用户名: 密码: 验证码:
Nb_3Sn材料及其股线的若干力—电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Nb3Sn超导材料具有良好的超导临界性能,其复合股线在ITER磁体系统和其它强磁场工程中有着非常重要的应用。Nb3Sn材料及其股线的临界电流密度、有效弹性模量、统计强度、接触行为等力电性能直接关系到超导磁体的安全稳定运行,对其的预测和评估是超导磁体科学和技术的关键问题。因而,本文针对Nb3Sn材料及其股线的力-电性能开展了理论研究工作。
     基于电子散射钉扎机制,由Boltzmann输运方程得到了超导多晶材料中受晶粒尺寸和电子晶界散射性质影响的电子有效平均自由程,并利用合作钉扎理论建立了描述Nb3Sn超导材料临界电流密度晶粒尺寸效应的模型。研究表明,有效临界电流密度不仅与晶粒尺寸有关,而且还强烈地依赖于透射率的大小;当透射率小于一定值时,存在临界电流密度的最佳晶粒尺寸,从而澄清了已有研究工作中Nb3Sn超导材料临界电流密度是否存在最佳晶粒尺寸的问题。本文建立的BT模型-小磁通线束钉扎机制的预测结果与实验结果吻合良好,并得到了能反映临界电流密度晶粒尺寸效应的Nb3Sn超导复合股线临界电流密度的标度关系。
     建立了一个描述纤维断裂和初始损伤导致的青铜法制备的Nb3Sn超导复合股线轴向刚度退化的解析模型。此模型由三个子模型构成:含损伤的纤维有效模量模型;超导内层有效模量模型;Nb3Sn超导复合股线有效模量模型。本文的研究证实初始损伤影响超导复合股线的有效轴向模量并导致股线刚度的退化,而且复合股线的刚度退化表现出明显的非线性特征而且依赖于初始损伤参数和总损伤的演化。由此预测得到的结果与实验由第一次加载应力-应变曲线得到的弹性模量值基本吻合。
     从剪滞模型出发,利用基于Weibull/Poisson统计理论和GLS机制的Curtin-Zhou模型描述复合股线中纤维碎片化过程,得到了Nb3Sn超导复合股线拉伸统计平均强度和失效概率分布函数;提出了分析CICC中复合股线周期性弯曲载荷因子的模型,并利用其联系拉伸统计强度得到了股线的周期性弯曲强度。研究结果表明,初始损伤对拉伸统计强度和周期性弯曲统计强度的影响都非常显著,两者都随着初始损伤参数的增加而迅速减小。通过与已有研究结果的对比可以发现,本文模型预测的周期性载荷因子的大小和随Weibull模量的变化规律都是正确的,并填补了已有研究的空白。
     提出了一套离散元框架和方法来分析CICC横截面内横向电磁载荷下股线的二维接触力学行为,并且能有效地描述股线间的接触力学特征。本文模拟发现,相对接触力、相对法向接触力以及相对切向接触力大小分布的概率密度函数都呈负指数函数形式的衰减;接触力、法向接触力、切向接触力方向分布的概率密度函数都表现出各项异性,存在6个概率密度较大的方向。本文经在三级子股线圆盘单元间预加弹簧方法模拟得到的CICC横向压缩的载荷-位移曲线与已有横向压缩实验测得的载荷-位移曲线吻合良好。
     总之,本文的研究,有利于更好地预测和评估Nb3Sn超导材料和结构的多场有效性能,并对评估和保证ITER超导磁体的安全稳定运行提供了有价值的理论依据。
Nb3Sn materials have excellent critical superconducting properties, so the Nb3Sn composite strands have important applications in ITER magnetic system and other high magnetic field engineering. Because the mechanical and electrical properties of Nb3Sn materials and structures, such as the critical current density, the effective elastic modulus, the statistical strength, the contact mechanical behavior, of Nb3Sn superconducting materials and structures, are strongly related to the safe and stable running of superconducting magnets, the prediction and evaluation of them are key problems in the high magnetic field science and technology. Hence, this dissertation presents theoretical investigations on the mechanical-electrical properties of Nb3Sn superconducting materials and strands.
     Based on the electron scattering pinning mechanism, this study proposes a model describing the grain size effects on the effective critical current density of Nb3Sn superconducting materials by using the collective pinning theory, where the electron effective mean free path which is affected by grain size and the grain boundary scattering properties is obtained through Boltzmann transport equation. The investigation indicates:the effective critical current density is not only dependent on the grain size but also on the electron transmistivity at grain boundaries; when the transmistivity is less than a specific value, there exists a best grain size for the effective critical current density. So, this clarifies the question about whether there exists a best grin size for the critical current density in the prior work. The results predicted by the proposed BT model- small vortex bundle pinning mechanism are in good agreement with the experimental results。Furthermore, we get a new critical current density scaling relation for Nb3Sn strands, which can describe the grain size effects.
     An analytical model is developed to simulate this degradation of bronze route strands induced by initial damage and filament fracture. The model contains three sub-models:the model of the effective modulus of a filament with initial damage; the model of the weakened stiffness of the superconducting layer; the model of the effective axial modulus of the strand. The results indicate that the stiffness reduction of a strand presents obvious nonlinear behavior and depends on the initial damage parameter and the evolution of total damage. The predicted effective axial modulus from the present model is in basic agreement with that determined from the first loading stress-strain curve.
     We use the shear lag model combined the Curtin-Zhou model which is based on the Weibull/Poisson statistics and GLS schema to describe the filament fragmentation in composite strands, and get the statistical average tensile strength and the failure probability distribution function of these superconducting composite strands. Furthermore, we propose a model to analyze the load factor of the periodic bending strand, and obtain the periodic bending strength which is related to the tensile strength by using the load factor. The study points out that the initial damage parameter affects evidently the tensile strength and the periodic bending strength which all decreases as the initial damage parameter value increases. Comparing to the results of previous research, the periodic bending load factor values and dependence on the Weibull modulus predicted by our model is correct. Our research fills the gap of previous work.
