用户名: 密码: 验证码:
海洋无缝垂直基准构建理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋无缝垂直基准及其建立是近年来海洋测绘研究领域的一个热点问题,也是一个难点。海洋无缝垂直基准是海洋、内陆江河流域以及水陆交界区域测量活动的垂直起算基准,具有①连续、无缝;②稳定,一经确定后不得变化;③符合人类海洋测绘等相关活动的使用习惯;④易与其它垂直基准进行转换等四大特征。随着国家对海岸带、江河流域的浅滩等水陆交界区域开发和利用的日益加大,建立现代化的海洋无缝垂直基准已是海洋测绘发展、国家经济建设的内在需求和必然趋势,可为我国海岸线的界定、数字海岸带和国防经济建设等提供重要的理论依据和基础保障。
     目前海洋无缝垂直基准的建立仍存在着一系列关键性难题。如选用何种垂直基准用来建立海洋无缝垂直基准为最优,建立前如何对原始数据实施预处理,采用何种无缝垂直基准构建方法以及同其它垂直基准之间的转换关系如何确定等。为此,本文在系统总结国内外海洋无缝垂直基准研究现状的基础上,提出了多项新思路、新模型和新方法,最终实现了局域海洋无缝垂直基准面的构建以及基准面间的相互转换。主要工作及创新之处体现在:
     (1)用于构建海洋无缝垂直基准的垂直基准面选择
     系统的比较和分析了(似)大地水准面、参考椭球面、平均海平面和深度基准面四种海洋测绘中常用的垂直基准面的特点,认为(似)大地水准面作为陆地高程基准,虽具有连续、无缝和光滑等特征,但其反映的是一个重力等位面,适用于陆地高程基准,而不适合作为海洋垂直基准;参考椭球面为几何面,尽管数学模型简单,且同样具有连续、无缝和光滑等特征,但缺少物理意义,也不符合海洋测绘中海图高标定习惯;平均海平面由于地域和时间的不同而存在着差异,且无法保证船舶航行安全;深度基准面尽管存在离散、非连续的缺点,但其是海道、水运工程测量中海图高程(水深)标定的参考,并为船舶的航行提供安全保障。为此,本文选择深度基准面,用来构建海洋无缝垂直,既具备实际物理意义和应用价值,又符合海洋测绘垂直基准的使用习惯。
     (2)潮位资料预处理方法研究
     深度基准面是基于潮位观测资料来确定的,因此潮位观测资料的不准确或缺失都将直接影响深度基准面的确定精度和可靠性。为此,本文在潮汐数据预处理方面开展了如下工作:
     根据潮位观测资料中影响因素的特征,将其分为:波浪因素引起的观测噪声、潮位观测的缺失和遗漏、粗差和系统误差四大类。
     ①波浪因素的影响
     提出了一种基于FFT的低通滤波方法,实现了该噪声的有效滤除,给出了截止周期的大小与潮汐分潮周期之间的相关性,认为当截止周期为1h时,基本可彻底消除波浪因素的影响,同时为了防止潮汐中有效成分被滤除,截止周期的大小不要超过3h。
     ②潮位观测的缺失和遗漏
     根据潮位序列曲线间的相关性参数:潮差比x,潮时差y,基准面偏差z,给出了一种潮位时序中缺失部分的修复方法。90%修复数据的精度优于10cm,80%优于5cm,可满足海道测量规范中潮位修复精度的相关要求。
     ③粗差
     针对长潮位序列中的粗差问题,提出了一种基于潮汐调和分析模型的粗差修复方法,克服了人工修复方法在效率和精度上的不足,较传统的FFT低通滤波方法,精度有了显著提高,90%修复数据精度优于20cm。
     ④系统误差
     本文主要研究了由于潮位站验潮“零点”漂移产生的系统误差问题。分别从长潮位序列和短潮位序列两个角度出发,研究了系统误差的消除方法。针对前者,提出了基于概率论中切比雪夫不等式原理的一种新的探测方法,并采用月平均海平面数学期望,对含有系统误差的潮位序列进行修复,精度优于15cm,90%优于10cm;针对后者,提出了一种潮位序列分段匹配探测修复方法,实现了短潮位序列中系统误差有效的探测和修复,精度优于10cm。
     (3)深度基准面确定精度分析及质量控制
     深度基准面的高精度确定对建立海洋无缝深度基准面具有重要意义。深度基准面的确定方法大致可分为两类,第一类根据潮汐调和分析所得调和常数按深度基准面模型计算得到;第二类根据深度基准面传递法获得。
     针对第一类问题,本文着重研究了潮汐调和分析和深度基准面确定的精度、稳定性与潮汐时长之间的相关性,给出了在不同潮汐时长下,适宜采用的分潮模型、个数以及深度基准面的确定精度。
     针对第二类问题,首先,通过实验分析比较得到最优传递方法,认为最小二乘综合传递法为最优传递法,当同步观测长度≥3天时,传递精度可达5cm。并基于该传递方法,着重研究了深度基准面传递精度与站间潮汐类型值(HK1+HO1)/HM2差值大小的相关性,得如下结论:
     ①在宽阔平缓水域,站间潮汐类型值差值≤0.05,传递距离≤80km时,深度基准面传递精度一般可控制在5cm以内。当传递距离>80km时,深度基准面传递精度逐渐下降,下降速率大概为1cm/km左右。
     ②在狭长湍急水域,站间潮汐类型值差值≤0.05时,传递距离≤40kmm时,深度基准面传递精度一般可控制在15cm以内,当传递距离>40km时,精度迅速下降,已不适合深度基准的传递。
     ③无论是在宽阔还是狭长水域,当潮汐类型值差值>0.05时,由于潮汐性质差异较大,传递精度不甚理想,不建议进行深度基准面的传递。
     在长江口水域,对上述结论进行了大量的实验分析,验证了其正确性。该结论对日后在长江口水域开展验潮站间深度基准面传递及精度控制具有重要指导意义。
     (4)海洋无缝垂直基准几何建立方法研究
     对反距离加权法、最小曲率法、最近邻点法、带线性插值的三角剖分法、多项式回归法、移动曲面拟合法、克里金法和径向基函数法等8种几何建模法进行了深入研究,并借助这些方法分别在温州瓯江和长江口水域构建了局域无缝深度基准面模型。通过对所建立的无缝深度基准面三维曲面的形态特征、深度基准面等值线的分布和变化特征、模型精度等方面进行比较分析后,认为当验潮站数量较多,分布均匀,且深度基准面高变化较为平缓或呈较强规律特征时,几何建模法精度都较高;当验潮站数量较少,分布不均匀,且深度基准面变化无特定规律时,反距离加权法、克里金法和径向基函数法三种方法精度要优于其余几何建模法。此外,该三种方法能较好的反映整体区域深度基准面的变化趋势,所建曲面具有连续光滑等特征,为最优几何建模方法。
     (5)海洋无缝垂直基准物理建模方法研究
     针对几何建模方法精度受潮位站分布密度、均匀性和深度基准面的变化复杂程度等因素影响较大的问题,以及几何模型在外推时,精度普遍较低的现象,本文从潮汐传播的物理机制角度出发,提出了基于潮汐调和常数、潮差比以及最小二乘传递参数的三种海洋无缝垂直基准面物理建模方法。
     通过在长江口以及瓯江区域的多组实验分析,认为三种物理建模方法较几何建模法在精度及稳定性上更具优势。其中基于潮汐调和常数的建模法,无论在外推还是内插时,精度均优于10cm,具有较高的精度和稳定性,为最优的连续无缝深度基准面建模方法。
     (6)海陆垂直基准转换及精度分析
     根据参考椭球面、似大地水准面和深度基准面之间的关系,结合各自模型,构建了大地高、正常高和海图高(图载水深)之间的无缝转换模型。同时根据转换模型中各参量的误差来源,给出了每种高程转换模型的误差表达式。
In recent years, the implementation of seamless vertical datum is hot issue and not an easy task in marine surveying and mapping area. It is vertical initial benchmark for surveying in ocean, river, and costal zone or at the junction of water and land. Which has such characteristic:a) continuous and seamless; b) dose not vary significantly over time; c) conform to the human habits of marine surveying; d) be apt to convert with other vertical references. The establishment of modernization seamless vertical datum is internal demand of development of marine surveying and the national economic construction, which is inevitable trend, with the growing development and utilization of coastal zone, river shoal, and at the junction of water and land. It provides the theoretical basis and fundamental guarantee for coastline definition, the construction of digital costal areas and the national defense economy.
