用户名: 密码: 验证码:
TiO_2纳米管光催化同步去除水体中重金属和有机物的协同作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti0:光催化技术是目前被广泛关注的一项催化新技术。Ti0:在受光照后会产生电子-空穴对,光生电子具有很强的还原能力,光生空穴具有很强的氧化能力,当污染物种(如有机物或金属离子)吸附到半导体Ti02表面时,就会分别得到电子或空穴,发生相应的氧化还原反应。利用电子-空穴的协同作用,同时去除环境中的氧化态和还原态的污染物成为当前催化和环境保护研究领域的一个研究热点。本课题在以下几个方面做了一些研究工作,为开拓TiO2纳米管催化剂在同步处理有毒有机废水和含重金属离子的废水方面提供了理论基础。1.以纳米Ti02为原料,采用水热合成法制得Ti0:纳米管。采用红外光谱(FT-IR)分析、X衍射(XRD)分析和电镜扫描分析进行表征。表明用水热合成法制备的纳米管不会改变其晶型,同样主要为锐钛矿型,含有少量金红石型;相比纳米Ti02,制得的Ti02纳米管晶粒尺寸较小,增大了比表面积和孔体积、具有相对较好的分散性能,克服了纳米Ti02颗粒容易团聚的现象,制备出来的Ti0:纳米管在理论上具有良好的光催化活性。2.在总体积为500 mL、反应物浓度为2×10-mol/L、300W紫外光照射下(体系中的光密度为8 MW/cm2)、温度控制在26±0.5℃、空气曝气(300 mL/min)、TiO2纳米管的浓度为2.0 g/L实验条件下,用所制备的TiO2纳米管进行光催化降解EDTA、酒石酸、柠檬酸和DTPA的研究。实验发现尽管紫外光也能直接光解EDTA.酒石酸、柠檬酸和DTPA,但Tj0:纳米管的加入,可以促进四种有机物的降解,使反应速率更快,反应更彻底。1小时后,采用高效液相色谱(HPLC)很难检测到体系中的有机物。表明Ti02纳米管光催化法非常适合于含EDTA、柠檬酸、酒石酸和DTPA废水的处理。3.用所制备的Ti02纳米管进行光催化还原Cu(Ⅱ)和Ag(Ⅰ)的实验。1小时后Cu(Ⅱ)和Ag(Ⅰ)的去除率分别达到了83.7%和88.1%。表明Ti02纳米管光催化法是一种很有效的处理含金属离子废水的方法。用X射线光电子能谱(XPS)表征金属离子的还原产物,Cu(Ⅱ)能被Ti0:纳米管光催化还原为相应的金属单质。这表明Ti02纳米管光催化法也是一种很有优势和前景的资源回收的方法。4.研究了有机添加物的氧化还原电位与有机物对Ti02纳米管光催化Cu(Ⅱ)的还原速率的影响之间的相关性。发现并不是添加所有的有机物都能明显促进金属离子的光催化还原。酸类(甲酸和乙酸)能加快金属离子的还原反应,而醇类(甲醇和乙醇)作用不明显;有机物对金属离子的反应速率的影响与有机物本身的氧化还原电位之间具有一定的相关性。X射线光电子能谱(XPS)结果表明添加有机物,只是影响金属离子的光催化反应速率,而对金属Cu(Ⅱ)还原产物的形态则没有影响。5.对Ti02纳米管光催化处理含络合铜废水的处理进行了研究。实验发现尽管Cu(Ⅱ)能与EDTA、DTPA、柠檬酸和酒石酸形成稳定的配合物,但Cu(Ⅱ)的存在对有机配体的光催化氧化还是具有促进作用,但配合物的稳定性的大小会影响这种促进作用。同样地,有机物的存在,即使能与Cu(11)稳定配合,对Cu(Ⅱ)的光催化还原也具有促进作用,同时体系的pH变化、有机物本身的光催化氧化的难易程度和配合物稳定性的大小都会影响到这种作用。X射线光电子能谱(XPS)结果表明络合铜还原产物仍然为单质铜。说明Ti0:纳米管光催化法适合含络合铜废水的处理。6.同样条件下,研究EDTA、DTPA对Ag(Ⅰ)光催化还原速率的影响和柠檬酸、酒石酸对Ag(Ⅰ)光催化还原速率的影响。EDTA和DTPA与Ag(1)能配合为稳定的配合物;而柠檬酸和酒石酸与Ag(Ⅰ)很难配合。实验发现不管Ag(Ⅰ)能否与有机体配合,Ag(Ⅰ)的光催化还原和有机体的光催化氧化之间存在明显的协同作用;但是如果金属离子能与有机体稳定配合,这种配合作用将会使有机体对金属离子光催化还原的促进作用有所降低;同样配合物的产生也会降低金属离子对有机体的光催化降解的促进作用。不管有没有添加有机体,Ag(Ⅰ)还原后的体系的pH都会降低;但下降的程度不一样。添加有机体之后,体系的pH变化更小一些;添加四种有机体反应后体系的pH的变化区别不是很明显。
Recently, it has been demonstrated that photocatalysis is a promising technology applicable for the treatment of pollutants. Electron-hole pairs will be consistently generated from semiconducting TiO2 under irradiation, with electron'strong reducing power and the holes'strong oxidizing power, when electron-hole pairs are trapped by the contaminant (e.g., organic pollutants and/or metal ions) on surface, redox reactions will be initiated. Thus, the electron-hole synergy has been used to remove pollutants of oxidation and reduction state of the environment synchronously, becoming a hot topic in catalytic and environmental research. We have done some research work in the following areas, which provides a theoretical basis for the development of using TiO2 nanotubes photocatalysis to remove synchronously toxic organics and heavy metal ions in the wastewater.TiO2 nanotube was successfully synthesized by a hydrothermal method. The TiO2 nanotube photocatalytic material were characterized by using FT-IR spectrum, scanning electron microscope, X-Ray diffraction and BET surface area analysis etc. The results showed that the TiO2 nanotubes prepared by hydrothermal synthesis method are also primarily anatase and contain a small amount of rutile, not changing its crystal form. Compared to nano-TiO2, TiO2 nanotube grain sizes are smaller, while its surface area and pore volume are larger. Furthermore, TiO2 nanotubes are relatively good dispersion properties and can't easily reunion, which proves to prossess excellent photocatalytic activity.The experiments were carried out under the following conditions:magnetic stirrer; initial concentration.2×10-5mol/L; temperature, fixed at 26±0.5℃; TiO2 nanotubes concentration,2.0 g/L; the suspensions 500 mL; aerated at a flow rate of 300 mL/min; the average light intensity, about 8 