     We propose a discrete element frame and method to analyze the 2D contact mechanical behavior and characteristics of strands in the CICC cross-section under the applied transverse electromagnetic loads. The discrete element simulation finds: among strands in the CICC cross-section, the probability density function distributions of the magnitudes of the relative contact force, the relative normal contact force and the relative tangential contact force all decay as a negative exponential law; the probability density function distributions of the directions of the contact force, the normal contact force and the tangential contact force all are anisotropic, and all have six directions with relatively large probability density values. The simulated transverse load-displacement curves, where the treatment of applying pre-spring between the triplet strand disc elements is taken, agree well with the experimental test curves.
     After all, through the investigations in the dissertation, it is valuable and important to predict and assess the multi-field effective properties of Nb3Sn superconducting materials and structures, and can provide certain theoretical guidance to assess and promise the safety and stability of ITER superconducting magnets.
引文
[1]Matthias, B.T., Geballe, T.H., Geller, S., Corenzwit, E. Superconductivity of Nb3Sn. Phys. Rev.1954,95:1435-1435.
    [2]Onnes, H.K. On the sudden change in the rate at the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leide.1911,120b:122b.
    [3]Hyperphysics website, http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html.
    [4]Hanak, J.J., Strater, K., Cullen, R.W. Preparation and properties of vapor-deposited niobium stannide. RCA Review.1964,25:342-365.
    [5]Godeke, A. Performance boundaries in Nb3Sn superconductors [Ph.D Dissertation]. Twente: University of Twente.2005.
    [6]The Basic Energy Sciences (BES) Workshop on Superconductivity. Basic research needs for superconductivity. Inorganic Chemistry Laboratory, Oxford University, England,2006.
    [7]张裕恒.超导物理.合肥:中国科学技术大学出版社.1997.
    [8]Meissner, W., Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfahigkeit. Naturwissenschaften.1933,21:787-788.
    [9]Chiesa, L. Mechanical and electromagnetic transverse load effects on sperconducting Niobium-Tin performance [Ph.D Dissertation]. Cambridge MA:Massachusetts Institute of Technology.2009.
    [10]Parrel J. A., et al. Advance in Nb3Sn strand for fusion and particle accelerator applications. IEEE Trans. Appl. Supercond.2005,15:1200-1204.
    [11]Moore, D.F., et al. Energy gaps of the A-15 superconductors Nb3Sn, V3Si, and Nb3Ge measured by tunneling. Phys. Rev. B.1979,20:2721-2738.
    [12]Guritanu, V., et al. Specific heat of Nb3Sn:the case for a second energy gap. Phys. Rev. B. 2004,70:184526-184533.
    [13]Gorter, C.J., Casimir, B.G. On supraconductivity Ⅰ. Physica.1934,1:306-320.
    [14]London, F., London, H. The electromagnetic equations of the supraconductor. Proc. Roy. Soc. A.1935,155:71-88.
    [15]Landau, L.D., Lifshitz, E.M. Statistical Physics. London: Pergamon Press.1958.
    [16]Ginzburg, V.L., Landau, L.D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz.1950, 20:1064-1082.
    [17]Ginzburg, V.L. Nobel Lecture:On superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the XXI century. Rev. Mod. Phys.2004,76:981-998.
    [18]Abrikosov, A.A. On the Magnetic properties of superconductors of the second group. Zh. Eksp.Teor. Fiz.1957,32:1442-1452.
    [19]Gor'kov, L.P. Mikroskopicheskii vyvod uravnenii Ginzburga-Landau v teorii sverkhprovodimosti Zh. Eksperim. iTeor. Fiz.1959,36:1918-1923[Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Sov. Phys. JETP.1959, 9:1364-1367].
    [20]Bardeen, J., Cooper, L.N., Schrieffer, J.R. Theory of superconductivity. Phys. Rev.1957, 108:1175-1204.
    [21]Cooper, L.N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev.1956, 104:1189-1190.
    [22]Norman, M.R., Pepin, C. The electronic nature of high temperature cuprate superconductors. Rep. Prog. Phys.2003,66:1547-1610.
    [23]Orenstein, J., Millis, A.J. Advances in the physics of high-temperature superconductivity. Science.2008,288:468-474.
    [24]Bean, C.P. Magnetization of hard superconductors. Phys. Rev. Lett.1962,8:250-253.
    [25]Bean, C.P. Magnetization of high-field superconductors. Rev. Mod. Phys.1964,36:31-39.
    [26]Kim, Y.B., Hempstead, C.F., Strand, A.R. Critical persistent currents in hard superconductors. Phys. Rev. Lett.1962,9:306-309.
    [27]Anderson, P.W. Theory of flux creep in hard superconductors. Phys. Rev. Lett.1962, 9:309-311.
    [28]Anderson, P.W., Kim, Y.B. Flux creep in type-II superconductors. Rev. Mod. Phys.1964,46: 39-43.
    [29]Fisher, M.P.A. Vortex-glass superconductivity: a possible new phase in bulk high-Tc oxides. Phys. Rev. Lett.1989,62:1415-1418.
    [30]Watson, J.H.P. Magnetization of synthetic filamentary superconductors:B. the dependence of the critical current density on temperature and magnetic field. J. Appl. Phys.1968,39: 3406-3413.
    [31]Irie, F., Yamafuji, K. Theory of flux motion in non-ideal type-Ⅱ superconductors. J. Phys Soc. Jpn.1967,23:255-268.
