16):539-542.
    [157] WEI Q S, PETER GEGGS, MARK EASTON. Compressive strain-ratesensitivity of magnesium-alumium die casting alloys [J]. Materials and Design,2009,30(3):642.
    [158]边炳鑫.粉煤灰分选与利用技术[M].北京:中国矿业大学出版社,2005.
    [159] MATSUNAGA T, KIM J K, HARDCASTLE S, et al. Crystallinity and selectedproperties of fly ash particles [J]. Materials Science and Engineering A,2002,325(1-2):333-343.
    [160] GHOSAL S, SELF S A. Particle size-density relation and cenosphere content ofcoal fly ash [J]. Fuel,1995,74(4):522-529.
    [161]李云凯,王勇,高勇,等.粉煤灰空心微珠性能的测试研究[J].硅酸盐学报,2002,30(5):664-667.
    [162]全北平.粉煤灰空心微珠表面镀铜研究[D].上海,上海交通大学,2004.
    [163]边炳鑫.粉煤灰颗粒在水介质中的分选机理的研究[J].黑龙江矿业学院学报,2000,10(1):7-10.
    [164]李贤国,张荣.增重力选矿原理[M].北京:煤炭工业出版社,1992.
    [165]曾爱香.空心微珠复合吸波材料的研究[D].武汉,华中科技大学,2004.
    [166]葛凯勇,王群,毛倩瑾,等.空心微珠表面改性及其吸波特性[J].功能材料与器件学报,2003,9(1):67-70.
    [167] GUPTA NIKHIL, RICCI WILLIAM. Comparison of compressive properties oflayered syntactic foams having gradient in microballoon volume fraction andwall thickness [J]. Materials Science and Engineering A,2006,427(1-2):331-342.
    [168]林薇薇,徐文有,潘吟文.偶联剂对漂珠聚合物复合体系界面形态和力学性能的影响[J].复合材料学报,1991,8(3):23-28.
    [169] DAOUD A. Effect of fly ash addition on the structure and compressive proper-ties of4032-fly ash particle composite foams [J]. Journal of Alloys andCompounds,2009,487(1-2):618-625.
    [170] ROHATGI P K, KIM J K, GUPTA N, et al. Compressive characteristics ofA356/fly ash cenosphere composites synthesized by pressure infiltrationtechnique [J]. Composites Part A,2006,37(3):430-437.
    [171] ZHANG Q, LEE PETER D, RANDHIR SINGH, et al. Micro-CT characterizat-ion of structural features and deformation behavior of fly ash/aluminumsyntactic foam [J]. Acta Materialia,2009,57(10):3003-3011.
    [172] MONDAL D P, DAS S, RAMAKRISHNAN N, et al. Cenosphere filled alumin-um syntactic foam made through stir-casting technique [J]. Composites Part A,2009,40(3):279-288.
    [173] MONDAL D P, DAS S, JHA NIDHI. Dry sliding wear behaviour of alumin-um syntactic foam [J]. Materials and Design,2009,30(7):2563-2568.
    [174] P.K. ROHATGI, J.K. KIM, R.Q. GUO, et al. Age-Hardening Characteristics ofAluminum Alloy-Hollow Fly Ash Composites [J]. Metallurgical and materialstransactions A,2002,33:1541-1546.
    [175] RAJAN T P D, PILLAI R M, PAI B C, et al. Fabrication and characterisation ofAl-7Si-0.35Mg/fly ash metal matrix composites processed by different stircasting routes[J]. Composites Science and Technology,2007,67(15-16):3369-3377.
    [176] ROHATGI P K, GUO R Q, IKSAN H, et al. Pressure infiltration technique forsynthesis of aluminum-fly ash particulate composite[J]. Materials Science andEngineering A,1998,244(1):22-30.
    [177] DAOUD A, ABOU EL-KHAIR M T, ABDEL-AZIZ M, ROHATGI P K.Fabrication, microstructure and compressive behavior of ZC63Mg microball-oon foam composites [J]. Composites Science and Technology,2007,67(9):1842-1853.