     At present, there is still a series of key problems in the establishment of seamless vertical datum. Such as, the choice of vertical datum to establish seamless vertical datum for best, and the pretreatment of the original data before the establishment, and how to establish and convert with other vertical datum etc. Therefore, there are many new ideas, new model and methods having been put forward after summarizing domestic and foreign research status, and careful analysis of existent key problems. Finally, it has realized that seamless vertical datum construction and mutual conversion of different vertical datum. The main work and innovative points reflect in:
     (1) The choice of vertical reference Firstly analysis and compare the commonly used vertical reference in marine surveying in detail, geoid and reference ellipsoid and mean sea level and depth datum. As land vertical reference, the geoid has continuous and seamless characteristics. But it is a gravity equipotential surface, and apt to be land vertical reference, not suitable as ocean vertical datum. Reference ellipsoid is geometric surface, although has simple mathematical model and continuous, seamless and smooth features, lack of physical significance. Moreover, it dose not accord with human in the habit of surveying and mapping activities. Mean sea level vary with the location and time difference, and can not guarantee the safe navigation. Although depth datum exists discrete, it is the standard vertical reference for chart height in marine surveying and mapping, for the ship security sailing providing protection. Therefore, the paper chooses depth datum to establish marine seamless vertical datum in physical meaning and human use, which both have actual physical significance and application value, and conform with habit of marine surveying and mapping.
     (2) The tides material pretreatment methods
     The determination of depth datum needs tidal observation, therefore, it is decisive importance to eliminate all kinds of different types of error in tidal observation accurately for precision controlling of depth datum. According to the characteristics of the error, they have been divided into:observation noise cause by the waves, the loss of tidal observation, gross error and system error four categories.
     a) The influence of waves.
     The FFT low pass filtering method has been used for filtering the observation noise, and the size of cut-off cycle is related to the cycle of tidal constituent. Through the analysis of the theory and experiment, it has got that the noise can be filtered out when the cut-off cycle is one hours. In order to prevent the active tidal ingredients filtered, the size of cut off cycle should not more than three hours.
     b) The loss of tidal observation
     According to tidal sequence matching related parameters, ratio of tidal ranges x, time difference of tide y, datum drift z, repair and acquire the missing tidal part. And the repairing can satisfy the90%of repaired point precision within10cm,80%within5cm. thus have already reached the tidal repairing precision standard of specifications for hydrographic survey.
     c) The gross error
     For the gross error in the long-term tidal observation sequence, this paper has put forward a new filtering method based on the tidal harmonic analysis. The filtering method is better than FFT low pass filtering method in accuracy, and overcome the problem of low accuracy and efficiency of artificial repair. It can satisfy more than90%of repaired point precision within20cm.
     d) The system error
     For the system error, which is mainly caused by tidal "zero" drift, have been studied. In the long-term and short-term tidal sequence two aspects, the new detection and repairing methods have been put forward respectively. The former detected system error using the chebyshev inequality principle in theory of probability, and repaired them with the mathematical expectation of mean sea, and it can satisfy precision better than15cm and90%of repaired point precision less than10cm. The latter, a self-segmented tidal sequence matching method which is based on the least squares has been put forward. Realize the system error effective detection and repair, the precision less than10cm.