    [32]Fietz, W.A., Beasley, M.R., Silcox, J., Webb, W.W. Magnetization of superconducting Nb-25%Zr wire. Phys. Rev.1964,136:A335-A345.
    [33]Xu, M., Shi, D., Fox. R.F. Generalized critical-state model for hard superconductors. Phys. Rev. B.1990,42:10773-10776.
    [34]Chen, J.P. Development and characterization of high strength Nb3Sn superconductor [Ph.D Dissertation]. Florida: The Florida State University.2006.
    [35]王秋良.高磁场超导磁体科学.北京:科学出版社.2006.
    [36]Dietderich, D.R., Godeke, A. Nb3Sn research and development in the USA-wires and cables. Cryogenics.2008,48:331-340.
    [37]Tsuji, H., Egorov, S., Minervini, J., Mitchell, N., et al. ITER R&D: Magnets:conductor and joint development. Fusion Engineering and Design.2001,55:141-151.
    [38]Shikov, A., Nikulin, A., Silaev, A., et al. Development of the superconductors for ITER magnet system. Journal of Nuclear Materials.1998,258-263:1929-1934.
    [39]Mitchell, N., et al. The ITER magnet system. IEEE Trans. Appl. Supercond.2008, 18:435-440.
    [40]Ulbricht, A., Duchateau, J.L., Fietz, W.H., et al. The ITER toroidal field model coil project. Fusion Engineering and Design.2005,73:189-327.
    [41]ITER Joint Central Team. Review of the ITER Technology R&D.2003,2.2-2.3.
    [42]Ciazynski, D. Review of Nb3Sn conductors for ITER. Fusion Engineering and Design.2007, 82:488-497.
    [43]乔力.耦合作用下线材结构力电性能分析[博士论文].兰州:兰州大学.2011.
    [44]Zanino, R., et al. Coupled mechanical-electromagnetic-thermal-hydraulic effects in Nb3Sn cable-in-conduit conductors for ITER. Supercond. Sci. Technol.2005,18:376-382.
    [45]Buehler, E. Levinstein, H.J. Effect of tensile stress on the transition temperature of current-carrying capacity of Nb3Sn. Journal of Applied Physics.1965,36:3856-3860.
    [46]Ekin, J.W. Effect of stress on the critical current of Nb3Sn multifilamentary composite wire. Appl. Phys. Lett.1978,29:216-219.
    [47]Haken, B. ten, Godeke, A., ten Kate, H.H.J. The strain dependence of the critical properties of Nb3Sn conductors. J. Appl. Phys.1999,85:3247-3253.
    [48]Arbelaezl, D., Godeke, A., Prestemon, S.O. An improved model for the strain dependence of the superconducting properties of Nb3Sn. Supercond. Sci. Technol.2009,22:025005-1-6.
    [49]Johansen, T.H. Pinning-induced stress during activation of bulk HTSs as trapped-field magnets. Supercond. Sci. Technol.2000,13:830-835.
    [50]Dasgupta, A., et al. Flux pinning by grain boundaries in niobium bicrystals. Philosophical Magazine Part B.1978,38:367-380.
    [51]Pulver, M. Peak in the curves of critical current of superconducting V3Si. Phys.Stat. Soli. B. 1972,49:k95-k98.
    [52]Godeke, A. A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state. Supercond. Sci. Technol.2006,19:R68-R80.
    [53]Scanlan, R., Fietz, W., Koch, E. Flux pinning centers in superconducting Nb3Sn. J. Appl. Phys.1975,46:2244-2249.
    [54]Shaw, B.J. Grain size and film thickness of Nb3Sn formed by solidstate diffusion in the range 650-800℃. J. Appl. Phys.1976,47:2143-2145.
    [55]West, A., Rawlings, R. A transmission electron microscopy investigation of filamentary superconducting composites. J. Mater. Sci.1977,12:1862-1868.
    [56]Livingston, J.D. Grain size in A15 relation layers. Phys. Stat. Solid.1977,44:295-301.
    [57]Hammond, R.H., et al. Studies of electron beam coevaporated Nb3Sn composites: critical current and microstructure. IEEE Trans. Magn.1979,15:619-622.
    [58]Snead, C., Suenaga, M. Radiation-enhanced diffusion growth of Nb3Sn monofilaments: grain-size effects on critical-current density. Appl. Phys. Lett.1980,36:474-476.
    [59]Schauer, W., Schelb, W. Improvement of Nb3Sn high field critical current by a two-stage reaction. IEEE Trans. Magn.1981,17:374-377.
    [60]Ochiai, S. Tensile strength and flux pinning force of superconducting Nb3Sn compound as a function of grain size. Journal of Materials Science.1986,21:1020-1026.
    [61]Marken, K. Characterization studies of bronze-process filamentary Nb3Sn composites [Ph.D Dissertation]. Wisconsin-Madison:Univ. of Wisconsin-Madison.1986.
    [62]Fischer, C. Investigation of the relationships between superconducting properties and Nb3Sn reaction conditions in powder-in-tube Nb3Sn conductors [Master's Thesis]. Wisconsin-Madison:Univ. of Wisconsin-Madison.2002.
    [63]Cooley, L.D., Hu, Y.F., Moodenbaugh, A.R. Enhancement of the upper critical field of Nb3Sn utilizing disorder introduced by ball milling the elements. Appl. Phys. Lett.2006, 88:142506-1-3.
    [64]Popova, E.N. Solid-state diffusion formation of nanocrystalline Nb3Sn Layers at two-staged annealing of multifilamentary Nb/Cu-Sn wires. Journal of Nano Research.2012,16:69-75.