MW/cm2; under 300W ultraviolet light irradiation. The persent study is targeted on using TiO2 nanotubes photocatalytic degradation of EDTA, citric acid, tartaric acid and DTPA. It was found that the photolysis of organics exsist to a certain extent, but the reaction rate is much faster and more efficient in the case of TiO2 nanotubes. An hour later, it's difficult to detect organics in the system through HPLC. Therefor, TiO2 nanotubes photocatalysis is very suitable for removing the wastewater containing EDTA, citric acid, tartaric acid and DTPA.The experiment using TiO2 nanotube photocatalysis to remove Cu (Ⅱ) and Ag (Ⅰ) was carried out under the same condition. An hour later, the removal efficiency of Cu (Ⅱ) and Ag (Ⅰ) were 83.7%,88.1% respectively. The results show that TiO2 nanotube photocatalysis is effective for removing dissolved transition metal ions from aqueous solution. Cu (Ⅱ) and Ag (Ⅰ) can be reduced to the corresponding metal elemental and its reductive products were characterized by XPS.The experiments were performed under the same condition using aqueous systems containing Cu(Ⅱ) with formic acid, acetic acid, methanol, ethanol and TiO2 nanotubes, respectively. The current work aims to know the correlation between organic standard redox potentials and the reduction rate of Cu(Ⅱ) and how the organics will affect the treatment of Cu(Ⅱ). It's found that not all organics can promote the photocatalytic reduction of metal ions. Carboxylic acids can catalyze the removal of Cu (Ⅱ), while it's not obvious in the case of alcohols. The influence of organic addictives on the reduction rate of Cu(Ⅱ) depends crucially on its potentials. Cu(Ⅱ) reductive product was analyzed by using XPS. The results indicated that organic addictives have no influence on Cu(Ⅱ) reductive product.UV/TiO2 photocatalysis of chelated copper in aqueous solutions has been performed starting from Cu (Ⅱ)-tartaric acid, Cu (Ⅱ)-citric acid, Cu (Ⅱ)-EDTA and Cu (Ⅱ)-DTPA, in the presence of oxygen and at acidic pH. The photocatalytic reaction obeys first-order kinetic equation. The influence of Cu (Ⅱ) on photocatalytic oxidation of organic ligands and how the various organics will affect the treatment of Cu (Ⅱ) were described. The result indicates that the stability constant, the photocatalytic oxidation rate of organic ligands and the solution pH are three major factors controlling the accelerating effect between the reduction of Cu (Ⅱ) and oxidation of organic ligands. It also proves that TiO2 photocatalysis is an effective approach for removing chelated copper from wastewater.The present study is targeted on the simulated wastewater containing Ag(Ⅰ), organics and TiO2 under UV illumination in the presence of oxygen and at acidic pH. The results indicated that photocatalytic oxidation of organics can catalyze the removal of Ag(Ⅰ), and conversely, Ag(Ⅰ) can also catalyze the photocatalytic oxidation of organics. A significant synergistic effect was observed between the reduction of Ag(Ⅰ) and simultaneous oxidation of organics. However, organic complexes with Ag(Ⅰ) would weaken the synergistic effect between Ag(Ⅰ) and organics.
引文
[1] Fujishima A. Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
    [2]钱东,闫早学,石毛,等.溶胶凝胶法制备Ti02纳米颗粒及其光催化性能[J].中国有色金属学报,2005,15(5):817-822.
    [3] Awati P S, Awate S V, Shah P P, et al. Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique[J]. Catal. Commun.,2003,4:393-400.
    [4]张守民,辛建华,齐广东,等.纳米TiO2复合氧化物的制备及其光催化降解对硝基苯胺的性能研究[J].南开大学学报(自然科学版).2004,37(4):14-19.
    [5] Liu H Y, Gao L. Preparation and properties of nanocrystalline Fe2O3-sensitized TiO2 nanosheets as a visible light photocatalyst[J]. J Am.Ceram.Soc.,2006,89(1): 370-373.
