用户名: 密码: 验证码:
近红外激光光声光谱多组分气体检测技术及其医学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微量气体检测在大气环境和工业气体检测、医学临床诊断和生命科学领域扮演着重要角色。在众多的气体检测技术中,光声光谱技术因其灵敏度高、响应快和能够实时连续测量等优点受到人们的青睐。本文对近红外激光光声光谱微量气体检测技术及其在医学呼气检测中的应用进行了深入的研究。
     基于气体吸收光谱理论,深入讨论了波长调制光声光谱检测技术的基本原理,针对气体吸收谱线加宽的Lorentzian线型函数推导了波长调制的谐波表达式,作为确定调制振幅的依据着重分析了2次谐波的强度与线宽。在分析气体光声光谱检测技术经典理论的基础上,给出了多组分气体光声光谱检测的一般方法,为光声光谱多组分气体检测技术研究提供了理论依据。
     在理论研究的基础上,本论文设计和研制了基于近红外可调谐光纤激光器和共振光声池的光声光谱多组分气体检测系统,并进行了多组分混合气体检测的实验研究,实现了C2H2、CO、CO2和H20四种组分混合气体的同时检测,极限检测灵敏度分别达到2ppb、4ppm、4ppm和70ppm,并具有良好的线性度。
     在多组分气体光声光谱分析研究的基础上,开展了针对终末期肾病(ESRD)患者血液透析过程中呼出氨气监测的理论及临床实验研究。通过对呼出氨气的医学诊断病理学分析及呼气样品采集的特殊要求,设计了一种专用的采气口鼻面罩和全聚四氟乙烯材料光声池,对气路系统进行了恒温控制,针对呼气中高浓度C02和H20背景对超低浓度NH3测量的干扰问题,提出了呼出氨气高灵敏度检测的多组分气体测量算法,实现了高浓度C02和H20背景下的NH3气体的高灵敏度测量,极限检测灵敏度达到16ppb。
     利用研制的光声光谱呼气分析系统,测量了多名健康志愿者和6名ESRD患者的呼出氨气。检测结果表明,健康志愿者的呼出氨气浓度在300ppb左右;ESRD患者透析前的呼出氨气浓度在2000ppb左右。在透析过程中呼出氨气浓度随透析时间的延长逐渐降低,透析结束时呼出氨气浓度降至200~600ppb,接近健康者的水平,其呼出氨气浓度的下降率均超过65%,这与临床常用的BUN检测透析治疗充分性标准很好的符合。
     基于近红外可调谐光纤激光器的光声光谱呼气分析系统具有高灵敏度,多种气体同时测量,可实时、连续监测和适合临床应用等优点。本论文的研究工作将为进一步研制开发医用呼气分析仪和血液透析监测仪奠定理论和实验基础。
Trace gas detection plays an important role in the fields of atmospheric environment, industrial applications, medical diagnosis and life sciences. Among many detection techniques of trace gases, photoacoustic spectroscopy (PAS) has attracted a lot of interests as they enable high detection sensitivity, real time and continuous measurements. In this thesis, the near-IR laser photoacoustic spectroscopy for multi-component gas detection and its medical application of breath detection are deeply studied.
     Based on the theory of gas molecular absorption spectrum, the principle of wavelength modulation photoacoustic spectroscopy is discussed in detail. General harmonic expressions of wavelength modulation are given for the absorption line shapes of Lorentzian signals broadened by modulation. The linewidths and the signal intensities of second-harmonic have been calculated analytically as a function of the modulation amplitude. The general method of multi-component gas detection is given by analyzing the classic theory of photoacoustic spectroscopy. The method provides theories basis for detecting multi-component gas with photoacoustic spectroscopy.
     On the foundation of theoretical research, the photoacoustic multi-component gas detection system based on a near-IR tunable fiber laser and a resonant PA cell is designed and developed. The experimental investigation of multi-component gas mixture detection is conducted. Simultaneous and continuous measurement of trace water vapor, acetylene, carbon dioxide, and carbon monoxide (H2O, C2H2, CO and CO2) in gas mixtures are achieved. The detection limits (signal-to-noise ratio=l) of70ppm for H2O,2ppb for C2H2,4ppm for CO and4ppm for CO2were demonstrated with the detection system. The detection system has advantages of high level of linearity.