    [65]Xiang, J.Y., Fleck, C., Hampshire, D.P. Bulk nanocrystalline superconducting YBa2Cu3O7-x Journal of Physics: Conference Series.2008,97:012237-1-7.
    [66]Solovyov, V.F., et al. Strong influence of the YBa2Cu3O7 grain size on critical current densities of thick YBa2Cu3O7 layers made by a metal-organic deposition process. Supercond. Sci. Technol.2008,21:125013-1-5.
    [67]Zeng, X.H., et al. Superconducting properties of nanocrystalline MgB2 thin films made by an in situ annealing process. Appl. Phys. Lett.2001,79:1840-1842.
    [68]Gumbel, A., et al. Improved superconducting properties in nanocrystalline bulk MgB2. Appl. Phys. Lett.2002,80:2725-2727.
    [69]Kario, A., et al. Critical current density enhancement in strongly reactive ex situ MgB2 bulk and tapes prepared by high energy milling. Supercond. Sci. Technol.2011,24:075011-1-7.
    [70]Niu, H.J., Hampshire, D.P. Disordered nanocrystalline superconducting PbMo6S8 with a very large upper critical field. Phys. Rev. Lett.2003,91:027002-1-3.
    [71]Mandal, P. Bulk critical state and fundamental length scales of superconducting nanocrystalline Nb3Al in Nb-Al matrix. Phys. Rev. B.2009,80:024502-1-7.
    [72]Van Gurp, G.J. Effect of structure on the superconducting properties of vanadium and niobium foils. Phil. Res. Rep.1967,22:10-35.
    [73]Zerweck, G. On pinning of superconducting flux lines by grain boundaries. Journal of Low Temperature Physics.1981,42:1-9.
    [74]Campbell, A.M., Evetts, J.E. Flux vortices and transport currents in type Ⅱ superconductors. Advances in Physics.1972,21:199-419.
    [75]Pande, C.S., Suenaga, M. A model of flux pinning by grain boundaries in type-Ⅱ superconductors. Appl. Phys. Lett.1976,29:443-444.
    [76]Yetter, W.E., et al. Grain-boundary flux pinning by the electron-scattering mechanism. Philosophical Magazine Part B.1982,46:523-537.
    [77]Yetter, W.E., Kramer, E.J. Flux pinning by planar defects. J. Mater. Sci.1982,17:2792-2800.
    [78]Welch, D. An approximate closed-form expression for the electron-scattering-induced interaction between magnetic flux lines and grain boundaries. IEEE Trans. Magn.1985, Mag21:827-830.
    [79]Lehoucq, M.T., Tarento, R.J. Influence of the electron-scattering mechanism on the critical current given by flux pinning at grain or twin boundary in high Tc superconductors. J. Phys. Ⅲ France.1994,4:235-251.
    [80]Blatter, G., et al. Vortices in high-temperature superconductors. Rev. Mod. Phys.1994, 66:1125-1388.
    [81]Griessen, R., et al. Evidence for mean free path fluctuation induced pinning in YBa2Cu3O7 and YBa2Cu4O8 films. Phys. Rev. Lett.1994,72:1910-1913.
    [82]Ghorbani, S.R., et al. Coexistence of the δ/and δTce flux pinning mechanisms in nano-Si-doped MgB2. Supercond. Sci. Technol.2010,23:025019-1-4.
    [83]Zheng, X.J., Zhu, L.L., Zhou, Y.H., Zhang, Q.J. Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials. Applied Physics Letters.2005,87: 242101-1-3.
    [84]Zhu, L.L., Zheng, X.J. Modification of the phonon thermal conductivity in spatially confined semiconductor nanofilms under stress fields. Europhysics Letters.2009,88:36003.
    [85]Zhu, L.L., Zheng, X.J. Grain-size dependent thermal, electrical and mechanical properties of bulk nanocrystalline materials. In Bulk Materials:Research, Technology and Application, Nova Science Publishers, Hauppauge NY. Editors:Teodor Frias and Ventura Maestas) 267-305,2010.
    [86]Godeke, A., ten Haken, B., ten Kate, H.H.J., Larbalestier, D.C. A general scaling relation for the critical current density in Nb3Sn. Supercond. Sci. Technol.2006,19:R100-R116.
    [87]Kramer, E.J. Scaling laws for flux pinning in hard superconductors. Journal of Applied Physics.1973,44:1360-1-11.
    [88]Summers, L.T., Guinan, M.W., Miller, J.R., Hahn, P.A. A model for the prediction of Nb3Sn critical current as a function of field, temperature, strain, and radiation damage. IEEE Trans. Magn.1991,27:2041-2044,
    [89]de Gennes, P.G. Behavior of dirty superconductors in high magnetic fields. Physik der Kondensierten Materie.1964,3:79-90.
    [90]Rainer, D. and Bergmann, G. Temperature dependence of Hc2 and K1 in strong coupling superconductors. Journal of Low Temperature Physics.1974,14:501-519.
    [91]Lu, X.F., Taylor, D.M.J., Hampshire, D.P. Critical current scaling laws for advanced Nb3Sn superconducting strands for fusionapplications with six free parameters. Supercond. Sci. Technol.2008,21:105016-1-11.
    [92]Ekin, J.W. Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors. Cryogenics.1980,20:611-624.
    [93]ten Haken, B. Strain effects on the critical properties of high-field superconductors [Ph.D Dissertation]. Twente: Univ. of Twente.1994.
    [94]Markiewicz, W.D. Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence. Cryogenics.2004,44:767-782.
    [95]Markiewicz, W.D. Comparison of strain scaling functions for the strain dependence of composite Nb3Sn superconductors. Supercond. Sci. Technol.2008,21:054004-1-11.