    [6]沈星灿,郭为民,郭艳芳,等.掺铁纳米Ti02的制备及其光催化性能[J].应用化学,2005,22(10):1070-1074.
    [7] Senthilkumaar S, Porkodi K, Vidyalakshmi R. Photodegradation of a textile dye catalyzed by sol-gel derived nanocrystalline TiO2 via ultrasonic irradiation[J]. J Photo- chem. Photobiol. A:Chem.,2005.170(3):225-232.
    [8] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqu-eous solutions at TiO2 powder[J]. J Am.Chem.Soc.,1977,99(1):303-304.
    [9] Frank S N. Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J].J Phys.Chem.,1977,81(15) 1484-1488.
    [10]Ann Lorette Pruden, David F. Ollis. Photoassisted heterogeneous catalysis:The degradation of trichloroethylene in water. J Catal.,1983,82(2):404-417.
    [11] Wei C,Lin W Y, Zainal Z, et al. Bactericidal activity of TiO2 photocatalyst in aqueous media:toward a solar-assisted water disinfection system[J]. Environ. Sci. Technol.,1994,28(5):934-938.
    [12]Canela M C, Alberici R M, Jardim W F. Gas-phase destruction of H2S using TiO2/ UV-VIS[J]. J Photochem.Photobiol. A:Chem.,1998,112(1):73-80.
    [13]黄雅丽.稀土掺杂二氧化钛气相光催化降解有机污染物的研究[D].福州:福州大学,2004.
    [14]杨世迎.Ti02光催化降解有机污染物的初始步骤机理研究[D].杭州:浙江大学,2005.
    [15]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [16] Litter M I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems[J]. Appl.Catal. B-Environ.,1999,23(2-3):89-114.
    [17] Hoffmann M R, Martin S.T, Choi W, et al. Enviromental application of semiconductor photocatalysts[J]. Chem.Rev.,1995,95(1):69-96.
    [18]李川,古国榜,柳松.Ti02光催化处理废水中贵重金属的研究进展[J].环境污染治理技术与设备,2003,4(11):6-11.
    [19] Ward M. D., White J. M., Bard A. J. Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysis-The methyl viologen-acetate system[J]. J. Am.Chem. Soc.,1983,105:27-31.
    [20]蒋文新,张天胜.纳米二氧化钛光催化降解无机污染物的研究进展[J].天津科技大学学报,2004,19(2):14-17
    [21]刘守新,孙承林.金属离子的光催化去除研究进展[J].化学通报,2004,12898-903.
    [22]M.R. Prairie, B.M. Stange, L.R. Evans. TiO2 photocatalysis for the destruction of organics and the reduction of heavy metals [C]. Elsevier. Proceedings of the 1st International Conference on TiO2/ Photocatalytic Purification and Treatment of Water and Air. Amsterdam.1993:353-358.
    [23]Prairie, M. R., Stange, B.M. Photocatalysis for the treatment of waste water: Applications involving the removal of metals [C]. Atlanta, GA (United States). National conference and exposition on heat transfer. Sponsored by Department of Energy, Washington, DC.1993:7-11.
    [24]Prairie, M. R.; Evans, L. R.; Stange, B. M.; Wagaman, M. W. Solar photocatalysis
    for the treatment of water containing toxic metals [C]. Sponsored by Department of Energy. International symposium on solar thermal concentrating technologies (6th). Mojacar (Spain). Washington, DC.1992:11-15.
    [25]Forouzan F, Richards T C, Bard A J. Photoinduced reaction at TiO2 particles. Photodeposition from Ni(II) solutions with oxalate[J]. Phys Chem.1996,100(46): 18123-18127.
    [26]W.-Y. Lin, K. Rajeshwar. Photocatalytic removal of nickel from aqueous solutions using ultraviolet-irradiated TiO2[J]. J. Electrochem. Soc.144 (1997):2751-2756.
    [27]Morishita S., Suzuki K. Photoelectrochemical deposition of nickel onto particles formation of nickel patterns without resists. Bull. Chem. Soc. Jpn.,1994,67 843-846.
    [28] Ming Y, Chenthamarakshan C R, Rajeshwar K, et al. Radical-mediated photoreduction of manganese(Ⅱ) species in UV-irradiated titania suspensions[J], J. Photochem. Photobiol. A:Chem.,2002,147(3):199-204.
    [29]Skubal L. R., Meshkov N. K.., Rajh T., et al. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles[J]. J. Photochem. Photobiol. A:Chem.,2002,148:393-397.
    [30]Li G H, Ciston S, Saponjic Z V, et al. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photooxidation and photoreduction applications[J]. J Catal.,2008.253(1):105-110.
    [31]Fang J. L. Theory and Application of Coordination Compounds in Electroplating[M]. Beijing:Chemical Industry Press,2007.
    [32]黄锦勇,刘国光,张力辉,等.Ti02光催化还原金属离子的研究进展[J].环境科学与技术,2008,31(12):104-108.
    [33]黄踪,王良焱,徐悦华,等.TiO2光催化氧化有机物的研究现状及进展[J].化学世界,2002,43(9):494-497.
    [34]唐振宁.钛白粉的生产与管理[M].北京:化学工业出版社,2004.