     The theoretical and clinical experimental studies of the breath ammonia monitoring in patients with end-stage renal disease (ESRD) undergoing hemodialysis are done on the basis of photoacoustic spectroscopy for multi-component gas detection. The breath ammonia pathological diagnosis and the specific requirement of sampling are analyzed. The dedicated mask of sampling and a teflon photoacoustic cell are designed. The gas path system are carried out constant temperature control. Aiming at the problem of high concentration of CO2and H2O interference with breath ammonia, the algorithm of multi-component gas measurement is proposed. The high sensitive ammonia measurements in high concentration of CO2and H2O is realized using the algorithm at atmospheric pressure. The minimum detection limit of16ppb (signal to noise ratio=1) in simulated breath samples (5.3%CO2and6.2%H2O (100%relative humidity at37℃)) is achieved.
     The breath ammonia levels of many healthy volunteers and six patients with ESRD were measured by means of photoacoustic spectroscopy breath analysis system. Experimental results indicated that, the breath ammonia levels of healthy volunteers are about300ppb. The initial concentration levels of breath ammonia are about2000ppb before dialysis treatment. These preliminary data indicate that breath ammonia levels decreased gradually as the treatment proceeded. Breath ammonia concentrations decreased to200~600ppb in the end stage of dialysis, which are close to the levels of healthy persons. The breath ammonia concentrations concentrations have decreased by more than65%. It is consistent with the current standard of the BUN.
     The breath analysis system of photoacoustic spectroscopy based on a near-IR tunable fiber laser has high sensitivity, multi-component gas simultaneous measurement, real time, continuous monitoring and suitable for clinical application. These works of the thesis will make some theoretical and experimental preparations for developing the medical breath analyser and the hemodialysis monitor.
引文
[1]M. E. Webber, M. Pushkarsky, C. K. N. Patel. Optical detection of chemical warfare agents and toxic industrial chemicals [J], Optically Based Biological and Chemical Sensing for Defence,2004, 5617:34-45.
    [2]M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, C. K. N. Patel. Laser-based photoacoustic ammonia sensors for industrial applications [J], Applied Physics B-Lasers and Optics,2002,75:391-396.
    [3]S. T. Chambers, S. Bhandari, A. Scott-Thomas, M. Syhre. Novel diagnostics:progress toward a breath test for invasive Aspergillus fumigatus [J], Medical Mycology,2011,49:S54-S61.
    [4]F. K. Tittel, A. A. Kosterev, L. Dong, D. Thomazy, S. Overby. QEPAS for chemical analysis of multi-component gas mixtures [J], Applied Physics B-Lasers and Optics,2010,101:649-659.
    [5]张望,于清旭.基于红外热辐射光源的光声气体分析仪[J],光谱学与光谱分析.2007,27:614-618.
    [6]S. Schilt, J. P. Besson, L. Thevenaz. Near-infrared laser photoacoustic detection of methane:the impact of molecular relaxation [J], Applied Physics B-Lasers and Optics,2006,82:319-328.
    [7]于清旭,李少成,梁秀萍,林钧岫.高灵敏度光声光谱仪及其生物学应用研究fJ],激光技术,2001,25:15-18.
    [8]M. W. Sigrist. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary) [J], Review of Scientific Instruments,2003,74:486-490.
    [9]M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, H. Wachter. Trace gas monitoring with infrared laser-based detection schemes [J], Applied Physics B-Lasers and Optics, 2008,90:289-300.
    [10]张晓钧,张永刚.基于半导体激光器的光声光谱气体检测及其进展[J],半导体光电,2009:326-332.
    [11]潘志方.光声光谱技术在现代医学领域的应用[J],实验科学与技术,2009,7:33.35.
    [12]C. J. Wang, P. Sahay. Breath Analysis Using Laser Spectroscopic Techniques:Breath Biomarkers, Spectral Fingerprints, and Detection Limits [J], Sensors,2009,9:8230-8262.
    [13]刘先勇,周方洁,胡劲松,李红雷.光声光谱在油中气体分析中的应用前景[J],变压器,2004.41:30-33.
    [14]李冀,姚哲刚,王平.呼吸气体诊断系统的最新进展[J],中国医疗器械杂志,2000,24:335-341.