     (3) The precision analysis and quality control of depth datum
     The high accurate determination of depth datum is of great significance to the establishment of marine seamless vertical datum. The determination methods of depth datum can be divided into two classes, the first kind is to use the tidal harmonic constants acquired by tidal harmonic analysis to calculate the depth datum according to the depth datum models. The second type is according to the depth datum transfer methods to obtain. Aim at the first kind, this paper mainly from the relationship research between tidal depth datum stability, precision and number of tidal constituent, length of tidal sequence, has given how to use the number of tidal constituent and harmonic model under the different tidal observation length. For the second, firstly, concludes that the least squares transfer method is best through a large number of experiments of comparing several depth datum transfer methods. When synchronous observation time is more than three days, the transmission precision can reach up to5cm. With this method as an example, this paper put forward the tidal type difference value (HK1+HO1)/HM2between two places as an important transfer basis, and lots of experiments have been researched in the Yangtze estuary region. The conclusion is as follows:
     a) In a large of flat waters, when tidal type D-value is less than0.05and transmission distance less than80kilometers, the precision of depth datum can be within5cm. Whereas, the transmission distance is more than80km, the precision gradually decline and the decrease rate for about1cm/km or so.
     b) In the long and narrow rushing waters, when tidal type D-value is less than0.05and transmission distance less than40kilometers, the precision of depth datum can be within15cm. Or when the transmission distance is more than40km, the precision fall rapidly, and it is not suitable for depth datum transfer.
     c) Whether in a large or long and narrow waters, then tidal type D-value is more than0.05, the transmission precision is not very ideal, not suggestion for the transfer of depth datum. Lots of experiments have been tested in Yangtze estuary river, and it has been proved correct, the above conclusion is important to the precision controlling of depth datum transfer in the Yangtze estuary.
     (4) Research on the geometric implementation method of marine seamless vertical datum
     Inverse distance weight, minimum curvature method, nearest neighbor interpolation, linear interpolation triangulations method, polynomial regression, moving average method, kriging method and radial basis function method, total eight kinds of commonly used geometric modeling methods, have been respectively used to establish marine seamless vertical datum in the local area of Wenzhou Oujiang river. Through the detailed comparison of the3d surface characteristics, isoline characteristics, outside precision aspects of the established seamless vertical datum, it has got a conclusion as follows:in the case of tidal stations arrangement not intensive and uniform distribution and the complex changes of depth datum height, inverse distance weight, kriging and radial basis function methods are suggested to be adopted to establish marine seamless vertical datum. The three kinds of methods can reflect the change trend of depth datum well, and the built surface has features of continuous and smooth.
     (5) Research on the physical modeling method of marine seamless vertical datum
     The precision of Geometric interpolation method is affected largely by the distribution and number of interpolation node, and elevation changes of depth datum, and when geometric model pushed out, the precision is generally low. From the point of view of tidal physical transmission characteristics, the paper has put forward three kinds of physical interpolation methods which are to use tidal harmonic constant interpolation and the ratio of tidal range interpolation and the least square transfer parameters interpolation to determine depth datum. Through a large of experiments in the Yangzte Estuary River and Oujiang River, it has got that the three physical interpolation methods are more advantages in precision and stability. Among them, the tidal harmonic constant interpolation, whether interpolation or extrapolation, the precision can be in less than10cm, and has very high accuracy and stability, and is the best method to establish seamless vertical datum.
     (6) Transformation between land and ocean vertical reference and precision control
     According to the relationship among reference ellipsoid, geoid and depth datum, the specific conversion models have been put forward among geodetic height and normal height and chart height. At the same time, detailed analyzing of error source of each parameter in the transformation model has been made, and has given error expression of elevation transformation model.
引文
[1]Ahmed EL-RABBANY, Ruth ADAMS. Relating Data to a seamless Vertical Reference Surface[R]. Athens, Greece:FIG Working Week. May 22-27,2004.
    [2]Ruth ADAMS. The Development of a Vertical Reference Surface and Model for Hydrography- a Gudie[R]. Munich, Germany:Shaping the Change XXIII International FIG Conference. October 08-13,2006.
    [3]Ahmed EL-RABBANY. Development of a Seamless Vertical Reference System:Challenges and Opportunities[R]. Paris, France:FIG Working Week 2003. April 13-17,2003.
    [4]Ruth Adams. Seamless Data and Vertical Datums Reconciling Chart Datum with a Global Reference Frame[J]. The Hydrographic Journal,2004,113(7):9-14.
    [5]Ruth Adams. A Vertical Reference Surface for Hydrography-Status Report 2005[R]. Cairo Egypt:FIG Working Week,2005.
    [6]FIG Commissions 4 and 5 Working Group 4.2. FIG Guide on the Development of a Vertical Reference Surface for Hydrography[M]. Copenhagen, Denmark,2006.