    [35]张万忠,刘景明,周智敏.纳米TiO2的研究与应用进展[J].石油化工,2007,36(11):1184-1190.
    [36] Hsiao C Y, Lee C L, Ollis D F. Heterogeneous photocatalysis:degradation of dilute solutions of dichloromethane (CH2CI2), chloroform (CHCI3), and carbon tetrachloride (CC14) with illuminated TiO2 photocatalyst[J]. J Catal.,1983,82(2) 418-423.
    [37]徐悦华,纳米二氧化钛光催化降解有机磷农药的研究[D].广州:华南理工大学,2001.
    [38]张梅,杨绪杰,陆路德,等.纳米Ti02-一种性能优良的光催化剂[J].化工新型材料,2000,28(4):11-13.
    [39]戴智铭,陈爱平,古政荣,等.半导体气固相光催化氧化反应介绍[J].化学反应工程与工艺,2000,6(2):185-192.
    [40] Maria C. Yeber, Carolina Soto, et al. Optimization by factorial design of copper(Ⅱ) and toxicity removal using a photocatalytic process with TiO2 as semiconductor[J]. Chem Eng. J.,2009,62(32):1-6
    [41]Limin Wang, Nan Wang, et al. Photocatalytic reduction of Cr (VI) over different TiO2 photocatalysts and the effects of dissolved organic species[J]. J. Hazard. Mater., 2008.152:93-99.
    [42]Fang Jiang, Zheng Zheng, et al. Aqueous Cr (VI) phtoreduction catalyzed by TiO2 and sulfated TiO2[J]. J. Hazard. Mater.,2006,134:94-103.
    [43] Mao Liqun, Li Qingli, Dang Hongxin, et al. Synthesis of Nanocrystalline TiO2 with High Photoactivity and Large Specific Surface Area by Sol-Gel Method [J]. Mater Res Bull.2005,40(2):201-208.
    [44]Bickley I B, Gonzalez C T, Lees J S, et al. A structural investigation of titanium dio-xide photocatalysis[J]. J Solid State Chem.,1991,92(1):178-170.
    [45]G.Cappelletti, C.L.Bianchi, et al. Nano-titania assisted photoreduction of Cr (VI) The role of the different TiO2 polymorps[J]. Appl. Catal. B-Environ.,2008,78 193-201.
    [46]T.Aarthi. Giridhar Madras, et al. Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2[J]. Catalysis Communication,2008,9:630-634.
    [47]Gonghu Li, Shannon Ciston, et al. Synthesizing mixed-phase TiO2 nanocomposites
    using a hydrothermal method for photo-oxidation and photoreduction applications[J]. J Catal.,2008.253:105-110.
    [48]Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic Degradation for Environmental Applications-A Review[J]. J Chem Technol Biotechnol,2002, 77(1):102-116.
    [49]Ohno Teruhisa, Tokieda Kojiro, Higashida Suguru, et al. Synergism Between Rutile and Anatase TiO2 particles in photocatalytic Oxidation of Naphthalene[J]. Appl Catal. A.,2003,244(2):383-391.
    [50] Wu Chunying, Yue Yinghong, Deng Xingyi, et al. Investigation on the Synergetic Effect Between Anatase and Rutile Nanoparticles in Gas-Phase Photocatalytic Oxidations. Catal Today,2004,93-95:863-869.
    [51]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [52]Hagfeldt A, Gratzel M. Light-induced redox reaction in nanocrystalline systems[J]. Chem. Rev.,1995,95(1):49-68.
    [53]Enrico B, Nick S,Gary E, et al. Light induced reduction of rhodium(Ⅲ) and pall-adium(Ⅱ) on the titanium dioxide dispersions and the selective photochemical separation and recovery of gold(Ⅲ) platium(Ⅳ) and rhodium(Ⅲ) in chloride media [J]. Inorg. Chem.,1986,25(25):4499-4503.
    [54]刘国光,丁雪军,张学治,郑立庆.光催化氧化技术的研究现状及发展趋势[J].环境污染治理技术与设备,2003,4(8):65-69.
    [55] Abdullah M., Lew G. K. C., Matthews R. W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J]. J. Phys.Chem.,1990,94:6820-6825.
    [56]Curran J.S., Domenech J., Jaffrezic-Renault N., et al. Kinetics and mechenism of platinum deposition by photoelectrolysis in illuminated suspensions of semiconducting titanium dioxide[J]. J. Phys. Chem.,1985,89:957-963.
    [57]Vinu R. Madras G. Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2[J]. Environ Sci Technol,
    2008,42(3):913-919.
    [58] Chen D W, Ray A K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis[J]. Chem Eng Sci,2001,56(4):1561-1570.
    [59]Salah Bassaid, Didier Robert, et al. Use of oxalate sacrificial compounds to improve the photocatalytic performance of titanium dioxide[J]. Appl. Catal. B-Environ.,2009, 86:93-97.
    [60]付宏祥,吕功煊,李新勇等.重金属离子的光催化还原研究进展[J].感光科学与光化学,1995,11(4):325-333.
    [61]张昊,谭欣,赵林.废水中重金属离子的光催化还原研究进展[J].天津理工学院学报,2004,9(20):28-32.
    [62]S.W.Lam, K.Chiang, et al. Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol[J]. Appl. Catal. B-Environ.,2005,55 123-132.