    [15]L. Pauling, A. B. Robinson, Teranish.R, P. Cary. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography [J], Proceedings of the National Academy of Sciences of the United States of America,1971,68:2374-2376.
    [16]M.Philips. Breath Tests in Medicine [J], Sci.Am.,1992:52-57.
    [17]http://baike.baidu.com/view/1367479.htm.
    [18]程志.肾脏疾病不可忽视[J],农村致富,2011:58-58.
    [19]刘莉,钟南山.10个肾脏病患者,9个不知[N].科技日报,2008,3.20.
    [20]程守勤.保护肾脏关注心脏[N].家庭医生报,2011.11.14(1).
    [21]肖月,隋宾艳,赵琨.我国终末期肾病现状及透析技术的应用、费用及支付情况分析[J],中国卫生政策研究,2011,4:29-33.
    [22]http://news.xinhuanet.com/health/2011-10/14/c_122158404.htm.
    [23]李平,冯青.利用联机尿素清除率监测评估终末期肾病患者透析充分性的护理[J],大连医科大学学报,2006:149.150.
    [24]谢华,林洪丽.李平,陈丽光,王松岩,冯青.联机尿素清除率监测和常规采血计算Kt/V对血液透析充分性评估的对照研究[J],中国血液净化,2004:14-16.
    [25]S. M. Cristescu, S. T. Persijn, S. T. L. Hekkert, F. J. M. Harren. Laser-based systems for trace gas detection in life sciences [J], Applied Physics B-Lasers and Optics,2008,92:343-349.
    [26]W. Zhang, Z. Y. Wu, Q. X. Yu. Photoacoustic spectroscopy for fast and sensitive ammonia detection [J], Chinese Optics Letters,2007,5:677-679.
    [27]M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, F. J. M. Harren. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 mu m allows real-time monitoring of the respiration of small insects [J], Applied Physics B-Lasers and Optics, 2006,82:665-669.
    [28]F. Muller, A. Popp, S. Schiller, F. Kuhnemann. Cw-OPO based photoacoustic spectrometer for highly sensitive detection of ethane and other volatile organic compounds [J], Photons Plus Ultrasound:Imaging and Sensing,2004,5320:138-144.
    [29]M. E. Webber, M. Pushkarsky, C. K. N. Patel. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers [J], Applied Optics,2003,42:2119-2126.
    [30]J. P. Besson, S. Schilt, L. Thevenaz. Sub-ppb ammonia detection based on photoacoustic spectroscopy [J],17th International Conference on Optical Fibre Sensors, Pts 1 and 2,2005, 5855:415-418.
    [31]J. P. Besson, S. Schilt, E. Rochat, L. Thevenaz. Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy [J], Applied Physics B-Lasers and Optics,2006,85:323-328.
    [32]Y. Peng, W. Zhang, L. Li, Q. X. Yu. Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection [J], Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2009,74:924-927.
    [33]A.G.Bell. On the production and reproduction of sound by light [J]. Am. J. Sci,1880, 20:305-324.
    [34]J.Tyndall. Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter [J], Proc. R. Soc,1881,31:301-307.
    [35]W.C.Rontgen. Uber Tone, welche durch intermittierende Bestrahlung eines Gases entstehen [J], Ann. der Phys. und Chem.,1881,1:155-159.
    [36]A.G.Bell. Upon the Production of Sound by Radiant Energy [J], Phil. Mag. J. Sci.,1881, 11:518-528.
    [37]M.L.Viegerov. Eine Methode der GAsanalyse, Beruhend auf der Optisch-Akustischen Tyndall-Rontegeners-cheinung [J], Dokl. Akad. Nauk SSSR,1938,19:687-688.
    [38]K.Luft. Uber eine neue methode der registrierenden gasanalyse init hilfe der absorption ultraroter strahlen ohne spektrale zerlegung [J], Zeitschrift Fur Technische Physik,1943,24:97-104.
    [39]E.L.Kerr, J.G.Atwood. The Laser Illuminated Absorptivity Spectrophone:a Method for Measurement of Weak Absorptivity in Gases at Laser Wavelengths [J], Applied Optics,1968, 7:915-921.
    [40]L.B.Kreuzer. Ultralow gas concentration infrared absorption spectroscopy [J], Journal of Applied Physics,1971,42:2934-2943.