    [96]Arbelaez, D., Godeke, A., Prestemon, S.O. An improved model for the strain dependence of the superconducting properties of Nb3Sn. Supercond. Sci. Technol.2009,22:025005-6.
    [97]Bottura, L., Bordini, B. Jc(B,T,ε) Parameterization for the ITER Nb3Sn production. IEEE Trans. Appl. Supercond.2009,19(3):1521-1524.
    [98]Zhou, Y.H., Zheng, X.J., Miya, K. Magnetoelastic bending and buckling of three-coil superconducting partial torus. Fusion Eng. and Des.1995,30:275-289.
    [99]Zhou, Y.H., Zheng, X.J., Miya, K. Mechanical behaviours of magnetoelastic interaction for superconducting helical magnets. Fusion Eng. Des.1998,38:283-293.
    [100]Zheng, X.J., Zhou, Y.H., Lee, J.S. Instability of superconducting partial torus with two pin supports. ASCE J. Eng. Mech.1999,125:174-179.
    [101]Zheng, X.J., Wang, X.Z., Zhou, Y.H. Magnetoelastic analysis of non-circular superconducting partial torus. Int. J. Solid and Struct.2000,37:563-576.
    [102]Zhao, Y.F., Zhou, Y.H. Infulence of non-uniform Jc distributions on fulx jumps in high-temperature superconductors. Eur. Phys. J. B.2008,61:391-396.
    [103]Zhou Y.H., Yang, X.B. Numerical simulation of thermomagnetic instability in high-Tc superconductors:Dependence on sweep rate and ambient temperature. Phys. Rev. B.2006, 74:054507-1-9.
    [104]Zhou, Y.H., Yong, H.D. Crack problem for a long rectangular slab of superconductor under an electromagnetic force. Phys. Rev. B.2007,76:094523-1-5.
    [105]Gao, Z.W., Zhou, Y.H. Crack growth for a long rectangular slab of superconducting trapped-field magnets. Supercond. Sci. Technol.2008,21:095010-1-5.
    [106]范斌群,王震鸣,嵇醒,黄小清.关于复合材料力学几个基本问题的研究.力学与实践.1995,17:4-7.
    [107]Tsu-Wei Chou. Structure and properties of composites. New York: VCH Press.1993.
    [108]杨庆生.复合材料细观结构力学与设计.北京:中国铁道出版社.2000.
    [109]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论.北京:高等教育出版社.2006.
    [110]Shaffer, B.W. Stress-strain relations of reinforced plastics parallel and normal to their internal filaments. AIAA J.1964,2:348-362.
    [111]Hill, R.J. Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour. J. Mech. Phys. Solids.1964,12:199-212.
    [112]Yang, Q.S., Qin, Q.H. Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading. Materials Science & Engineering A.2003,344:140-145.
    [113]Yang, Q.S., Qin, Q.H. Micro-mechanical analysis of composite materials by BEM. Engineering Analysis with Boundary Elements.2004,28:919-926.
    [114]Hill, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids.1965,13:213-222.
    [115]Chou, T.W., Nomura, S., Taya, M. A self-consistent approach to the elastic stiffness of short-fiber composites. Journal of Composite Materials.1980,14:178-188.
    [116]Christensen, R.M. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of Mechanics Physics of Solids.1979,27:315-330.
    [117]Christensen, R.M. A critical evaluation for a class of micro-mechanics models. Journal of the Mechanics Physics of Solids.1990,38:379-404.
    [118]Mori, T., Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica.1973,21:571-574.
    [119]Weng, G.J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science. 1984,22:845-856.
    [120]Benveniste, Y. A new approach to the application of Mori—Tanaka's theory in composite materials. Mechanics of Materials.1987,6:147-157.
    [121]Yang, Q., Tang, L., Chen, H. Self-consistent finite element method: a new method of predicting effective properties of inclusion media. Finite Elem. Anal. Des.1994,17:247-257.
    [122]Norris, A.N. A differential scheme for the effective moduli of composites. Mechanics of Materials.1985,4:1-16.
    [123]Hashin, Z. The differential scheme and its application to cracked materials. Journal of the Mechanics and Physics of Solids.1988,36:719-734.
    [124]Hashin, Z., Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids.1963,11:127-140.
    [125]Kroner, E. Bounds for effective elastic moduli of disordered materials. Journal of the Mechanics and Physics of Solids.1977,25:137-155.
    [126]Walpole, L. On bounds for the overall elastic moduli of inhomogeneous systems. Journal of the Mechanics Physics of Solids.1966,14:151-162.
    [127]Halpin, J.C., Tsai, S.W. Air Force Technical Report AFML-TR-67-423. June,1969.
    [128]Yang, Q.S., Becker, W. Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions. Computational Materials Science.2004,31:169-180.
    [129]杜丹旭.多相材料有效性质的理论研究[博士论文].北京:清华大学.2000.
    [130]Larbalestier, D.C., et al. The influence of tensile stress on the critical current of filamentary Nb3Sn magnet conductor. IEEE Trans. Magn.1977, MAG-13:462-465.
    [131]Specking, W., Nyilas, A., et al. React and wind 12T KfK-NET-TF subsize conductor under static and cyclic axial strain. IEEE Trans. Magn.1991,27:1912-1915.
    [132]Europa Metalli-LMI. Fabrication and testing of a short length of wind and react conductor. Final report to EU contract NET/87-745 B/S-01.1991.
    [133]van den Eijnden, N.C., Nijhuis, A., Ilyin, Y., Wessel, W.A. J., ten Kate, H.H.J. Axial tensile stress-strain characterization of ITER model coil type Nb3Sn strands in TARSIS. Supercond. Sci. Technol.2005,18:1523-1532.