    [7]Wells,D. Kleusberg,A. Vanicek,P. A Seamless Vertical-Reference Surface for Acquisition, Management and Display(ECDIS) of Hydrographic Data[R]. Frederiction, New Brunswick: Department of Geodesy and Geomatics Engineering University of New Brunswick,1996.
    [8]Ahmed EI-Rabbany. Assessment of Hydrographic Data Uncertainty for Seamless Reference Surface[J]. THE JOURANL OF NAVIGATION,2006,59(2):213-220.
    [9]Dean Gesch, Robert Wilson. Development of a Seamless Multisource Topographic/Bathymetric Elevation Model of Tampa Bay[J]. Marine Technology Society Journal, 2002,35(4):58-64.
    [10]Kyle R. Hogrefe, Dawn J. Wright, AND Eric J. Hochbebg. Derivation and Integration of Shallow-Water Bathymetry:Implications for Coastal Terrain Modeling and Subsequent Analyses[J]. Marine Geodesy,2008,31(4):299-317.
    [11]K. M. Marks and W. H. F. Smith. An evaluation of publicly available global bathymetry grids[J]. Marine Geophysical Researches,2006,27(1):19-34.
    [12]Kurt Hess. Water level simulation in bays by spatial interpolation of tidal constituents, residual water levels, and datums[J]. Continental Shelf Research,2003,23(5):395-414.
    [13]D. A. Smith, D. R. Roman. GEOID99 and G99SSS:1-arc minute geoid models for the United States[J]. Journal of Geodesy,2001,75(9):469-490.
    [14]Marc Veronneau, Robert Duval and Jianliang Huang. A Gravimetric Geoid Model as A Vertical Datum in Canada[J]. Geomatcia,2006,60(2):165-172.
    [15]Admiral Christian. VERTICAL DATUM ISSUES FOR DATA CONTINUITY FROM THE LAND TO THE SEAFLOOR[R]. Canada, Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference 2008,2008, paper 4-1:1-10.
    [16]Bruce Parker, Dennis Milbert, Kurt Hess, and Stephen Gill. NATIONAL VDATUM-THE IMPLEMENTATION OF A NATIONAL VERTICAL DATUM TRANSFORMATION DATABASE[A]. In:Oceans 2003 MTS/IEEE Conference[C]. San Diego, California, September,2003:22-26. [17]Stephen White. Utilization of LIDAR and NOAA's Vertical Datum Transformation Tool (VDatum) for Shoreline Delineation[A]. In:MTS/IEEE Oceans 2007 Conference[C]. Vancouver, Canada, Sep 29-Oct 4,2007.
    [18]John E. Hughes Clarke, Peter Dare, Jonathan Beaudoin and Jason Bartlett. A stable vertical reference for bathymetric surveying and tidal analysis in the high Arctic[A]. In:U.S. Hydrographic Conference[C]. March 2005.
    [19]Azadeh Koohzare. Development of a Vertical Reference Surface for Hydrography in Coastal Zone Case Study in Atlantic Canada[A]. In:Canadian Hydrographic Conference and National Surveyors Conference[C]. Victoria, B.C., May 5th-8th,2008.
    [20]E.Gil, C.de Toro. Improving tide-gauge data processing:A method involving tidal frequencies and inverted barometer effect [J]. Computers and Geosciences,2005,31(8):1048-1058.
    [21]Fang G. A finite difference-least square technique for solving tidal wave equations with specific application to the modeling of M2 tide in the Huanghai Sea[J]. Scientia Sinica (Series B), 1985,28(10):1110-1120.
    [22]Cao D, G Fang. A combined numerical tidal model for Hangzhou Bay and Qiantang River[J], Acta Oceanologica Sinica,1989,8(4):485-496.
    [23]Cartwright D E, R D Ray. Oceanic tides form Geosataltimetry[J]. Journal of Geophysical Research,1990,90(C3):3069-3090.
    [24]Provost L, A Bennett, D Cartwright. Ocean tides for and from TOPEX/Poseidon[J]. Science, 1995,267:639-642.
    [25]Anderson O B. Gobal ocean tides form ERS~1 and TOPEX/Poseidonaltimetry[J]. Journal of Geophysical Research,1995,100(C12):25249-25259.
    [26]Smith A.J.E, Ambrosius B. A C, Wakker K F. Ocean tides from T/P, ERS~1 and Geosataltimetry[J]. Journal of Geodesy,2000,74:399-413.
    [27]Parker,B. K. Hess, D. Milbert and S, Gill. A National Vertical Datum Transformation Tool[J]. Sea Technology,2003,44(9):10-15.
    [28]Hughes Clarke J.E, P Dare J. A Stable Vertical Reference for Bathymetric Surveying and Tidal Analysis in the High Arctic[R]. Proceedings of the US Hydro2005, March 29-31,2005.
    [29]LT Richard T. Brennan, Kurt Hess. The Design of the Uncertaninty Model for the Tidal Constituent and Residual Interpolation(TCARI) Method for Tidal Correction of Bathymetric Data[J].2005
    [30]Monica Cisternelli, Stephen Gill. Implementation of TCARI into NOS Hydrographic Survey Operations[J]. NOAA/NOS Center for Operational Oceanographic Products and Services.
    [31]Hess,K., R.Schmalz, C. Zervas, W. Collier(1995), Tidal Constituent And Residual Interpolation(TCARI):A New Method for the Tidal Correction of Bathymetric Data[M]. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of Coast Survey, Coast Survey Development Laboratory,2004.
    [32]Gibson, W.M. and S. K. Gill,1999. Tides and Water Level Requirements for NOS Hydrographic Surveys[R]. International Hydrographic Review, Monaco, LXXVI(2), September 1999.
