用户名: 密码: 验证码:
几类分数阶反常扩散方程的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反常扩散现象在自然界中普遍存在,尤其在某些复杂系统的扩散过程中该现象更为常见.为了更好地解释这一现象,不同的学者提出了不同的工具和理论.过去的二十年,许多研究人员发现分数阶微积分可以更为精确地描述这一现象,并且建立了大量的描述复杂系统中反常扩散输运过程的分数阶反常扩散方程.尽管这些分数阶反常扩散方程更精确地解释了所研究的实际问题,但求得这些方程的解析解是比较困难的.因此,寻求此类方程的数值解是十分有意义的.
     本文主要研究了描述反常扩散的时间分数阶(径向)扩散方程、分数阶Klein-Kramers方程、分数阶守恒律的数值求解问题,设计了这几类方程的稳定、有效的数值格式,建立了所给格式的误差估计,研究了这些方程的动力学行为.本文的主要工作包括以下三部分:
     第一部分考虑了描述次扩散的两类时间分数阶扩散方程的数值求解问题.首先,设计了时间分数阶扩散方程的两种高阶、容易实施、无条件稳定的正交样条配置格式.然后,给出了求解时间分数阶径向扩散方程的两种隐式差分格式,利用数学归纳法和离散极值原理证明了所给数值格式均为无条件稳定的.并用数值结果和数值模拟验证了理论分析的收敛阶和所给格式的有效性.
     第二部分讨论了两类分数阶Klein-Kramers方程的数值解.首先,给出了求解时间分数阶Klein-Kramers方程的有限差分格式,给出了数值格式的稳定性和收敛性的严格证明,随后的数值结果验证了理论分析的正确性.进一步,讨论了Levy分数阶Klein-Kramers方程的数值解,建立了Levy分数阶Klein-Kramers方程的隐式和显式的有限差分格式,借助广义的离散极值原理分析了数值格式的稳定性和收敛性,同时给出了几种提高精度的技巧,且数值结果表明所给方法是有效的.
     第三部分讨论了分数阶守恒律的数值算法.首先,给出了具有光滑解的周期分数阶非线性守恒律的半离散Fourier谱方法,详细讨论了半离散格式的误差分析,并利用四阶的积分因子-Runge-Kutta方法来求解半离散后的方程组.数值结果表明该方法空间上可以达到谱精度且时间上为四阶收敛的.接着,对于分数阶守恒律的非光滑初值问题,设计了该方程的分数步方法,数值结果表明所给数值算法对于光滑和间断的初值均是有效的.
Anomalous diffusion is one of the most ubiquitous phenomena in nature, especially present in various complex systems. In order to describe anomalous diffusion more ac-curately, different tools are restored by different scholars. Over the past two decades, many researchers found that the fractional calculus is very suitable for describing this phenomenon. Many kinds of anomalous diffusion equations are established. It is difficult to find the analytical solutions of these equations which are closer to the real word. Hence, it is significant to find the numerical solutions of these equations.
     The main objective of this thesis is to investigate the numerical solutions of three kinds of anomalous equations, namely, time fractional (radial) diffusion equations, frac-tional Klein-Kramers equations and fractional conservation laws. Stable and efficient numerical schemes are proposed for these equations and the error estimates of our pro-posed numerical schemes are also established. And the numerical simulations are given to reveal the kinetics behaviors of these equations. The main work of this thesis contains the following three parts.
     In the first part, we consider the numerical solutions of two kinds of time fractional diffusion equations which are used to describe subdiffusion. We first develop two kinds of high order, easy for programming, unconditionally stable orthogonal spline collocation schemes to solve the time fractional diffusion equation. Then, we establish two kinds of implicit finite difference schemes for the time fractional radial diffusion equation. Applying the method of mathematical induction and discrete maximum principle, we prove that the given schemes are all unconditionally stable. Some numerical results and physical simulations are presented to confirm the rates of convergence and the robustness of the numerical schemes.