    [178] CAPPLEMAN G R, WATTS J F, CLYNE T W. The interface region insqueeze-infiltrated composites containing δ-alumina fibre in an aluminummatrix [J]. Journal of Materials Science,1985,20:2159-2168.
    [179] DENG C J, WONG M L, HO M W,et al. Formation of MgOand Mg-Znintermetallics in an Mg-based composite by in situ reactions [J].Composites PartA,2005,36(5):551-557.
    [180] ROHATGI P K, DAOUD A, SCHULTZ B F, et al. Microstructure and mech-anical behavior of die casting AZ91D-Flyash cenosphere composites [J].Composites Part A,2009,40(6-7):883-896.
    [181] SHEN P, ZHANG D, LIN Q L, et al. Wetting of Polycrystalline a-Al2O3byMolten Mg in Ar Atmosphere [J]. Metallurgical and Materials Transactions A,2010,4(7):1621-1626.
    [182] SHEN P, ZHANG D, LIN Q L, et al. Wetting of polycrystalline MgO by moltenMg under evaporation [J]. Materials Chemistry and Physics,2010,122(1):290-294.
    [183]李坤,装志亮,宫骏,等.碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J].金属学报,2007,43(12):1282-1286.
    [184]吴林丽,姚广春,刘宜汉,等.搅拌法制备漂珠增强铝基复合材料的熔体分层与控制[J].复合材料学报,2005,22(3):127-130.
    [185] RAO Y K. Stoiochimetry and Thermodynamics of metallurgical processes [M].Cambridge: Cambridge University Press,1985.
    [186] TURKDOGAN E T. Physical Chemistry of High Temperature technology [M].New York: Academic Press,1980.
    [187]梁英教,车荫昌.无机物热力学数据手册[M].辽宁:东北大学出版社,1993.
    [188]胡勇.原位镁基复合材料制备及流变成形研究[D].南昌,南昌大学,2009.
    [189] MCLEOD A D, GABRYEL C M. Kinetics of the growth of spinel, MgAl2O4, onalumina particulate in aluminum alloys containing magnesium [J]. Metallurgicaland Materials Transactions A,1992,23(4):1279-1283.
    [190] PFEIFER M, RIGSBEE J M, CHAWLA K K. The interface microstructure inalumina (FP) fibre/magnesium alloy composite [J]. Journal of Materials Science,1990,25(3):1563-1567.
    [191]张木全.化工原理[M].广州:华南理工大学出版社,2000.
    [192] LUO A. Development of matrix Grain Structure during the solidification of aMg(AZ91)/SiCpcomposite [J]. Script Metallurgica Materials,1994,31(3):1253-1258.
    [193] PODDAR PALASH, SRIVASTAVA V C, DE P K, et al. Processing andmechanical properties of SiC reinforced cast magnesium matrix composites bystir casting process [J]. Materials Science and Engineering A,2007,460-461:357-364.
    [194]胡汉起.金属凝固原理[M].北京:机械工业出版,2000.
    [195] ZHANG Y F, LIU Y B, CAO Z Y. Mechanical properties of thixomoldedAZ91D magnesium alloy [J]. Journal of Materials Processing Technology,2009,209(3):1375-1384.
    [196] SUKUMARAN K, PAI B C, CHAKRABORTY M. The effect of isothermalmechanical stirring on an Al-Si alloy in the semisolid condition [J]. Materialsand Science and Engineering A,2004,369(1-2):275-283.
    [197]严宗达.热应力[M].北京:高等教育出版社,1993.
    [198] GUO R Q, ROHATGI P K. Chemical reactions between aluminum and fly ashduring synthesis and reheating of aluminum-fly ash composite [J]. Metallurgicaland Materials Transactions B,1998,29(3):519-525.