    [134]Ilyin, Y., Nijhuis, A., Wessel, W.A.J., van den Eijnden, N., ten Kate, H.H.J. Axial Tensile Stress-Strain Characterization of a 36 Nb3Sn Strands Cable. IEEE Trans. Appl. Supercond. 2006,16:1249-1252.
    [135]Nijhuis, A., et al. Impact of spatial periodic bending and load cycling on the critical current of a Nb3Sn strand. Supercond. Sci. Technol.2005,18:S273-S283.
    [136]Nijhuis, A., et al. Spatial periodic contact stress and critical current of a Nb3Sn strand measured in TARSIS. Supercond. Sci. Technol.2006,19:1089-1096.
    [137]Nijhuis, A., et al. Summary of ITER TF Nb3Sn strand testing under axial strain, spatial periodic bending and contact Stress. IEEE Trans. Appl. Supercond.2009,19:1516-1520.
    [138]Nijhuis, A., Ilyin, Y., Abbas, W. Axial and transverse stress-strain characterization of the EU dipole high current density Nb3Sn strand. Supercond. Sci. Technol.2008,21:065001-10.
    [139]Seeber, B., et al. Critical current of a Nb3Sn bronze route conductor under uniaxial tensile and transverse compressive stress. Supercond. Sci. Technol.2007,20:S184-S188.
    [140]Awaji, S., et al. Improvement of mechanical and superconducting properties in CuNb/(Nb,Ti)3Sn wires by applying bending strain at room temperature. Supercond. Sci. Technol.2003,16:733-738.
    [141]Awaji, S., et al. Effects of repeated bending load at room temperature for composite Nb3Sn wires. Supercond. Sci. Technol.2003,16:1059-1063.
    [142]Harris, D.L. Characterization of Nb3Sn superconducting strand under pure bending [Master's Thesis]. MA:Massachusetts Institute of Technology.2005.
    [143]Takayasu, M., et al. Pure bending strains of Nb3Sn wires. Supercond. Sci. Technol.2011, 24:045012:1-16.
    [144]Easton, D.S., et al. A prediction of the stress state in Nb3Sn superconducting composites. J.Appl. Phys.1980,51:2748-2757.
    [145]Mitchell, N. Mechanical behaviour of cabled superconductors under transverse and longitudinal loads. IEEE Trans. Magn.1992,28:198-201.
    [146]Mitchell, N. Mechanical and magnetic load effects in Nb3Sn cable-in-conduit conductors. Cryogenics.2003,43:255-270.
    [147]Mitchell, N. Modeling of the effect of Nb3Sn strand composition on thermal strains and superconducting performance. IEEE Trans. Appl. Supercond.2005,15:3572-3576.
    [148]Mitchell, N. Finite element simulations of elasto-plastic processes in Nb3Sn strands. Cryogenics.2005,45:501-505.
    [149]Ahoranta, M., et al. Modelling of local strain and stress relaxation in bronze processed Nb3Sn wires. Supercond. Sci. Technol.2008,21:025005-1-9.
    [150]Boso, D.P., Lefik, M., Schrefler, B.A. A multilevel homogenised model for superconducting strand thermomechanics. Cryogenics.2005,45:259-271.
    [151]Boso, D.P., Lefik, M., Schrefler, B.A. Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand. Cryogenics.2006,46:569-580.
    [152]Lefik, M., Boso, D.P., Schrefler, B.A. Generalized self-consistent homogenization using the Finite Element Method. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik. 2009,89:306-319.
    [153]Boso, D.P., Lefik, M., Schrefler, B.A. Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils. Cryogenics. 2005,45:589-605.
    [154]Lefik, M., Boso, D.P., Schrefler, B.A. Artificial Neural Networks in numerical modelling of composites. Comput. Methods Appl. Mech. Engrg.2009,198:1785-1804.
    [155]Boso, D. P., Lefik, M. A thermo-mechanical model for Nb3Sn filaments and wires:strain field for different strand layouts. Supercond. Sci. Technol.2009,22:125012-12.
    [156]Boso, D.P., Lefik, M., Schrefler B.A. Thermal and bending strain on Nb3Sn strands. IEEE Trans. Appl. Supercond.2006,16:1823-1-5.
    [157]Ba z ant, Z. Scaling theory for quasibrittle for structure failure. Proc. Acad. Sci. USA. 2004,101:13400-13407.
    [158]Ba z ant, Z., et al. Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics. Proc. Acad. Sci. USA.2009, 106:11484-11489.
    [159]Weibull, W. A statistical theory of the strength of materials, Stockholm: Royal Swedish Institute of Engineering Research.1939,151:1-45. [Ingenioersvetenskaps Akad. Handl.]
    [160]Baz ant, Z. Scaling of structure strength. London:Hermes Penton Science Press.2002.
    [161]Vorechovsky, M. Incorporation of statistical length scale into Weibull strength theory for composites. Composite Structures.2010,92:2027-2034.
    [162]Ochiai, S., et al. Estimation of strength distribution of Nb3Sn in multifilamentary composite wire from change in superconducting current due to preloading. J. Appl. Phys. 1993,74:440-445.
    [163]Ochiai, S., et al. Nb3Sn tensile strength and its distribution estimated from change in superconducting critical current of preloaded multifilamentary composite wire. Cryogenics. 1995,35:55-60.
    [164]Ochiai, S., et al. Relation of strength distribution of Nb3Al filaments to strength of multifilamentary superconducting composite wire. Cryogenics.1996,36:249-253.
    [165]Ochiai, S., et al. Strength distribution of filamentary Nb3Al and Nb3Sn compounds and its relation to mechanical and superconducting properties of multifilamentary composites:a review. Intermetallics.1996,4:s201-s208.