     In the second part, we focus on the numerical solutions of fractional Klein-Kramers equations. Firstly, we present the finite difference methods for numerically solving the time fractional Klein-Kramers equation and do the detailed stability and error analysis. The numerical examples are provided to confirm the theoretical results. Furthermore, we discuss the numerical solutions of Levy fractional Klein-Kramers dynamics. Explicit and implicit finite difference schemes are established for this equation. By introducing a gener-alized discrete maximum principle, we carefully check the detailed numerical stability and convergence of the numerical schemes. Some other possible techniques for improving the convergent rate or making the schemes efficient in more general cases are also discussed. Numerical results confirm the effectiveness of our numerical schemes.
     In the third part, we discuss the numerical algorithms for fractional conservation laws. We present a semi-discrete Fourier spectral method for a periodic fractional conservation law with smooth solutions. The error estimation of the space semi-discrete scheme is rigorously established. And the fourth-order integrating factor-Runge-Kutta method is used to solve the semi-discrete system. The numerical results further confirm the spectral accuracy in space and fourth-order convergence in time. For the non-smooth case, we design fractional step method to deal with it. The numerical examples show that the proposed methods are effective for both smooth and discontinuous initial values'cases.
引文
[1]F. Achleitner, S. Hittmeir and C. Schmeiser, On nonlinear conservation laws with a nonlocal diffusion term, J. Differential Equations.,250 (2011),2177-2196.
    [2]N. Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ.,7 (2007),145-175.
    [3]N. Alibaud, C. Imbert and G. Karch, Asymptotic properties of entropy solutions to fractal Burgers equation, SIAM J. Math. Anal,42 (2010) 354-376.
    [4]P. Amore, F. M. Fernandez, C. P. Hofmann. and R. A. Saenz, Collocation method for fractional quantum mechanics, J. Math. Phys.,51 (2010),122101.
    [5]E. Barkai and R. J. Silbey, Fractional Kramers equation, J. Phys. Chem. B,104 (2000),3866-3874.
    [6]D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of Levy motion, Water Resour. Res.,36 (2000),1413-1423.
    [7]D. A. Benson, C. Tadjeran, M. M. Meerschaert, I. Farnham and G. Pohll, Radial fractional-order dispersion through fractured rock, Water Resour. Res.,40 (2004), W12416.
    [8]B. Bialecki and G. Fairweather, Orthogonal spline collocation methods for partial differential equa-tions, J. Comput. Appl. Math.,128 (2001),55-82.
    [9]B. Bialecki and R. I. Fernandes, An alternating direction implicit backward differentiation orthogonal spline collocation methods for linear variable coefficient parabolic equations, SIAM J. Numer. Anal., 47 (2009),3429-3450.
    [10]P. Biler, T. Funaki and W. A. Woyczynski, Fractal Burgers equations, J. Differential Equations,148 (1998) 9-46.
    [11]P. Biler and W. A. Woyczynski, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math.,59 (1998),845-869.
    [12]P. Biler, T. Funaki and W. A. Woyczynski, Interacting particle approximation for nonlocal quadratic evolution problems, Probab. Math. Stat.,19 (1999),267-286.
    [13]J.-P. Bouchaud, Anomalous diffusion in disordered media:models and physical applications, Phys. Rep,4-5 (1990),127-293.
    [14]R. Borrego, E. Abad and S. B. Yuste, Survival probability of a subdiffusive particle in a d-dimensional sea of mobile traps, Phys. Rev. E,80 (2009),061121.
    [15]L. Brandolese and G. Karch, Far-field asymptotics of solutions to convection equations with anoma-lous diffusion, J. Evol. Equ,8(2008) 307-326.
    [16]D. Brockmann and I. M. Sokolov, Levy flights in external force fields:from models to equations, Chem. Phys.,284 (2002),409-421.
    [17]H. Brunner, Collocation methods for volterra integral and related functional differential equations, Cambridge University Press, Cambridge,2004.
    [18]H. Brunner, L. Ling and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion prob-lems, J. Comput. Phys.,229 (2010),6613-6622.