    [63]S.W.Lam, M.Hermawan, et al. The role of copper(Ⅱ) ions in the photocatalytic oxidationofl,4-dioxane[J]. J. Mol. Catal A-Chem.,2007,278:152-159.
    [64] L. B. Khalil, M. W. Rophael, W. E. Moumd. The removal of the toxic Hg(Ⅱ) salts from water by photocatalysis[J]. Appl. Catal. B-Environ.,2002,36:125-130.
    [65]Kavita Kabra, Rubina Chaudhary, et al. Solar photocatalytic removal of Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ) and Pb(Ⅱ):Speciation modeling of metal-citric acid complexes[J]. Journal of Hazardous Material,2008,155:424-432.
    [66] Shan-Li Wang, Chung-Chi Chen, et al. A mechanism study of light-induced Cr (Ⅵ) reduction in an acidic solution[J]. Journal of J. Hazard. Mater.,2009,164:223-228.
    [67]Kyung H, Lee J, et al. Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination[J]. Environ Sci Technol,2005,39(7):2376-2382.
    [68]Masamichi Fujihira, Yoshiharu Satoh, Tetsuo Osa. Heterogeneous photocatalytic reactions on semiconductor materials:Part Ⅱ. Photoelectrochemistry at semiconductor TiO2 insulating aromatic hydrocarbon liquid interface[J]. J.Electroanal.Chem.Interfa.Electrochem.,1981,126:277-281.
    [69]王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解[J].催化学报,2000.21(4):327-331.
    [70] Yang Huaming, Zhang Ke, Shi Rongrong, et al. Sol-Gel Synthesis of TiO2 Nanoparticles and Photocatalytic Degradation of Methyl Orange in TiO2 Aqueous Suspensions[J]. J Alloys Compd,2006,413(1-2):302-306.
    [71]余晓鹏,何代平,蔡铎昌,等.Cr(VI)-苯酚共存污染体系中的光催化反应研究[J].四川理工学院学报(自然科学版),2006,19(2):91-101.
    [72]Navio J A, Colon G, Trillas M, et al. Hetergeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method[J]. Appl. Catal. B-Environ.,1998,16(2):187-196.
    [73]史载锋,范益群,等.不同光源对光催化降解亚甲基蓝的影响[J].南京化工大学学报,2000,22(1):31-34.
    [74]Goswami D. Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection process[J]. J. Solar Energy Eng.,1997, 119:101—107.
    [75]赵梦月,罗菊芬.有机磷农药光催化分解的可行性研究[J].化工环保,1993,13(2)74-79,115.
    [76]周璇.负载型Ti02光催化剂光催化降解难生物降解有机物的研究[D].上海:东华大学.2005.
    [77]Rajeshwar K, Osugi M E, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media[J]. J. Photoch Photobio C.,2008, 9(4):171-192.
    [78]Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems[J]. J. Photoch Photobio C.,2008.9(1):1-12.
    [79]魏宏斌,李田,严熙世.水中有机污染物的光催化氧化[J].环境科学进展,1994,2(3):50-57.
    [80]Chenthamarakshan C R, Yang H, Ming Y. et al. Photocatalytic reactivity of zinc and cadmium ions in UV-irradiated titania suspensions[J]. J.Electromal.Chem.,2000,
    494(2):79-86.
    [81] Martin S T. Chemical mechanism of inorganic oxidants in the TiO2/UV process: Increased rates of degradation of chlorinated hydrocar-bons[J]. Environ Sci Technol, 1995,29(10):2567-2573.
    [82] Y.M.Tzou, S.L.Wang, et al. Fluorescent light induced Cr (Ⅳ) reduction by citrate in the presence of TiO2 and ferric ions[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2005,253(1-3):15-22.
    [83]Domenech X., Munoz J. Photochemical elimination of Cr(VI) from neutral alkaline solutions[J]. J. Chem. Tech. Biotechnol.,1990,47:101-107.
    [84] Xi C., Chen Z., Li Q., et al. Effects of H+, Cl-,and CH3COOH on the photocatalytic conversion of PtC162- in aqueous TiO2 dispersion[J]. J. Photochem. Photobiol. A Chem.,1995.87:249-255.
    [85]唐国瑞,张胜寒.纳米Ti02光催化技术在环保方面的应用[J].2008,37(11)46-49.
    [86]杨莉,邱贤华,吴少林.Ti02光催化还原Cu2+[J].南昌航空工业学院学报(自然科学版),2006,20(3):36-40.
    [87]Lozano A, Garcia J, Domenech X, et al. Heterogeneous photocatalytic oxidation of manganese(Ⅱ) over TiO2[J]. J Photoch Photobio A:Chemistry,1992,69(2) 237-240.
    [88] Yang J K, Lee S M. Removal of Cr(Ⅵ) and humic acid by using TiO2 photocatalysis[J]. Chemosphere,2006,63(10):1677-1684.
    [89]汤心虎,韦朝海,龙保根,等.稀水溶液中Cr(Ⅵ)的光催化还原研究[J].环境化学,2006.25(1):20-23.
    [90]Kajitvichyanukul P, Chenthamarakshan C R, Rajeshwar K, et al. Photocatalytic reactivity of thallium(Ⅰ) species in aqueous suspensions of titania[J]. J.Electroanal.Chem.,2002,519(1-2):25-32.