    [41]F.G.C.Bijnen, J.Reuss, F.J.M.Harren. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection [J], Review of Scientific Instruments, 1996,67:2914-2923.
    [42]M. A. Gondal. Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants [J], Applied Optics,1997,36:3195-3201.
    [43]S. H. Yo"nak, D. R. Dowling. Photoacoustic detection and localization of small gas leaks [J], J. Acoust. Soc. Am.,1999,105:2685-2694.
    [44]M. W. Sigrist, A. Bohren, T. von Lerber, M. Nagele, A. Romann. Environmental applications of laser-based photoacoustic spectroscopy [J], Analytical Sciences,2001,17:S511-S514.
    [45]D. Marinov, M. W. Sigrist. Monitoring of road-traffic emissions with a mobile photoacoustic system [J], Photochemical & Photobiological Sciences,2003,2:774-778.
    [46]M.B.Pushkarsky, M.E.Webber, C.K.N.Patel. Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy [J], Applied Physics B-Lasers and Optics,2003, 77:381-385.
    [47]Z. Bozoki, A. Mohacsi, G. Szabo, Z. Bor, M. Erdelyi, W. D. Chen, F. K. Tittel. Near-infrared diode laser based spectroscopic detection of ammonia:A comparative study of photoacoustic and direct optical absorption methods [J], Applied Spectroscopy,2002,56:715-719.
    [48]A. Schmohl, A. s. M. s, P. Hess. Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers [J], Applied Optics,2002,41:1815-1823.
    [49]J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho. Quantum Cascade Laser [J], Science,1994,264:553-556.
    [50]B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker. C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho. Photoacoustic spectroscopy using quantum-cascade lasers [J], Optics Letters,1999,24:178-180.
    [51]A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, F. K. Tittel. Quartz-enhanced photoacoustic spectroscopy [J], Optics Letters,2002,27:1902-1904.
    [52]A. A. Kosterev, F. K. Tittel. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser [J], Applied Optics,2004,43:6213-6217.
    [53]D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, D. McDonald. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy [J], Optics Letters,2004,29:1837-1839.
    [54]J. P. Besson, S. Schilt, L. Thevenaz. Sub-ppm multi-gas photoacoustic sensor [J], Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2006,63:899-904.
    [55]A. Mukherjee, M. Prasanna, M. Lane, R. Go, I. Dunayevskiy, A. Tsekoun, C. K. N. Patel. Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy [J], Applied Optics,2008,47:4884-4887.
    [56]V. Hanyecz, A. Mohacsi, A. Pogany, A. Varga, Z. Bozoki,1. Kovacs. G. Szabo. Multi-component photoacoustic gas analyzer for industrial applications [J], Vibrational Spectroscopy, 2010,52:63-68.
    [57]北京大学物理系激光专业.二氧化碳激光光声光谱测污仪[J],环境科学,1979:31-32.
    [58]陈传文,刘耀田,明长江,王才,王文韵,徐俊,李振祥,王连杰.C02激光光声光谱仪的研制[J],激光,1981.
    [59]王宏成.光声光谱技术的发展与应用[J],仪表工业,1981:32-33.
    [60]明长江,刘耀田,陈传文,藏友松.国内光声仪器研制及应用概况[J],分析仪器.1985:1-7.
    [61]于清旭,王艺,刘中凡,林钧岫.双能级跃迁CO激光器腔内光声光谱测量[J],大连理工大学学报,1995,35:258-262.
    [62]于清旭,林钧岫,尤斯·欧文斯,弗朗·斯哈伦.用激光光声检测技术研究乙醛对苹果乙烯产量的影响[J],大连理工大学学报,1999,39:498-503.
    [63]JingsongLi, X. Gao, W. Li, Z. Cao, L. Deng, W. Zhao, M. Huang, W. Zhang. Near-infrared diode laser wavelength modulation-based photoacoustic spectrometer [J], Spectrochimica Acta Part A, 2006,64:338-342.
    [64]K.Liu, J. Li, L.Wang, T.Tan, W.Zhang, X.Gao, W.Chen, F.K.Tittel. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy [J], Appl Phys B,2009,94:527-533.