    [19]C. Canuto and A. Quarteroni, Approximation results for the orthogonal polynomials in Sobolev space, Math. Comp.,38(1982),201-229.
    [20]M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophy. J. R. Astro. Soc,13 (1967),529-39.
    [21]M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna,1969 (in Italian).
    [22]A. S. Carasso, Overcoming Holder continuity in ill-posed continuation problems, SIAM J. Numcr. Anal.,31 (1994),1535-1557.
    [23]H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids. Oxford University Press, Oxford,1959.
    [24]A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A,374 (2007),749-763.
    [25]B. Cartling, Kinetics of activated processes from nonstationary solutions of Fokker-Planck equation for a bistable potential, J. Chem. Phys.,87 (1987),2638-2648.
    [26]A. S. Chaves, A fractional diffusion equation to describe Levy flights, Phys. Lett. A.239 (1998), 13-16.
    [27]C.-M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys.,227 (2007),886-897.
    [28]S. Chen, F. Liu, P. H. Zhuang and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model.,33 (2009),256-273.
    [29]W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency, J. Acoust. Soc. Am.,115 (2004),1424-1430.
    [30]W. Chen, L. J. Ye and H. G. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl.,59 (2010),1614-1620.
    [31]陈文,孙洪广,李西成等,力学与工程问题的分数阶导数建模,科学出版社,北京,2010.
    [32]Y. P. Chen and T. Tang, Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math.,233 (2009),938-950.
    [33]S. Cifani, E. R. Jakobsen and K. H. Karlsen, The discontinuous Galerkin method for fractal conser-vation laws, IMA J. Numer. Anal.,31 (2011),1090-1122.
    [34]S. Cifani E. R. Jakobsen, On the spectral vanishing viscosity method for fractional conservation laws, arXiv:1011.3443vl [math.NA].
    [35]A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev. E,53 (1996),4191-4193.
    [36]P. Constantin, M.-C.Lai, R. Sharma, Y.-H. Tseng and J. H. Wu, New numerical results for the surface quasi-geostrophic equation, J. Sci. Comput.,50 (2011),1-28.
    [37]J. Crank, The Mathematics of Diffusion, Clarendon press., Oxford,1970.
    [38]M. R. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009),7792-7804.
    [39]D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Front dynamics in reaction-diffusion systems with Levy flights:a fractional diffusion approach. Phys. Rev. Lett.,91 (2003),018302.
    [40]Z. Q. Deng, V. P. Singh, F. Asce, and L. Bengtsson, Numerical solution of fractional advection-dispersion equations, J. Hydraul. Eng.,130 (2004),422-431.
    [41]W. H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227 (2007),1510-1522.
    [42]W. H. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations, J. Comput. Appl. Math.,206 (2007),174-188.
    [43]W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equations, SIAM J. Numer. Anal.,47 (2008),204-226.
    [44]W. H. Deng and E. Barkai, Ergodic properties of fractional Brownian-Langevin motion, Phys. Rev. E,79 (2009),011112.
    [45]W. H. Deng and C. Li. Finite difference methods and their physical constraints for the fractional Klein-Kramers equation, Numer. Methods Partial Differential Equations,27 (2011),1024-1037.
    [46]邓镇国,一类非局部非线性色散波方程的Fourier谱方法,上海大学博士论文,上海,2007.
    [47]K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electr. Trans. Numer. Anal.,5 (1997),1-6.
    [48]K. Diethelm, The Analysis of Fractional Differential Equations:an application-oriented exposition using differential operators of Caputo type, Springer-Verlag, New York,2010.
    [49]J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal.,182 (2006),299-331.
    [50]J. Droniou, A numerical method for fractal conservation laws, Math. Comp.,79 (2010),95-124.
    [51]Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review,2012, to appear.
    [52]S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations,199 (2004),211-255
    [53]V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations,22 (2005),558-576.