    [91]Chenthamarakshan C R, Rajeshwar K. Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions:an interfacial induced adsorption-reduction pathway mediated by formate ions[J]. Electrochem Commun,
    2000,2(7):527-530.
    [92] Angelidis T N, Koutlemani M, Poulios I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO2 in a closed-loop reactor[J]. Appl. Catal. B-Environ.,1998,16(4) 347-357.
    [93]Shinri Sato, Keiji Kunimatsu. Infrared spectroscopic study of platinized titania photocatalysts[J]. J. Phys. Chem.,1984,88(2):175-177.
    [94] Fernandez A, Caballero A, Gonzalez-Elipe A R, et al. Surface modification of oxide materials subjected to low energy ion bombardment:A XAS study[J]. J Phys Chem.,1995,97:397-401.
    [95]刘守新,孙承林.Ag改性提高TiO2对Cr(Ⅵ)的光催化还原活性机理[J].物理化学学报,2004,20(4):355-359.
    [96]李越湘,吕功煊,李树本.Pt-TiO2:光催化还原罗丹明B[J].分子催化,2001,5(4):287-290.
    [97] Mario Schiaveuo. Some Working Principles of Heterogenous Photocatalysis by Semiconductors [J]. Electrochemical Acta,1993,38(1):1056-1062.
    [98]Tanaka K., Harada K., Murata S. Photocatalytic deposition of metal ions onto TiO2 powder[J]. Solar Energy,1986,36:159-161.
    [99] Torres J., Cervera March S. Kinetics of the photoassisted catalytic oxidation of Pb (Ⅱ) in TiO2 suspensions[J]. Chem. Eng. Sci.,1992,47:3857-3862.
    [100] Sclafani A., Herrmann J.M. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media[J]. J. Photochem. Photobiol. A:Chem.,1998,113:181-188.
    [101] R. Baba, R. Konda, A. Fujishima, K. Honda. Photoelectrochemical Deposition of Metals on TiO2 Powders in the Presence of Alcohols[J]. Chem. Lett. 1986:1307-1310.
    [102] Yang J K, Lee S M. EDTA effect on the removal of Cu(Ⅱ) onto TiO2 [J]. J. Colloid Interface Sci.,2005.282(1):5-10.
    [103] Testa J. J., Grela M. A., Litter M. I. Experimental evidence in favor of an initial
    one-electron transfer process in the heterogeneous photocatalytic reduction of chrominum(VI) over TiO2[J]. Langmuir,2001,17:3515-3517.
    [104] Colon G., Hidalgo M. C., Navio J A. Influence of carboxylic acid on the photocatalytic reduction of Cr (Ⅵ) using commercial TiO2[J]. Langmuir,2001,17: 7174-7177.
    [105] Kanki T, Yoneda H, Sano N, et al. Photocatalytic reduction and deposition of metallic ions in aqueous phase[J]. Chem Eng. J.,2004,97(1):77-81.
    [106] Prairie M R, Evans L R. An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals [J]. Environ Sci Techol,1993,27(9):1776-1782.
    [107] Murruni L, Conde F, Leyva G, et al. Photocatalytic reduction of Pb(Ⅱ) over TiO2:New insights on the effect of different electron donors[J]. Appl. Catal. B:Environ.,2008.84(3-4):563-569.
    [108]陈士夫,曹更玉.H202、金属离子等对Cr(Ⅵ)离子光催化还原及对敌敌畏农药光催化氧化的影响[J].感光科学与光化学,2002,20(6):435-440.
    [109] Nguyen V N H, Amal R, Beydoun D. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst[J]. Chemical Engineering Science,2003,58(19):4429-4439.
    [110] Skubal L.R., Meshkov N.K. Reduction and removal of mercury from water using arginine-modified TiO2. J. Photochem. Photobiol. A:Chem.,2002,148:211-214.
    [111] Goeringer S, Chenthamarakshan C R, Rajishwar K. Synergistic photocatalysis mediated by TiO2:mutual rate enhancement in the photoreduction of Cr (Ⅵ) and Cu(Ⅱ) in aqueous media[J]. Electrochem Commun.,2001,3(6): 290-292.
    [112]张颖,王桂茹,等.光催化氧化法处理活性染料水溶液[J].精细化工,2000,17(2):74-79.
    [113] Epling G A, Lin C. Photoassisted bleaching of dyes utilizing TiO2 and visible light[J]. Chemosphere,2002,46:561-570.
    [114] Cheng M Y, Yu J C, Wong P K. Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation[J]. Chemosphere.2002,46(6):905-912.
    [115]刘振荣.Ti02催化超声降解亚甲基蓝溶液[J].化学研究,2005,16(1):69-71.
    [116] Moctezuma E, Leyva E, Monreal E, et al. Photocatalytic degradation of the herbicide " paraquat " [J]. Chemosphere,1999.39(3):511-517.
    [117]周波,鲍长利,冯志兵,等.天然沸石负载TiO2光催化降解敌敌畏和对硫磷[J].环境污染治理技术和设备,2004,5(6):33-35.
    [118] Lu Ming-Chun, Chen Jong-Nan. Pretretment of pesticide wasterwater by photocatalytic oxidation [J]. Wat Sci Tech,1997,36(2):117-122.