    [33]LI R. Data Model for Marine and Coastal Geographical Information System[A]. Marine and Coastal Geographical Information System, Taylor & Francis,2000:25-36.
    [34]Mike Espey. Moving Toward Achieving Consistency in Coastal GIS Shorelines with Vdatum[R]. An Individual Research by Mike Espey. International Master of Science in GIS(MSGIS) University of Redlands, California,2003.
    [35]Paker,B., D.Milbert, R. Wilson, J. Bailey, and D. Gesch. Blending Bathymetry with Topography:The Tampa Bay Demonstration Project[A]. In:Proceedings of the U.S. Hydrographic Conference[C], Norfolk, Virginia,2001(5):22-24.
    [36]Edward P. Myers. Review of Progress on VDatum, a Vertical Datum Transformation Tool[A]. presented at MTS/IEEE Oceans 2005 Conference, Washington, D.C., September 18-23 2005.
    [37]Milbert D. Documentation for VDatum (and the Datum Tutorial), Vertical Datum Transformation Software[M], Version 1.06.2002.
    [38]Jesse Feyen, Kurt Hess, Emily Spargo, Adeline Wong, Stephen White, Jon Sellars, and Stephen Gill. Development of a Continuous Bathymetric/Topographic Unstructured Coastal Flooding Model to Study Sea Level Rise in North Carolina[A]. Estuarine and Coastal Modeling 2005 Proceedings of 9th International Conference on Estuarine and Coastal Modeling[C],2005.
    [39]Feng Zhou. Vertical Datum Conversion in the Lake Erie Coastal Area[A]. Dg.o 05 Proceedings of the 2005 national conference on Digital government research[C],2005, pp. 321-325.
    [40]Lucia Pineau-Guillou, Leendert Dorst. Creation of vertical reference surfaces at sea using altimetry and GPS[A]. IAG Commission 1 Symposium 2010 Reference Frames for Application in Geosciences(REFAG2010)[C], October 6,2010.
    [41]Wolfgang Scherer, William M. Stoney, Thomas N. Mero, Michael O's Hargan, etc. TIDAL DATUM AND THEIR APPLICATIONS[M]. NOAA Special Publication NOS CO-OPS 1, February 2001
    [42]Lynne M. Dingerson. TOPOGRAPHIC AND BATHYMETRIC DATA CONSIDERATIONS::DATUM, DATUM CONVERSION TECHNIQUES, AND DATA INTEGRATION[R]. NOAA Coastal Services Center, Charleston, South Carolina, October 2007.
    [43]Vaez, S. S., Rajabifard, A., Binns, A. and Williamson, I. P.. DEVELOPMENT A SEAMLESS SDI MODEL ACROSS THE LAND SEA INTERFACE[R]. In Coast GIS07, Santander, Spain.8-10 October 2007.
    [44]Wang Shuangxi, Huang Wenqian, Wu Di, Liu Min. A Geocentric Vertical Datum for Coastal Geospatial Data Infrastructure Construction[J]. PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING,2007,6795(3):65-70.
    [45]Deloach, S., B.Shannon, D.Wells and D.Dodd. Delineation of tidal datums, water surfaceslopes with GPS[J]. Sea Technology,1995,36(3):56-60.
    [46]Junkins,D. The National Transformation for Converting Between NAD27 and NAD83 in Canada, in "Moving to NAD83" (edited by D.C.Barnes), CISM, Ottawa,1991,16-40.
    [47]Luynenburg,R.W.E. and W.G. van Gent. Extrapolation of shore-based tide gauge data for offshore reduction-an accuracy study[J]. International Hydrographic Review,1981, LVIII(2): 89-100.
    [48]Vanicek,P. Vertical datum and the "NAD88"[J]. Surveying and Land Information System, 1991,51(2):83-86.
    [49]Vanicek,P. On the global vertical datum and its role in maritime boundary demarcation[R]. Proceedings INSMAP 94 International Symposium, Hannover, Germany, September 19-23, PP243-250.
    [50]Zilkoski, D. B., J.H.Richards and G.M. Young(1992) Special Report:Results of the General Adjustment of the North American Vertical Datum of 1998[R]. Surveying and Land Information System,1992,52(3):133-149.
    [51]Martin, R.J. and G.J. Broadbent. Chart Datum for Hydrography[J]. The Hydrography Journal, 2004,No.112.
    [52]O'Reilly, C., S. Parsons and D. Langelier. A Seamless Vertical Reference Surface for Hydrographic Data Acquisition and Information Management[A]. In:Proceedings of the Canadian Hydrographic Conference'96, Halifax, N.S., pp.26-33.
    [53]Parker, B. The Integration of Bathymetry, Topography and Shoreline and the Vertical Datum Transformations Behind It[J]. International Hydrographic Review,2002,3(3)
    [54]Gesch, D. and R. Wilson. Development of a Seamless Multisource Topographic/Bathymetric Elevation Model of Tampa Bay[J]. MTS Journal,2002,35(4):58-64.
    [55]Hess,K.W. Spatial interpolation of tidal data in irregularly-shaped coastal regions by numerical solution of Laplace's equation[J]. Estuarine, Coastal and Shelf Scinece,2002,54(2): 175-192.
    [56]Myers,E.P. and A.M.Baptista. Inversion for tides in the Eastern North Pacific Ocean[J]. Advances in Water Resources,2001,24(5):505-519.
    [57]Federal Register. Notice of Changes in Tidal Datums Established Through the National Tidal Datum Convention of 1980.1980,45(207):70296-20297.