    [54]V. J. Ervin, N. Heuer, J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal.,45 (2007),572-591.
    [55]R. I. Fernandes and G. Fairweather, Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables, Numer. Methods Partial Differential Equa-tions,9 (1993),191-121.
    [56]J. C. M. Fok., B. Y. Guo and T. Tang, Combined Hermite spectral-finite difference method for the Fokker-Planck equation, Math. Comp.,71 (2001),1497-1528.
    [57]G.H. Gao and Z.Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys.,230 (2011),586-595.
    [58]S. K. Godunov, A difference scheme for numerical computation of discontinuous solutions of equa-tions in fluid dynamics, Mat. Sb.,47 (1959).271-306.
    [59]A. A. Golovin, B. J. Matkowsky and V. A. Volpert, Turing pattern formation in the Brusselator model with superdiffusion, SIAM J. Appl. Math.,69 (2008),251-272.
    [60]R. Gorenflo. G. D. Fabritiis and F. Mainardi, Discrete random walk models for symmetric Levy-Feller diffusion processes. Phys. A,269 (1999),79-89.
    [61]R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion:a discrete random walk approach, Nonlinear Dynam.,29(2002),129-143.
    [62]Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn.,5 (2005), 385-424.
    [63]Y. T. Gu, P. H. Zhuang and F. W. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, Comput. Model. Eng. Sci.,56 (2010),303-333.
    [64]郭柏灵,蒲学科,黄凤辉,分数阶偏微分方程及其数值解,科学出版社,北京,2011.
    [65]B.-Y. Guo, Spectral Methods and Their Applications, World Scientific, Singapore,1998.
    [66]R. Hilfer, ed., Application of Fractional Calculus in Physics, World Scientific, Singapore,2000.
    [67]E. Hairer, C. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Statist. Comput.,6 (1985),532-541.
    [68]J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Methods For Time-dependent Problems, Cambridge University Press, Cambridge,2007.
    [69]H. Holden, K. H. Karlsen and N. H. Risebro, Operator splitting methods for generalized Korteweg-De Vries equations, J. Comput. Phys.,228 (1999),203-222.
    [70]H. Holden, K. H. Karlsen, K.-A. Lie and N. H. Risebro, Splitting Methods for Partial Differen-tial Equations with Rough Solutions:Analysis And MATLAB Programs, European Mathematical Society, Zurich,2010.
    [71]J. W. Hu and H. M. Tang, Numerical Methods for Differential Equations(in Chinese), Scientific Press, Beijing,1999.
    [72]T. Ikeda, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland, Amsterdam, New York, Oxford,1983.
    [73]M. Ilic, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, Fract. Calc. Appl. Anal.,8 (2005),323-341.
    [74]X. Ji, H. Z. Tang, High-order accurate Runge-Kutta(local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer.Math.Theor.Meth.Appl.,2011, to appear.
    [75]Y.-M. Kang and Y.-L. Jiang, Spectral density of fluctuations in fractional bistable Klein-Kramers systems, Phys. Rev. E,81 (2010),021109.
    [76]R. Klages, G. Radons, I. M. Sokolov, Anomalous Transport:foundations and applications, Wiley-VCH,2008.
    [77]G. Karch, C. Miao and X. Xu, On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal.,39 (2008),1536-1549.
    [78]A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematical Studies,2006.
    [79]J. W. Kirchner, X. Feng, and C. Neal, Fractal stream chemistry and its implications for contaminant transport in catchments, Nature,403 (2000),524-526.
    [80]N. Krepysheva, L. Di Pietro and M. C. Neel, Space-fractional advection-diffusion and reflective boundary condition, Phys. Rev. E,73 (2006),021104.
    [81]T. A. M. Langlands, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys.,205 (2005),719-736.
    [82]F. Liu, V. Ahn, and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math.,166 (2004),209-219.
    [83]Q. Liu, F. Liu, I. Turner and V. Anh, Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method, J. Comput. Phys.,222 (2007),57-70.