    [119]武正簧,王宝风.基片上镀Ti02薄膜光催化降解有机磷农药[J].过程工程学报,2001,1(4):432-435.
    [120] Park E H, Jung J, Chung H H. Simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu(Ⅱ)/Fe(Ⅲ)-EDTA system by TiO2 photocatalysis[J]. Chemosphere,2006,64(3):432-436.
    [121] M. Huqul, E. Ercaq, R. Apak. Kinetic studies on UV-photodegradation of some chlorophenols using TiO2 catalyst[J]. J. Environ. Sci. A:Tox. Hazard Subst. Environ. Eng.2002,37:365-371.
    [122] Kormann C, Bahnemannl D W, Hoffmann M R. Environmental photochemistry:Is ironoxide (hematite) an active photocatalyst? A comparative study:a-Fe2O3, ZnO, TiO2[J]. J. Photochem. Photobiol. A:Chem.,1989,48(1): 161-169.
    [123] Balcioglu I A, Aralan I. Application of photocatalytic oxidation treatment to pretreated and raw effuents from the Kraft bleaching process and textile industry[J]. Environ Pollut.,1998,103:261-268.
    [124]武书彬.高级化学氧化工艺在制浆废水处理的应用[J].纸和造纸,1999,9:43-46.
    [125]李田.城市自来水光催化氧化深度净化效果[J].环境科学学报,1998,18(2):167-171.
    [126] Beydoun D, Tse H, Amal R, et al. Effect of copper on the photocatalytic
    degradation of sucrose[J]. J. Mol. Catal A-Chem.,2002,177(2):265-272.
    [127] R.W. Matthews. Conversion of benzoic acid during TiO2-mediated photocatalytic degradation in water[J]. J. Chem. Soc., Faraday Trans.,1984,180: 457-465.
    [128] T. Sakata, T. Kawai, K. Hashimoto. Photocatalytic reactions of hydrocarbous and fossil fuels with water. Hyreogen production and oxidation[J]. J. Phys. Chem. 1984,88:4033-4088.
    [129] S. Nishimoto, B. Ohtani, H. Shirai, T. Kagiya. Photocatalytic Degradation and Dimerization of t-Butyl Alcohol by Aqueous Suspension of Platinized Titanium Dioxide[J]. J. Chem. Soc., Perkin Trans.1986, Ⅱ:661-665.
    [130] S. Nishimoto, B. Ohtani, H. Kajiwara, T. Kagiya. Photocatalytic Dehydrogenation of Aliphatic Alcohols by Aqueous Suspension of Platinized Titanium Dioxide[J]. J. Chem. Soc., Faraday Trans.1985,181:2467-2474.
    [131] B. Ohtani, M. Kakimoto. H. Miyadzu, S. Nishimoto, T. Kagiya. Effect of Surface-Adsorbed 2-Propanol on the Photocatalytic Reduction of Silver and/or Nitrate Ions in Acidic TiO2 Suspension[J]. J. Phys. Chem.1988,92:5773-5777.
    [132] C. Dominguez, J. Garcia, M.A. Pedraz, A. Torres, M.A.Galan. Photocatalytic oxidation of organic pollutants in water[J]. Catal. Today,1998,40:85-101.
    [133] V. Brezova, A. Blazkova, E. Borsova, M. Ceppan, R. Fiala. The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions[J]. J. Mol. Catal. A, Chem.1995,98:109-116.
    [134] E.C. Butler, A.P. Davis. Photocatalytic oxidation in aqueous titanium dioxide suspensions the influence of dissolved transition metals[J]. J. Photochem.Photobiol. A:Chem.,1993,70:273-283.
    [135] M. Bideau, B. Claudel, L. Faure, H. Kazouan. Metallic complexes as intermediates in homogeneously and heterogeneously photocatalysed reactions[J]. J. Photochem.Photobiol. A:Chem.,1994,84:57-67.
    [136] K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder[J].
    Bull. Chem. Soc. Jpn.1985,58:2023-2028.
    [137] M. Fujihira, Y. Satoh, T. Osa. Heterogeneous photocatalytic oxidation of aromatic compounds on titanium dioxide[J]. Nature(London),1981,293:206-208.
    [138] M. Fujihira, Y. Satoh, T. Osa. Heterogeneous photocatalytic reactions on semiconductor materials[J]. Chem. Lett.(Chem. Soc. Jpn.),1981,8:1053-1056.
    [139] Z. Hua, Z. Manping, X. Zongfeng, G.K.-C. Low. Titanium dioxide mediated photocatalytic degradation of monocrotophos[J]. Water Res.1995,29:2681-2688.
    [140] A. Sclafani, L. Palmisano, E. Davi. Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions:the influence of Fe3+, Fe2+and Ag+on the reaction rate[J]. J. Photochem. Photobiol. A:Chem.,1991.56:113-123.
    [141] E. Brillas, E. Mur, R. Sauleda, L. Sanchez, J. Peral, X.Domenech, J. Casado. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Appl. Catal. B:Environ.,1998,16:31-42.
    [142] D.H. Kim, M.A. Anderson. Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films[J]. J. Photochem. Photobiol. A:Chem.1996,94(2-3):221-229.
    [143] C.Maillard-Dupuy, C.Guillard, P.Pichat. The degradation of nitrobenzene in water by photocatalysis over TiO2:kinetics and products; simultaneous elimination of benzamide or phenol or Pb2+cations[J]. New J. Chem.1994,18:941-948.