    [65]K. Liu, X. Y. Guo, H. M. Yi, W. D. Chen, W. J. Zhang, X. M. Gao. Off-beam quartz-enhanced photoacoustic spectroscopy [J], Optics Letters,2009,34:1594-1596.
    [66]刘善峥,张望,于清旭.基于可调谐掺铒光纤激光器和掺饵光纤放大器的光声光谱气体分析仪[J],中国激光,2009,36:964-967.
    [67]陈伟根,周恒逸,黄会贤,唐炬.基于半导体激光器的乙炔气体光声光谱检测及其定量分析[J],仪器仪表学报,2010,31:665-670.
    [68]Q. Y. Wang, J. W. Wang, L. A. Li, Q. X. Yu. An all-optical photoacoustic spectrometer for trace gas detection [J], Sensors and Actuators B-Chemical,2011,153:214-218.
    [69]T. Hibbard, A. J. Killard. Breath Ammonia Analysis:Clinical Application and Measurement [J], Critical Reviews in Analytical Chemistry,2011,41:21-35.
    [70]K. M. Paschke, A. Mashir, R. A. Dweik. clinical applications of breath testing [J], F1000 Medicine Reports,2010,2:1-6.
    [71]A. S. Modak. Breath biomarkers for personalized medicine [J], Personalized Medicine,2010, 7:643-653.
    [72]王洪图.黄帝内经素问白话解[M].北京:人民卫生出版社,2005.
    [73]S. Y. Tan, M. Hu. Medicine in stamps antoine-laurent lavoisier (1743-1794):founder of modern chemistry. [J], Singapore Medical Journal,2004,45:303-304.
    [74]D. J. Morgan. Construction and operation of a simple flame-ionization detector for gas chromatography [J], Journal of Scientific Instruments,1961,38:501-503.
    [75]M. D. Levitt. Production and Excretion of Hydrogen Gas in Man [J], New England Journal of Medicine,1969,281:122-126.
    [76]D. H. Calloway, D. J. Colasito, R. D. Mathews. Gases Produced by Human Intestinal Microflora [J], Nature Nanotechnology,1966,212:1238-1239.
    [77]郑家驹.呼气氢试验临床应用与研究进展[J],中华消化杂志,1999,24:575.576.
    [78]W. Q. Cao, Y. X. Duan. Breath analysis:Potential for clinical diagnosis and exposure assessment [J], Clinical Chemistry,2006,52:800-811.
    [79]A. Mashir, R. Dweik. Exhaled breath analysis:the new interface between medicine and engineering [J], Adv.Powder Technol 2008,20:420-425.
    [80]J. S. Barthel, E. D. Everett. Diagnosis of Campylobacter-Pylori Infections-the Gold Standard and the Alternatives [J], Reviews of Infectious Diseases,1990,12:S107-S114.
    [81]G. S.M., S. J.P., K. B.K., G. R.D., O. N. H.J. Volatile organic compounds in exhaled air from patients with lung cancer [J], Clin. Chem.,1985,31:1278-1282.
    [82]O. N. H.J., G. S.M., O. N. M.H., G. R.D., S. J.P. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer [J], Clin. Chem.,1988,34:1613-1618.
    [83]P. M., G. K., H. J. M. e. al. Volatile organic compounds in breath as markers of lung cancer:a cross-sectional study [J], Lancet,1999,353:1930-1933.
    [84]应可净,黄强.呼吸气体检测在肺癌早期诊断中的应用[J],国际呼吸杂志,2006:143-145.
    [85]G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y.-H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants [J], The Lancet,2011,378:31-40.
    [86]D. M. Guo, D. Zhang, N. M. Li, L. Zhang, J. H. Yang. Diabetes Identification and Classification by Means of a Breath Analysis System [J], Medical Biometrics,Proceedings,2010,6165:52-63.
    [87]童敏明,王莹,李娇,戴新联,刘涛.新型丙酮分析仪的研究[J],仪表技术与传感器,2007,1:16-17.
    [88]何屹.全球糖尿病患者约3.5亿[N].科技日报,2011.7.6(2)
    [89]N. Makisimovich, V. Vorotyntsev, N. Nikitina, O. Kaskevich, P. Karabun, F. Martynenko. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis [J], Sensors and Actuators B: Chemical,1996,36:419-421.