    [58]Harris,D.L. Tides and Tidal Datums in the United States[R]. Special Report No.7, U.S. Army Corps of Engineers Coastal Engineering Research Center, pp.382,1981.
    [59]Hicks, S.D. Tidal Datums and Their Uses-A Summary[J]. Shore and Beach,1985,27-33.
    [60]Hicks, S.D., P.C.Morris, H.A.Lippincott and M.C.O'Hargan. Users's gudie for the installation of bench marks and leveling requirements for water levels. NOAA National Ocean Service, Silver Spring, MD pp.73,1987.
    [61]Hicks, S.D. The National Tidal Datum Convention of 1980. NOAA National Ocean Service, Silver Spring, MD, pp.44,1980.
    [62]Amin M. Some recent investigations into the harmonic shallow water corrections method of tidal predictions[J]. Intern. Hytrog, Rev,1977,LIV(1):87-108.
    [63]Amin M. On analysis and Prediction of tides on the west coast of Great Britain[J]. Geophys. J R Astr. Soc,1982,68:57-78.
    [64]Chen Zongyong, Huang Zuke, Zhou Tianhua. A j.v model for the analysis and prediction of tides[J]. Acta Oceanologica sinca,1990,9(1):175-186.
    [65]Foreman M G G, Neufeld E T. Harmonic tidal analyses of long time series[J]. Intern Hydrog Rev,1991,LXVIII(1):85-108.
    [66]Franco A S. Harmonic analysis of the tide by the semi-graphic method[J]. Intern Hydrog Rev, 1963,40(2):69-97.
    [67]Franco A S, Harari J. Tidal analysis of long series[J]. Intern Hydrog Rev,1988, LXV(1): 141-158.
    [68]Franco A S, Harari J. On the stability of long series tidal analyses[J]. Intern Hydrog Rev, 1993, LXX(1):77-89.
    [69]Marmer, H.A. Tidal Datum Planes[M]. NOAA National Ocean Service, Special Publication No.135, U.S. Coast and Geodetic Survey, U.S. Govt. Printing Office, revised,1951.
    [70]Martinm, D. Center for Operational Oceanographic Products and Services (CO-OPS) GPS Implementation Plan. US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, February 11,2000
    [71]Gill, S.K. and J.R.Schultz. Tidal Datums and Their Applications. Silver Spring, Maryland: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Special Publication NOS CO-OPS 1, June 2000.
    [72]Hardy R L. Multiquadric equations of topography and other irregular surfaces[J]. J Geophys Res,1971,76(8):1905-1915.
    [73]Hardy R L. Theory and applications of the multiquadric-biharmonic method[J]. Computer Math,1990,19:163-168.
    [74]National Research Council. A Geospatial Framework for the Coastal Zone[M]. The National Academies Press, Washington, D.C.,2004.
    [75]Fang G. A Finite Differenece least Square Technique for Solving Tidal Wave Equations with Specific Application to the Modeling of M2 Tide in the Huanghai Sea[J]. Scient Sinica(Series B), 1985,28(10):1110-1120.
    [76]Moritz H. Geodetic Reference System 1980. Bulletin Geodesique,1980,54(3):395-405.
    [77]M. Pan, L.E Sjoberg. Unification of vertical datums by GPS and gravimetric geoid models with application to Fennoscandia[J]. Journal of Geodesy,1998,72(2):64-70
    [78]Balasubramania N. Definition and Realization of a Global Vertical Datum, Department of Geodetic Science & Surveying[R]. Ohio State University Report.1994.
    [79]赵建虎.现代海洋测绘[M].武汉:武汉大学出版社,2007.
    [80]暴景阳,章传银.关于海洋垂直基准的讨论[J].测绘通报,2001,(6):10-11.
    [81]暴景阳.海洋测绘垂直基准综论[J].海洋测绘,2009,29(2):70-73.
    [82]翟国军,黄谟涛,暴景阳.海洋测绘基准的需求及现状[J].海洋测绘,2003,23(4):54-58.
    [83]赵建虎,张红梅,John E Hughes Clarke.局部无缝垂直参考基准面的建立方法研究[J].武汉大学学报信息科学版,2006,31(5):448-450.
    [84]孙学华,周兴华,孙啸.海陆垂直基准统一的研究进展[J].海岸工程,2011,30(2):75-80.[85]梁振英.建立我国陆海统一高程/深度基准的构思模式[J].测绘科学,1999,24(3):20-28.
    [86]李凯,田震,张志玮.基于参考椭球面的陆海垂直基准统一的研究[A].见:中国测绘学会海洋测绘专业委员会第二十一届海洋测绘综合性学术研讨会论文集[C],2009.
    [87]罗志才,宁津生,徐菊生.区域性高程基准的统一[J].测绘科学,2004,29(2):13-15.
    [88]殷晓冬,田光耀.21世纪我国面临的测绘基准面问题[J].测绘工程,2000,9(2):26-31.
    [89]刘雁春.海洋测深空间结构及其数据处理[M].北京:测绘出版社,2003.
    [90]黄祖珂,黄磊.潮汐原理与计算[M].青岛:中国海洋大学出版社,2005.
    [91]暴景阳,刘雁春,晁定波,等.中国沿岸主要验潮站海图深度基准面的计算与分析[J].武汉大学学报信息科学版,2006,31(3):224-228.
    [92]吴俊彦,韩范畴,成俊,孙国勇.我国深度基准面不统一所带来的问题与对策[J].海洋测绘,2008,28(4):54-56.