    [84]B. K. Li, G. Fairweather and B. Bialecki, Discrete-time orthogonal spline collcation methods for Schrodinger equations in two space variables, SIAM J. Numer. Anal.,35 (1998),453-477.
    [85]Y. Lin and F. W. Liu, Fractional high order methods for the nonlinear fractional ordinary differential equation, Nonlinear Anal:TMA,66 (2007),856-869.
    [86]Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for time-fractional diffusion equa-tion, J. Comput. Phys.,225 (2007),1533-1552.
    [87]D. Y. Li and G. N. Chen, Introduction to Finite Difference Method For the Parabolic Equations (in Chinese), Science Press, Beijing,1998.
    [88]C. P. Li and W. H. Deng, Remark on fractional derivatives, Appl. Math. Comput.,187 (2007), 777-784.
    [89]C. P. Li, Z. G. Zhao and Y. Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. AppL,62 (2011),855-875.
    [90]C. P. Li, A. Chen and J. J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys.,230 (2011),3352-3368.
    [91]X. J. Li and C. J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys.,5 (2010),1016-1051.
    [92]X. J. Li and C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal.,47 (2009),2018-2131.
    [93]Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal.,17 (1986),704-719.
    [94]Ch. Lubich and A. Schadle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput.,24 (2002),161-182.
    [95]E. Lutz, Fractional Langevin equation, Phys. Rev. E,64 (2001),051106.
    [96]E. Lutz, Fractional transport equations for Levy stable processes, Phys. Rev. Lett.,86 (2001),2208.
    [97]V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias and H. R. Hicks, Numer-ical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192 (2003),406-421.
    [98]Y. Lu and J. D. Bao, Inertial Levy flight, Phys. Rev. E,84 (2011),051108.
    [99]G. Lumer and R. S. Phillipsy, Dissipative operators in a Banach space. Pacific J. Math.,11 (1961), 679-698.
    [100]H.-P. Ma and W. W. Sun, Optimal error estimates of the Legendre-Petrov-Galerkin method for Korteweg-De-Vries equation, SIAM J. Numer. Anal.,39 (2001),1380-1394.
    [101]Y. Maday, A. T. Patera and E. M. Ronguist, An operator-integration-factor splitting method for time-dependent problem, J. Sci. Comput.,5 (1990),263-292.
    [102]M. Magdziarz, A. Weron and K. Weron, Fractional Fokker-Planck dynamics:stochastic represen-tation and computer simulation, Phys. Rev. E,75 (2007),016708.
    [103]M. Magdziarz and A. Weron, Numerical approach to the fractional Klein-Kramers equation, Phys. Rev. E,76 (2007),066708.
    [104]F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal.,4 (2001),153-192.
    [105]F. Mainrdi, Fractional Calculus and Waves in Linear Viscoelasticity:an introduction to mathe-matical models, Imperial College Press, London,2008.
    [106]M. M. Meerschaert, D. A. Benson, H.-P. Scheffler and B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E,65 (2002),041103.
    [107]M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math.,172 (2004),65-77.
    [108]M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math.,56 (2006),80-90.
    [109]W. Melean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math.,105 (2007),481-510.
    [110]R. Metzler, W. G. Glockle and T. F. Nonnenmacher, Fractional model equation for anomalous diffusion, Phys. A,211 (1994),13-24.
    [111]R. Metzlcr and J. Klafter, From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation, J. Phys. Chem. B,104 (2000),3851-3857.
    [112]R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium:from the Langevin equation to fractional diffusion, Phys. Rev. E,61 (2000),6308-6311.
    [113]R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion:a fractional dynamics approach, Phys. Rep.,339 (2000),1-77.
    [114]R. Metzler and J. Klafter, The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A:Math. Gen.,37 (2004), 161-208.
    [115]R. Metzler and J. Klafter, Fractional Dynamics, World Scientific, Singapore,2012.
    [116]C. Miao and G. Wu, Global well-posedness of the critical Burgers equation in critical Besov spaces, J. Differential Equations,247 (2009),1673-1693.