    [144] Schrank S.G., Jose H.J., Moreira R. F. P.M. Simultaneous photocatalytic Cr (VI) reduction and dye oxidation in a TiO2 slurry reactor[J]. J. Photochem. Photobio. A:Chem.,2002.147:71—76.
    [145]郑兴灿.李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [146]国家环境保护总局,水和废水监测分析方法编委会编著.水和废水临测分析方法(第四版)[M].北京:中国环境科学出版社.2002.
    [147]曾泳淮,林树昌.分析化学(仪器分析部分)[M].北京:高等教育出版社2004.
    [148]王毅,姜炜,刘宏英.TiO2纳米竹的制备及其光催化性能研究[J].纳米加工
    艺,2006,3(6):52-55.
    [149]杨曦,余刚,孔令仁,等.酸性红3B的杂多酸光催化降解动力学[J].环境科学,2002.23(3):40-43.
    [150]范山湖,孙振范,邬泉周,等.偶氮染料吸附和光催化氧化动力学[J].物理化学学报,2003,19(1):29-29.
    [151] Umar I. G., Abdullah A. H. Heterogeneous photocatalytic degradation of organic contaminants overtitanium dioxide:A review of fundamentals, progress and problems[J]. J. Photoch Photobio C,2008,9:1-12.
    [152] H. Seshadri, S. Chitra, K. Paramasivan, P.K. Sinha. Photocatalytic degradation of liquid waste containing EDTA[J]. Desalination,2008,232:139-144.
    [153] Dhananjay S., Bhatkhande, Sanjay P., Kamble, Sudhir B., Sawant, Vishwas G. P. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light[J]. Chem. Eng. J..2004,102:283-290.
    [154] Ammar Houas, Hinda Lachheb, Mohamed Ksibi, et al. Photocatalytic degradation pathway of methylene blue in water[J]. Appl. Catal. B-Environ.,2001, 31:145-157.
    [155] Paula V. Messina, Pablo C. Schulz. Adsorption of reactive dyes on titania-silica mesoporous materials[J]. J. Colloid Interface Sci.,2006,299:305-320.
    [156]粟智.微分-积分法确定反应速率常数.新疆师范大学学报(自然科学版)[J].2004,23(4):62-66.
    [157] Y. Oosawa, M. Gratzel. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface[J]. J. Chem. Soc., Chem. Commun.,1984,1 1629-1633.
    [158] Oosawa Y., Graetzel M. Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO2 suspensions[J]. J.Chem. Soc. Faraday Trans, 1988,84(1):197-205.
    [159] W.Erbs, J. DeSilvestro, E. Borgarello, M. Gratzel. Visible-Light-Induced O2 Generation from Aqueous Dispersions of WO3[J]. J. Phys.Chem.,1984,88 4001-4006.
    [160] http://srdata.nist.gov/xps/selEnergyType.aspx.
    [161] http://srdata.nist.gov/xps/selEnergyType.aspx.
    [162] Reiche, H., Dunn. W. W.,& Bard, A. J.. Heterogeneous photocatalytic and photosynthetic deposition of Cu on TiO2 and WO3 powders[J]. J Phys Chem.,1979, 83:2248-2251.
    [163] V.Gold, D.Bethell. Advances in physical organic chemistry[M]. New York:Academic Press,1982.
    [164] Bideau, M., Claudel, B., Faure, L.,& Rachimoellah, M. Photooxidation of formic-acid by oxygen in the presence of titaniumdioxide and dissolved copper ions-oxygen-transfer and reaction kinetics[J]. Chem. Eng. Commun.,1990,93: 167-197.
    [165] Wang, Y.-Y..& Wan, C,-C. Investigation of photoelectrochemical reduction of cupric ions over TiO2 in the presence of methanol[J]. J Photoch Phoiobio A:Chemistry, 1994,84:195-202.
    [166] Tennakone K., Ketipearachchi U. S., Photocatalytic method for removal of mercury from contaminated water[J]. Appl. Catal. B-Environ.,1995,5:343-349.
    [167] Wang N., Xu Y. Z., Zhu L. H., Shen X. T., Tang H. Q. Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(Vl) and oxidation of salicylic acid[J]. J Photoch Photobio A:Chemistry,2009,201:121-127.
    [168] Han W. Y., Zhu W. P., Zhang P. Y., Zhang Y, L. L. S. Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185 nm UV light [J]. Catal today, 2004,90:319-324.
    [169] Hu C, Yu J. C., Hao Z., Wong P. K. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes[J]. Appl. Catal. B-Environ.,2003,46 35-47.
    [170] Jae-Kyu Yang, Seung-Mok Lee. EDTA effect on the removal of Cu(Ⅱ) onto TiO2[J]. J. Colloid Interface Sci.,2005,282:5-10.
    [171] Jae-Kyu Yang, Seung-Mok Lee. Removal of Cr(Ⅵ) and humic acid by using TiO2photocatalysis[J]. Chemosphere,2006,63:1677-1684.
    [172]付宏祥,吕功煊,李树本.Cr(Ⅵ)-氯代苯酚共存污染体系中的光反应与光催化反应研究[J].感光科学与光化学,1998,16(3):237-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700