    [93]劳顺根,胡连法.长江口深度基准面考查[J].海洋测绘,2003,23(2):40-43.
    [94]陈艳华.局部海域无缝深度基准面的建立[D].青岛:国家海洋局第一海洋研究所,2010.
    [95]孙翠羽,周兴华,马飞虎,张华疑.无缝垂直基准面偏差模型建立方法研究[A].见:第二届“测绘科学前沿技术论坛”论文精选[C],2008.
    [96]陈艳华,周兴华,孙翠羽,李杰.我国海域无缝垂直基准面的选择[J].海岸工程,2010,29(2):43-48.
    [97]王双喜,许家琨,缪世伟.海洋测绘中无缝深度基准的构建[J].海洋测绘,2010,30(5):14-16.
    [98]周天华,陈宗镛等.近几十年来中国沿岸海面变化趋势的研究[J].海洋学报,1992,14(2):1-8.
    [99]方国洪,郑文振,陈宗镛,等.潮汐和潮流的分析和预报[M].北京:海洋出版社,1986.
    [100]暴景阳,黄辰虎,刘雁春,肖付民.海图深度基准面的算法研究[J].海洋测绘,2003,23(1):8-12.
    [101]童章龙.潮汐调和分析的方法和应用研究[D].南京:河海大学,2007.
    [102]唐岩,暴景阳,许军.余水位的内插及其对潮高模型的精化[J].测绘科学,2007,11:94-95.
    [103]阮锐.潮汐测量与验潮技术的发展[J].海洋技术,2001,26(3):68-71.
    [104]赵建虎,柯灏,张红梅.长期验潮站潮位观测误差的综合探测及修复方法研究[J].武汉大学学报(信息科学版),2011,36(12):1490-1494.
    [105]柯灏,赵建虎.长江口区域瞬时潮位修复方法研究[J].测绘信息与工程,2011,36(5):43-45.
    [106]刘雷,缪锦根,李宝森.压力式验潮仪零点漂移检测及修正方法研究[J].海洋测绘,2010,30(7):73-75
    [107]葛运国.澳大利亚国家潮汐研究所对观测的海平面资料的质量控制方法[J].海洋技术,1994,13(2):80-89.
    [108]杨清书,沈焕庭,刘新成.应用数字滤波消除潮位短周期波动对确定海平面变化趋势的影响[J].水科学进展,1998,9(4):45-49.
    [109]葛运国.TOGA海平面中心的数据处理和质量控制[J].海洋技术,1994,13(2):69-79.
    [110]葛运国.日本的海平面资料处理方法与质量控制措施[J].海洋技术,1994,13(2):67-68.
    [111]刘万秋.水位数据采集和处理中的质量控制[J].海洋技术,1994,13(2):59-62.
    [112]肖付民,赵江,陈日高,夏伟.三种验潮方法水位观测性能比较与统计分析[J].海洋测绘,2009,29(3):24-27.
    [113]暴景阳,刘雁春.海道测量水位控制方法研究[J].测绘科学,2006,31(6):49-51.
    [114]王征,桑金,王骥.海洋潮位推算在水深测量中的应用[J].海洋测绘,2002,22(2):3-8.
    [115]许军,刘雁春,暴景阳,等.最小二乘水位拟合模型的参数时变规律研究[J].武汉大学学报信息科学版,2010,35(12):1418-1421.
    [116]汪连贺,柯灏,李登富.最小二乘法在水位推算中的应用[J].测绘信息与工程,2010,35(1):51-52.
    [117]黄辰虎,刘雁春,许家琨,等.关于海上定点验潮站潮位数据推算的可行性及操作性检验[J].海洋测绘,2004,24(6):41-44.
    [118]谢锡君,翟国君,黄谟涛.时差法水位改正[J].海洋测绘,1988,8(3):22-26.
    [119]杨清书,吴超羽等.傅氏变换在短序列确定海平面变化趋势中的应用[J].热带地理,1996,16(2):107-113.
    [120]GB 12327-1998海道测量规范[S].北京:中国标准出版社,1999.
    [121]沿海港口、航道测量技术规定[S].中华人民共和国海事局,2003.
    [122]JTJ203-2001水运工程测量规范[S].中华人民共和国交通部,2001.
    [123]暴景阳.海洋深度基准面的建立、标定与维持[J].海洋测绘,2000,20(4):4-8.
    [124]暴景阳,张明亮,唐岩,等.理论最低潮面定义和算法的应用问题分析[J].海洋测绘,2009,29(4):1-4.
    [125]暴景阳,唐岩,许军,齐珺等.理论最低潮面定义和算法的应用问题分析[A].见:第二十一届海洋测绘综合性学术研讨会论文集[C],2009.
    [126]方国洪.确定海图深度基准面的一个新方法[J].海洋科学,1979,(S1):
    [127]王骥,刘克修.关于海图深度基准面计算方法的若干问题研究[J].海洋测绘,2002,22(4):10-13.
    [128]李改肖,刘雁春,孙新选,齐珺.海图设计中深度基准面的确定方法[A].见:第二十一届海洋测绘综合性学术研讨会论文集[C],2009.
    [129]张泽能.浅谈海道测量基准面的确定及在航行海图中的应用[A].见:中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2006.
    [130]张力,孙新轩,刘雁春,暴景阳.最低天文潮面的精度研究[J].海洋测绘,2009,29(4):5-8.
    [131]刘雁春.海道测量基准面传递的数学模型[J].测绘学报,2000,29(4):310-316.
    [132]郑行昭,付兴武,刘雷.临时验潮站深度基准面确定技术的改进[J].海洋测绘,2009,29(6):58-60.