    [117]F. J. Molz, G. J. Fix and S. Lu, A physical interpretation for the fractional derivative in Levy diffusion, Appl. Math. Lett.,233 (2002),907-911.
    [118]M. Moshrefi-Torbati and J. K. Hammond, Physical and geometrical interpretation of fractional operators, J. Franklin. Inst.,335B (1998),1077-1086.
    [119]M. C. Neel, A. Abdennadher and M, Joelson, Fractional Fick's law:the direct way, J. Phys. A: Math. Theor.,40 (2007),8299-8314.
    [120]R. R. Nigmatullin, Fractional integral and its physical interpretation, J. Theoret. Math. Phys.,90 (1992),242-251.
    [121]T. F. Nonnenmacher and D. J. F. Nonnenmacher, Towards the formulation of a nonlinear fractional extended irreversible thermodynamics, Acta Phys. Hung.,66 (1989),145-154.
    [122]K. Ohkitani and T. Sakajo, Oscillatory damping in long-time evolution of the surface quasi-geostrophic equations with generalized viscosity:a numerical study, Nonlinearity,23 (2010),3029-3051.
    [123]K. B. Oldham and J. Spanier, The Fractional Calculus:theory and applications of differentitation and integration to arbitrary order, Academic Press, New York,1974.
    [124]M. D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., (2006),1-12.
    [125]A. Ott, J. P. Bouchaud, D. Langevin and W. Urbach, Anomalous diffusion in "living polymers":a genuine Levy flight? Phys. Rev. Lett.,65 (1990),2201-2204.
    [126]N. Ozdemir and D. Karadeniz, Fractional diffusion-wave problem in cylindrical coordinates, Phys. Lett. A,372 (2008),5968-5972.
    [127]N. Ozdemir, D. Karadeniz and B. B. iskender, Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A,373 (2009),221-226.
    [128]N. Ozdemir, O. P. Agrawal, D. Karadeniz and B. B. Iskender, Analysis of an axis-symmetric fractional diffusion-wave problem, J. Phys. A:Math. Theor.,42 (2009),355208.
    [129]Y. Z. Povstenko, Two-dimensional axisymmetric stresses exerted by ins tantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation, Internat. J. Solids Structures,44 (2007),2324-2348.
    [130]P. Paradisi, R. Cesari, F. Mainardi, A. Maurizi and F. Tampieri A generalized Fick's Law to describe non-local transport effects, Phys. Chem. Earth (B),26 (2001),275-279.
    [131]P. Percell and M. F. Wheeler, A C1 finite element collocation method for elliptic equations, SIAM J. Numer. Anal.,17 (1980),605-622.
    [132]F. E. Peseckis, Statistical dynamics of stable processes, Phys. Rev. A,36 (1987),892-902.
    [133]I. Podlubny. Fractional Differential Equations:An introduction to fractional derivatives, fractional differential equations, to the methods of their solution and some of their applications, Academic Press, San Diego,1999.
    [134]I. Podlubny, Geometric and Physical interpretation of fractional integration and fractional differ-entiation, Fract. Calc. Appl. Anal.,5 (2002),367-386.
    [135]I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen and B. M. V. Jara, Matrix approach to discrete fractional calculus Ⅱ:Partial fractional differential equations, J. Comput. Phys.,228 (2009),3137-3158.
    [136]H. Risken, The Fokker-Planck equation:methods of solution and applications, Springer, San Diego, 1989.
    [137]A. A. Samarskiy, Theory of Finite Difference Schemes, Nauka, Moscow,1977.
    [138]S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives:Theory and Applica-tions, Gordon and Breach, London,1993.
    [139]K. Seki. M. Wojcik and M. Tachiya, Fractional reaction-diffusion equation, J. Chem. Phys.,119 (2003),2165-2170.
    [140]K. Seki, M. Wojcik and M. Tachiya, Dispersive photoluminescence decay by geminate recombination in amorphous semiconductors, Phys. Rev. E,71 (2005),235212.