    [166]Nijhuis, A., Miyoshi, Y., et al. Systematic study on filament fracture distribution in ITER Nb3Sn strands. IEEE Trans. Appl. Supercond.2009,19:2628-2632.
    [167]Jewell, M.C., Lee, P.J., Larbalestier, D.C. The influence of Nb3Sn strand geometry on filament breakage under bend strain as revealed by metallography. Cryogenics.2003, 16:1005-1011.
    [168]Sheth, M.K., et al. Study of filament cracking under uniaxial repeated loading for ITER TF strands. IEEE Trans. Appl. Supercond.2011,99:1-4.
    [169]Lee, P.J., Larbalestier, D.C. Microstructural factors important for the development of high critical current density Nb3Sn strand. Cryogenics.2008,48:283-292.
    [170]Mitchell, N. Operating strain effects in Nb3Sn cable-in-conduit conductors. Supercond. Sci. Technol.2005,18:S396-S404.
    [171]Miyoshi, Y., Lanen, E.P.A., et al. Distinct voltage-current characteristics of Nb3Sn strands with dispersed and collective crack distributions. Supercond. Sci. Technol.2009, 22:085009-1-7.
    [172]Mishnaevsky, J.L., Br(?)ndsted, P. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites:A review. Comput. Mater. Sci.2009, 44:1351-1359.
    [173]DeSalvo, G.J. Theory and structural design applications of Weibull statistics. Westinghouse Electric Corporation. Astronuclear Laboratory. Pittsburgh, PA, Document WANL-TME-2688.1970.
    [174]McNulty, J.C., Zok, F.W. Application of weakest-Link fracture statistics to fiber-reinforced ceramic-matrix composites. J. Am. Ceram. Soc.1997,80:1535-1543.
    [175]Nijhuis, A., Ilyin, Y. Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness. Supercond. Sci. Technol.2006,19:945-962.
    [176]Zhai, Y., Bird, M.D. Modeling of the performance of Nb3Sn CICCs for high field magnet design. IEEE Trans. Appl. Supercond.2008,18:1127-1130.
    [177]Nijhuis, A., Noordman, N.H.W., ten Kate, H.H.J., et al. Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by Transverse Cyclic loading Part 3: Mechanical properties. IEEE Trans. Appl. Supercond.1999,9:165-168.
    [178]Nijhuis, A., Ilyin, Y, et al. Performance of an ITER CS1 model coil conductor under transverse cyclic loading up to 40 000 cycles. IEEE Trans. Appl. Supercond.2004, 14:1489-94.
    [179]Nijhuis, A., Ilyin, Y. Transverse cable stiffness and mechanical losses associated with load cycles in ITER Nb3Sn and NbTi CICCs. Supercond. Sci. Technol.2009, 22:055007-1-13.
    [180]Ribani, PL., et al. THELMA Code Analysis of bronze route Nb3Sn strand bending effect on Ic. IEEE Trans. Appl. Supercond.2006,16:860-863.
    [181]Ciotti, M., et al. THELMA code electromagnetic model of ITER superconducting cables and application to the ENEA stability experiment. Supercond. Sci. Technol.2006, 19:987-997.
    [182]Mitchell, N. Analysis of the effect of Nb3Sn strand bending on CICC superconductor performance. Cryogenics.2002,42:311-325.
    [183]Nijhuis, A., Ilyin, Y., et al. Critical current and strand stiffness of three types of Nb3Sn strand subjected to spatial periodic bending. Supercond. Sci. Technol.2006,19:1136-1145.
    [184]Nijhuis, A. A solution for transverse load degradation in ITER Nb3Sn CICCs: verification of cabling effect on Lorentz force response. Supercond. Sci. Technol.2008, 21:054011-1-15.
    [185]Zhai, Y., Bird, M.D. Florida electro-mechanical cable model of Nb3Sn CICCs for high-field magnet design. Supercond. Sci. Technol.2008,21:115010-1-15.
    [186]Bajas, H., et al. Numerical simulation of the mechanical behavior of ITER cable-In-conduit conductors. IEEE Trans. Appl. Supercond.2010,20:1467-1470.
    [187]Nemov, A.S., et al. Generalized stiffness coefficients for ITER superconducting cables direct FE modeling and initial configuration. Cryogenics.2010,50:304-313.
    [188]Sathikh, S., et al. A symmetric linear elastic model for helical wire strands under axisymmetric loads. Journal of Strain Analysis.1996,31:389-99.
    [189]Qin, J., et al. A novel numerical mechanical model for the stress-strain distribution in superconducting cable-in-conduit conductors. Supercond. Sci. Technol.2011, 24:065012-1-11.
    [190]Vancea, J., Reiss, G., Hoffmann, H. Mean-free-path concept in polycrystalline metals. Phys. Rev. B.1987,35:6435-6437.
    [191]Tien, C.L., Chen, G. Challenges in microscale conductive and radiative heat transfer. ASME J. Heat trans.1994,116:799-807.
    [192]Kumar, S., Vradis, G.C. Thermal conductivity of thin metallic films. ASME J. Heat trans. 1994,116:28-34.
    [193]Sondheimer, E.H. The mean free path of electrons in metals. Adv. Phys.1952,1:1-39.
    [194]Mayadas, A.F., Shatzkes, M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B.1970,1:1382-1389.
    [195]曾谨言.量子力学教程.北京:科学出版社.2002.
    [196]Kramer, E.J., Freyhardt, H.C. The proximity effect in flux pinning. J. Appl. Phys.1980, 51:4930-4938.
    [197]Golovashkin, A.I., Motulevich, G.P. Electron and phonon characteristics of Nb3Sn. Sov. Phys.-Usp.1974,16:940-941.