    [90]W. Ping. A novel mothod for diabetes diagnosis based on electronics nose [J], Biosensors& Bioelectronicas,1997,12:1031-1036.
    [91]S. Davies, P. Spanel, D. Smith. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure [J], Kidney International,1997,52:223-228.
    [92]L. R. Narasimhan, W. Goodman, C. K. N. Patel. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis [J], Proceedings of the National Academy of Sciences of the United States of America,2001,98:4617-4621.
    [93]A. M. Diskin, P. Spanel, D. Smith. Time variation of ammonia, acetone, isoprene and ethanol in breath:a quantitative SIFT-MS study over 30 days [J]. Physiological Measurement,2003, 24:107-119.
    [94]J. Manne, O. Sukhorukov, W. Jager, J. Tulip. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath [J], Applied Optics,2006,45:9230-9237.
    [95]H. Ishida, T. Satou, K. Tsuji, N. Kawashima, H. Takemura, Y. Kosaki, S. Shiratori, T. Agishi. The breath ammonia measurement of the hemodialysis with a QCM-NH3 sensor [J], Bio-Medical Materials and Engineering,2008,18:99-106.
    [96]P. Gouma, K. Kalyanasundaram, X. Yun, M. Stanacevic, L. S. Wang. Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath [J], leee Sensors Journal,2010, 10:49-53.
    [97](美国)罗森威格著,王耀俊等译.光声学和光声谱学[M].北京:科学出版社,1986.
    [98]殷庆瑞等著.光声光热技术及其应用[M].北京:科学出版社,1991.
    [99]L. S. Rothman,I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart,I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera. The HITRAN 2008 molecular spectroscopic database [J], Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110:533-572.
    [100]周炳琨,陈倜嵘.激光原理[M].北京:国防.工业出版社,2009.
    [101]J.-P. BESSON. Photoacoustic spectroscopy for multi-gas sensing using near infrared lasers [D]. Lausanne:Swiss Federal Institute of Technology (EPFL),2006.
    [102]J. M. Supplee, E. A. Whittaker, W. Lenth. Theoretical description of frequency modulation and wavelength modulation spectroscopy [J], Applied Optics,1994,33:6294-6302.
    [103]A. Miklos, Z. Bozoki, Y. Jiang, M. Feher. Experimental and Theoretical Investigation of Photoacoustic-Signal Generation by Wavelength-Modulated Diode-Lasers [J], Applied Physics B-Lasers and Optics,1994,58:483-492.
    [104]M. Feher, Y. Jiang, J. P. Maier, A. Miklos. Optoacoustic Trace-Gas Monitoring with near-Infrared Diode-Lasers [J], Applied Optics,1994,33:1655-1658.
    [105]D. S. Bomse, A. C. Stanton, J. A. Silver. Frequency modulation and wavelength modulation spectroscopies:comparison of experimental methods using a lead-salt diode laser [J], Applied Optics, 1992,31:718-731.
    [106]W. Snelleman. An a.c. scanning method with increased sensitivity in atomic absorption analysis using a continuum primary source [J], Spectrochimica Acta Part B:Atomic Spectroscopy,1968, 23:403-411.
    [107]G.V.H.Wilson. Modulation broadening of NMR and ESR line shapes [J], J.Appl.Phys.,1963. 34:3276-3285.
    [108]J. Reid, D. Labrie. Second-Harmonic Detection with Tunable Diode Lasers-Comparison of Experiment and Theory [J], Appl. Phys. B,1981,26:203-210.
    [109]S.L.Castleden, G.F.Kirkbright, D.E.M.Spillane. Wavelength modulation in photoacoustic spectroscopy [J], Anal. Chem.,1981,53:2228-2231.
    [110]M. Angelmahr, A. Miklos, P. Hess. Wavelength-and amplitude-modulated photoacoustics: comparison of simulated and measured spectra of higher harmonics [J], Applied Optics,2008, 47:2806-2812.
    [111]J. A.Silver. Frequency-modulation spectroscopy for trace species detection:theory and comparison among experimental methods [J], Applied Optics,1992,31:707-717.
    [112]S. Schilt, L. Thevenaz. Wavelength modulation photoacoustic spectroscopy:Theoretical description and experimental results [J], Infrared Physics& Technology,2006,48:154-162.