    [141]W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys.,30 (1989), 134-144.
    [142]B. O'Shaughnessy, I. Procaccia, Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett.,54 (1985),455-458.
    [143]J. Shen, T. Tang and L. L. Wang, Spectral Methods:Algorithms, Analysis and Applications, Springer, New York,2011.
    [144]M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature,363 (1993),31-37.
    [145]C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated prob-lems, SIAM Rev.,51 (2009),82-126.
    [146]E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys.,228 (2009),4038-4054.
    [147]E. Sousa, Numerical approximations for fractional diffusion equations via splines, Comput. Math. Appl.,62 (2011),938-944.
    [148]E. Sousa and C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, arXiv:1109.2345vl [math.NA].
    [149]D. Stanescu, D. Kim and W. A. Woyczynski, Numerical study of interacting particles approximation for integro-differential equations, J. Comput. Phys.,206 (2005),706-726.
    [150]Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math.,56 (2006),193-209.
    [151]孙志忠,降阶法及其在偏微分方程数值解中的应用,科学出版社,北京,2009.
    [152]C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys.,220 (2007),813-823.
    [153]J. W. Thomas, Numerical partical differential equations:finite difference methods. Springer. New-York,1995.
    [154]L. N. Trefethen, Spectral Methods in MATLAB, SI AM, Philadelphia,2000.
    [155]V. V. Uchaikin and R. T. Sibatov, Fractional Boltzmann equation for multiple scattering of reso-nance radiation in low-temperature plasma, J. Phys. A:Math. Theor.,44 (2011),145501.
    [156]C. Varea and R. A. Barrio, Travelling Turing patterns with anomalous diffusion, J. Phys.:Condens. Matter,16 (2004), S5081-S5090.
    [157]R. S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin,2000.
    [158]G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince and H. E. Stanley, Levy flight search patterns of wandering albatrosses, Nature,381 (1996),413-415.
    [159]T. J. Wang and B. Y. Guo, Composite generalized Laguerre-Legendre pseudospectral method for Fokker-Planck equation in an infinite channel, Appl. Numer. Math.,58 (2008),1448-1466.
    [160]徐明喻,谭文长,中间过程、临界现象-分数阶算子理论、方法、进展及其在现在力学中的应用,中国科学G辑,36(2006),225-238.
    [161]H. Wang, K. Wang and T. Sircar, A direct O(N log2 N) finite difference method for fractional diffusion equations, J. Comput. Phys.,229 (2010),8095-8104.
    [162]N. N. Yanenko, The Methods of Fractional Steps:The solution of problems of mathmatical physics in several variables, Springer-Verlag, Berlin,1971.
    [163]Q. Yang, F. Liu and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Modell.,34 (2010),200-218.
    [164]L. Yuan and O. P. Agrawal, A numerical scheme for dynamic systems containing fractional deriva-tives, J. Vib. Acoust.,124 (2002),321-324.
    [165]S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal.,42 (2005),1862-1874.
    [166]S. B. Yuste and K. Lindenberg, Subdiffusive target problem:Survival probability, Phys. Rev. E, 76 (2007),051114.
    [167]S. B. Yuste, R. Borrego and E. Abad, Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems, Phys. Rev. E,81 (2010),021105.
    [168]D. H. Zanette, Macroscopic current in fractional anomalous diffusion, Phys. A,252 (1998).159-164.
    [169]G. M. Zaslavsky, Chaos, fractional kinetic, and anomalous transport, Phys. Rep.,371 (2002),461-580.
    [170]X. X. Zhang, M. C. Lv, J. W. Crawford and I. M. Young, The impact of boundary on the fractional advection-dispersion equation for solute transport in soil:Defining the fractional dispersive flux with the Caputo derivatives, Adv. Water. Resour.,30 (2007),1205-1217.
    [171]P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implticit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal.,46 (2008),1079-1095.
    [172]P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal.,47 (2009),1760-1781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700