    [198]Kim, Y., et al. Superconductor with enhanced high magnetic field properties, manufacturing method THEREOF and MRI apparatus comprising the same. United States Patent Application Publication.2010,0285966A 1:1-13.
    [199]Matsushita, T., et al. Essential factors for the critical current density in superconducting MgB2:connectivity and flux pinning by grain boundaries. Supercond. Sci. Technol.2008, 21:015008-1-7.
    [200]Curtin, W.A., Zhou, S.J. Influence of processing damage on performance of fiber-reinforced composites. J. Mech. Phys. Solids.1995,43:343-363.
    [201]Du, S.Y., Wang, B. Meso-mechanics of composite materials. Beijing:Science press.1998 (in Chinese).
    [202]Huang, W., Rokhlin, S.I. Generalized self-consistent model for composites with functionally graded and multilayered interphases. Transfer matrix approach. Mech. Mater. 1996,22:219-247.
    [203]Pradhan, S., et al. Failure processes in elastic fiber bundles. Rev. Mod. Phys.2010, 82:499-555.
    [204]Handge, U.A., et al. Two scaling domains in multiple cracking phenomena. Phys. Rev. E.2000,62:7807-7810.
    [205]Curtin, W.A. Stochastic damage evolution and failure in fiber-reinforced composites. Adv. Appl. Mech.1998,36:163-253.
    [206]Turon, A., Costa, J., et al. A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation, part Ⅰ:Formulation. Compos. Sci. Technol.2005,65:2039-2048.
    [207]Hui, C.Y., Phoenix, S.L., et al. An exact closed form solution for fragmentation of Weibull fibers in a single filament composite with applications to fiber-reinforced ceramics. J. Mech. Phys. Solids.1995,43:1551-1585.
    [208]Ramamurty, U., Zok, F.W., et al. Strength variability in alumina fiber-reinforced aluminum matrix composites. Acta Mater.1997,45:4603-4613.
    [209]曾庆敦.复合材料的细观破坏机制与强度.北京:科学出版社.2002.
    [210]Baz ant, Z.P., Pang, S.D. Mechnics-based statistics of failure risk of quasibrittle structure and size effects on safety factor. Proc. Acad. Sci. USA.2006,103:9434-9439.
    [211]Baz ant, Z.P., Pang, S.D. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. J. Mech. Phys. Solids.2007,55:91-131.
    [212]Kelly, A., Tyson, W.R. Tensile properties of fibre-reinforced metals -copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids.1965,13:329-350.
    [213]Weber, C.H., et al. High temperature deformation and fracture of a fiber reinforced titanium matrix composite. Acta Metall. Mater.1996,44:683-695.
    [214]Shia, D., Hui, C.Y., Phoenix, S.L. Statistics of fragmentation in single-fiber composites under matrix yielding and debonding with application to the strength of multi-fiber composites. Comp. Sci. Technol.2000,60:2107-2128.
    [215]Phoenix, S.L., et al. Size effects in the distribution for strength of brittle matrix fibrous composites. Int. J. Solids Struct.1997,34:545-568.
    [216]Siemers, P.A., Mehan, R.L., Moran, H. A comparison of the uniaxial tensile and pure bending strength of SiC filaments. J. Mater. Sci.1988,23:1329-1333.
    [217]Nijhuis, A., et al. Optimization of ITER Nb3Sn CICCs for coupling, transverse electromagnetic load axial thermal contraction. Supercond. Sci. Technol.2012, 25:015007-1-20.
    [218]Cundall, P.A., Strack, O.D.L. The distinct numerical model for granular assemblies. Geotechnique.1979,29:47-65.
    [219]Haff, P.K., Anderson, R.S. Grain scale simulations of loose sedimentary beds:the example of grain-bed impacts in Aeolian saltation. Sedimentology.1993,40:175-198.
    [220]Boyalakuntla, D.S. Simulation of granular and Gas-Solid flows using discrete element method [Ph.D Dissertation]. Pittsburghers:Carnegie Mellon University.2003.
    [221]王等明.密集颗粒系统的离散单元模型及其宏观力学行为特征的理论研究[博士论文].兰州:兰州大学.2009.
    [222]Zhou, Y.H., Li, W.Q., Zheng, X.J. Particle dynamics method simulations of stochastic collisions of sandy grain bed with mixed size in aeolian sand saltation. J. Geophys. Res.2006, Ⅲ:D15108-1-8.
    [223]Zheng, X.J., Wang, D.M. Multiscale mechanical behaviors in discrete materials: a review. Acta Mechanica Solida Sinica.2010,23:579-591.
    [224]Horner, D.A. Application of DEM to micro-mechanical theory for large deformation of Granular media [Ph.D Dissertation]. Michigan:University of Michigan.1997.
    [225]Vu-Quoc, L., Zhang, X. An elastoplastic contact force-displacement model in the normal direction:displacement-driven version. Proc. R. Soc. Lond A.1999,455:4013-4044.
    [226]Han, K., Peric, D., et al. A combined finite/discrete element simulation of peening processes. Part I:Studies on 2D interaction laws. Engineering Computations.2000, 17:593-619.
    [227]Mindlin, R.D., Deresiewicz, H. Elastic spheres in contact under varying oblique force. Journal of Applied Mechanics.1953,20:327-344.
    [228]Zhou, Y.H. A theoretical model of collision between soft-spheres with Hertz elastic loading and nonlinear plastic unloading. Theoretical & Applied Mechanics Letters.2011, 1:041006-1-6.
    [229]Liu, T., Sliding friction of copper. Final rept.1.1963, AUG. http://oai.dtic.mil/oai/ oai?verb=eetRecord&metadataPrefix=html&identtfier=ADA375187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700