    [199]宋美慧,武高辉,王宁,等. Cf/Mg复合材料热膨胀系数及其计算[J].稀有金属材料与工程,2009,38(6):1043-1047.
    [200]朱德智,李凤珍,陈国钦,等.SiCp/Cu复合材料热膨胀性能研究[J].哈尔滨理工大学学报,2005,10(2):125-128.
    [201]束德林.工程材料力学性能[M].北京:机械工业出版社,2007.
    [202] YADAV S, CHICHILI D R, RAMESH K T. The mechanical response of a6061-T6Al/Al2O3metal matrix composite at high rates of deformation [J]. ActaMetallurgica et Materialia,1995,43(12):4453-4464.
    [203]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [204] ZHANG H, RAMESH K T, CHIN E S C. High strain rates response ofaluminum6092/B4C composites [J]. Materials Science and Engineering A,2004,384(1-2):26-34.
    [205] SAN MARCHI C, CAO F H, KOUZELI M, et al. Quasistatic and dynamiccompression of aluminum-oxide particle reinforced pure aluminum [J].Materials Science and Engineering A,2002,337(1-2):202-211.
    [206] HONG S I, GRAY G T, LEWANDOWSKI J J. Dynamic deformation behaviorof Al-Zn-Mg-Cu alloy matrix composites reinforced with20%SiC [J]. ActaMetallurgica Materialia,1993,41(8):2337-2351.
    [207] POIRIER J P著,关德林译.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.
    [208] MCQUEEN H J, RYAN N D. Constitutive analysis in hot working [J]. MaterialsScience and Engineering A,2002,322(1-2):43-63.
    [209] IMBERT C A C, MCQUEEN H J. Peak strength, strain hardening anddynamic restoration of A2and M2tool steels in hot deformation [J]. MaterialsScience and Engineering A,2001,313(1-2):88-103.
    [210] STüWE H P, PADILHA A F, SICILIANO JR F.Competition between recoveryand recrystallization [J]. Materials Science and Engineering A,2002,333(1-2):361-367.
    [211] K.-H.哈比希.材料的磨损与硬度[M].北京:机械工业出版社,1987.
    [212] SHARMA S C, ANAND B, KRISHNA M. Evaluation of sliding wear behaviorof feldspar particle-reinforced magnesium alloycomposites [J]. Wear,2000,241(1):33-40.
    [213] LIM C Y H, LEO D K, ANG J J S, GUPTA M. Wear of magnesium compositesreinforced with nano-sized alumina particulates [J]. Wear,2005,259(1-6):620-625.
    [214] SARAVANAN R A, SURAPPA M K. Fabrication and characterisation of puremagnesium-30vol.%SiCPparticle composite [J]. Materials Science andEngineering A,2000,276(1-2):108-116.
    [215] MONDAL A K, CHANDRA RAO B S S, KUMAR S. Wear behaviour ofAE42+20%Saffil Mg-MMC [J]. Tribology International,2007,40:290-296.
    [216] ABACHI P, MASOUDI A, PURAZRANG K. Dry sliding wear behavior ofSiCp/QE22magnesium alloy matrix composites [J]. Materials Science andEngineering A,2006,435-436(5):653-657.
    [217] ALAHELISTEN A, BERGMAN F, OLSSON M, HOGMARK S.On the wear ofaluminium and magnesium metal matrix composite [J]. Wear,1993,165(2):221-226.
    [218] QIN Q D, ZHAO Y G. Nonfaceted growth of intermetallic Mg2Si in Al meltduring rapid solidification [J]. Journal of Alloys and Compounds,2008,462(1-2): L28-L31.
    [219] CAHN J W, HILLING W B, SEARS G W. The molecular mechanism ofsolidification [J]. Acta Metallurgica,1964,12(12):1421-1439.
    [220]冯端等著.金属物理学(第二卷:相变)[M].北京:科学出版社,2000.
    [221]谢建新,刘静安.金属挤压理论与技术[M].北京:机械工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700