    [133]黄辰虎,马福诚,吕良,许家琨,孙雪杰.潮汐性质相似性判断的两个指标及其应用[J].海洋测绘,2007,27(6):12-15.
    [134]李改肖,孙新选,刘雁春,沈康.潮汐调和常数的变化趋势研究[J].海洋测绘,2010,30(3):62-64.
    [135]朱志恩.验潮站的布设和潮位资料应用中若干问题的初步讨论[J].东海海洋,1997,15(4):13-19.
    [136]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2003.
    [137]毛锋,於宗俦,于正林,孙福东.全球垂直基准网的建立方法[J].石油大学学报(自然科学版),1995,19(1):19-23.
    [138]陈学工,刘凯敏.一种基于格网法快速生成等值线的算法[J].电脑与信息技术,2007,15(3):44-47.
    [139]兰燕,王明华,刘珊红,戴晓爱.逐点内插法建立DEM的研究[J].测绘科学,2009,34(1):214-216.
    [140]芮小平,余志伟,许友志,奚砚涛.多重二次曲面插值法在地质曲面拟合中的应用[J].中国矿业大学学报,2000,29(4):37-40.
    [141]陈欢欢,李星,丁文秀.Surfer 8.0等值线绘制中的十二种插值方法[J].工程地球物理学报,2007,4(1):52-57.
    [142]白世彪,陈晔,王建.等值线绘图软件surfer7.0中九种插值方法介绍[J].物探化探计算技术,2002,28(2):157-162.
    [143]罗贵东.Surfer8.0绘制闭合区域等值线的两种方法[J].贵州气象,2008,32(3):32-34.
    [144]马英莲,彭树宏,钱静.基于surfer软件的两种数据插值方法研究[J].测绘通报,2010,(8):54-57.
    [145]靳国栋,刘衍聪,牛文杰.距离加权反比插值法和克里金插值法的比较[J].长春工业大学学报,2003,24(3):53-57.
    [146]陈斌.一种离散化的最小曲率插值方法[J].煤田地质与勘探,2000,28(1):49-54.
    [147]张松林,张昆.用格网法建立离散点的空间权矩阵方法研究[J].大地测量与地球动力学,2008,28(6):87-90.
    [148]魏继德.两种空间插值方法的比较研究[A].见:2009中国地理信息产业论坛暨第二届教育论坛就业洽谈会论文集[C],2009.
    [149]余志伟.一种新的地质曲面插值计算法——曲面样条函数方法[J].中国矿业学院学报,1987,16(4):69-76.
    [150]周兴华,姚艺强,赵吉先.DEM内插方法与精度评定[J].测绘科学,2005,30(5):86-88.
    [151]陈俊勇.永久性潮汐与大地测量基准[J].测绘学报,2000,29(1):14-18.
    [152]晁定波.关于我国似大地水准面的精化及有关问题[J].武汉大学学报信息科学版,2004,28(5):110-114.
    [153]黄志洲,钟金宁,周卫,崔立新.区域性大地水准面的确定[J].测绘科学,2004,27(4):16-18.
    [154]林晏,梁鑫华.区域似大地水准面模型的建立方法分析[J].交通科技与经济,2009,11(4):105-107.
    [155]赵建虎,王真祥,王胜平,董江.大区域似大地水准面模型的建立方法研究[J].武汉大学学报信息科学版,2008,33(1):68-71.
    [156]罗志才,陈永奇,宁津生.地形对确定高精度局部大地水准面的影响[J].武汉大学学报信息科学版,2003,28(3):340-344.
    [157]殷晓东.高程基准与海图水深起算面问题研究[J].海洋测绘,2001,21(1):9-14.
    [158]许家琨.沿海当地平均海面的85高程研究与应用[A].见:第十四届海洋测绘综合性学术研讨会论文集[C],2002.
    [159]徐元.长江河口地区的高程系统[J].水运工程,2000,319(8):1-4.
    [160]王双喜,黄文骞,吴迪,于彩霞.海岸带陆海地形数据复合三维模型的构建[J].系统仿真学报,2008,20(S1):215-218.
    [161]殷晓冬.高程基准与海图水深起算面问题研究[J].海洋测绘,2001,21(1):9-14.
    [162]韩雪培,廖邦固.海岸带数据集成中的空间坐标转换方法研究[J].武汉大学学报信息科学版,2004,29(10):933-936.
    [163]夏一行,胡力,周泓,江乐宇.电子海图应用系统中坐标变换算法的研究[J].工程设计学报,2003,10(5):299-302.
    [164]许家琨,申家双,缪世伟,黄辰虎.海洋测绘垂直基准的建立与转换[J].海洋测绘,2011,31(1):4-8.
    [165]张泽能.漫谈测量中基准面的确定及相互关系[A].见:中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C],2008.
    [166]吴华林,沈焕庭,吴加学.长江口海图深度基准面换算关系研究[J].海洋工程,2002,20(1):69-74.
    [167]钟华.长江口深度基准面转换的程序实现及其在滩涂资源调查中的应用[D].华东师范大学,2010.
    [168]章传银.测绘垂直基准相互转换与统一技术[A].见:地理空间信息技术与应用——中国科协2002年学术年会测绘论文集[C],2002.
    [169]章传银,常晓涛,成英燕.测绘垂直基准相互转换与统一技术[A].见:中国科协2004年学术年会14分会场海洋开发与可持续发展论文汇编[C],2004.
    [170]暴景阳.海图深度基准面传递算法的精度分析[J].测绘科学技术学报,2009,26(3):228-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700