    [113]王敏,张玉钧,刘文清,刘建国,王铁栋,涂兴华,高山虎,阚瑞锋.可调谐二极管激光吸收光谱二次谐波检测方法的研究[J],光学技术,2005,31:279-281.
    [114]涂兴华,刘文清,张玉钧,董凤忠.CO和CO2的1.58μm波段可调谐二极管激光吸收光谱的二次谐波检测研究[J],光谱学与光谱分析.2006,126:1190-1194.
    [115]H. Jia, W. X. Zhao, T. D. Cai, W. D. Chen, W. J. Zhang, X. M. Gao. Absorption spectroscopy of ammonia between 6526 and 6538 cm(-l) [J], Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110:347-357.
    [116]李少成.光声光谱和腔内增强吸收光谱技术的研究与应用[D].大连:大连理工大学,2003.
    [117]杨晓龙.光声光谱技术中的多气体成份分析方法研究[D].大连:大连理工大学,2003.
    [118]http://www.chembaike.com/index.php7doc-view-6189.html.
    [119]http://zh.wikipedia.org/wiki/%E7%BA%A2%E5%A4%96%E5%85%89%E8%B0%B1%E5%.
    [120]林中,范世福.光谱仪器学[M].北京:机械工业出版社,1989.
    [121]中华人民共和国国家质量监督检验检疫总局:GB/T7252-2001变压器油中溶解气体分析和判断导则,[S]北京:中国标准出版社2001,pp.1-24.
    [122]王琦,于清旭.超宽带可调谐环形腔掺饵光纤激光器研究[J],光电子·激光,2006,17:151-153.
    [123]杨乐平,李海涛,杨磊LabVIEW程序设计与应用[M].北京:电子工业出版社,2005.
    [124]http://baike.baidu.com/view/98102.htm?func=retitle.
    [125]汪照函.氨假说和细胞因子在肝性脑病发病中的研究进展[J],世界华人消化杂志,2009,17:1638-1642.
    [126]http://www.wiki8.com/niaoansuanxunhuan_108065/.
    [127]D. Smith, T. S. Wang, A. Pysanenko, P. Spanel. A selected ion flow tube mass spectrometry study of ammonia in mouth-and nose-exhaled breath and in the oral cavity [J], Rapid Communications in Mass Spectrometry,2008,22:783-789.
    [128]A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, N. J. Tao. Breath ammonia sensor based on conducting polymer nanojunctions [J], Ieee Sensors Journal,2008,8:269-273.
    [129]李良.人体呼出氨气的光声光谱检测技术研究[D].大连:大连理工大学,2010.
    [130]W. Q. Cao, Y. X. Duan. Current status of methods and techniques for breath analysis [J]. Critical Reviews in Analytical Chemistry,2007,37:3-13.
    [131]C.康姆罗.呼吸生理学/第二版/Physiology of Respiration[M].北京:人民卫生出版社,1981.
    [132]HITRAN and PNNL Database, http://savi.weber.edu/hi_plot/index.html.
    [133]陈香美.血.液净化标准操作规程[M].北京:人民军医出版社,2010.
    [134]http://www.hudong.com/wiki/%E8%A1%80%E6%B6%B2%E9%80%8F%E6%9E%90.
    [135]S. M. Beck. Cell coatings to minimize sample (NH3 and N2H4) adsorption for low-level photoacoustic detection [J], Applied Optics,1985,24:1761-1763.
    [136]R. A. Rooth, A. J. L. Verhage, L. W. Wouters. Photoacoustic measurement of ammonia in the atmosphere:influence of water vapor and carbon dioxide [J], Applied Optics,1990,29:3643-3653.
    [137]A. Schmohl, A. Miklos, P. Hess. Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia [J], Applied Optics,2001,40:2571-2578.
    [138]张望.光声光谱微量气体检测技术及其应用研究[D].大连:大连理工大学,2010.
    [139]http://www.chinabaike.com/article/43/193/2007/2007021442737.html.
    [140]德国康讯肺功能,www.ganshorn.cn/.
    [141]http://www.pranalytica.com/.
    [142]http://wiki.zdooo.com/index.php?doc-innerlink-%e5%91%bc%e5%90%b8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700