用户名: 密码: 验证码:
雅鲁藏布江河谷地貌与地质环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雅鲁藏布江是青藏高原上的一条大河,其河谷地貌和地质环境演化的发育历史对于青藏高原地质研究有比较重要的意义。由于雅鲁藏布江流域地理环境恶劣,前人对该区河谷地貌和地质环境演化的研究工作做的较少,即使有一些工作,但是也缺乏确切的年代测定,使得人们对于雅鲁藏布江发育历史至今还不足很清楚。本文通过大量的野外工作,不限于前人研究较多的雅鲁藏布江大拐弯,而且跑遍了整个雅鲁藏布江中游及下游一段,重点解剖了雅鲁藏布江人拐弯、林芝、加查、桑日、杰德秀和人竹卡等剖面,从而对于雅鲁藏布江发育历史比较清楚的了解。讨论了雅鲁藏布江河谷分布江冰川泥石流和风成砂,对于该区地质灾害防治有重要意义。讨论了雅鲁藏布江河谷冰川沉积、冰水沉积和古土壤等地貌,对于研究该区古气候有重要意义。
     野外调查发现雅鲁藏布江河谷两岸广泛分布河湖相沉积物、冰碛物、古土壤和河流相沉积物等,采集了大量的样品。用ESR(Electron Spin Resonance)、14C、 OSL(Opically Stimulated Luminesecence)等测年方法分析采集到的样品并确定雅鲁藏布江多个多期古堰塞湖的存在。结合样品的孢粉分析,得到了雅鲁藏布江流域古气候环境演化。在研究区采集多个花岗岩样品,用锆石和磷灰石的裂变径迹分析和夷平而证据得到古雅鲁藏布江流域的河谷地貌。测量了雅鲁藏布江河谷两岸阶地,结合样品所测得年代,确定了雅鲁藏布江在第四纪期间的发育历史。
     对雅鲁藏布江流域拉孜县、仁布县、曲水县、桑口县和林芝县等不同地点采集22个花岗岩样品进行了锆石和磷灰石裂变径迹测年,为分析该流域新近纪隆升剥蚀过程和构造地貌演化提供了热年代学资料约束。所获得的样品磷灰石裂变径迹年龄为(1.6+0.2)~(21.8+1.2)MaBP,径迹长度为(12.1+2.6)~(14.2+1.4)μm,单颗粒年龄和径迹长度均呈单峰分布。锆石裂变径迹年龄集中在33-23MaBP,22-9MaBP。1.6-21.8MaBP的磷灰石裂变径迹年龄与9-5MaBP的碰撞后事件相符,代表主要的隆升剥露期,是区内发生高速率沉积事件的记录。并且结合了雅鲁藏布江流域的夷平面形态特征和分布规律以及形成时代探讨了雅鲁藏布江早期发育过程。
     通过对雅鲁藏布江加查段河流地貌和构造调查发现,该区具有平行状水系格局,河谷地貌以峡谷和宽谷相间为主要特征,经历了碰撞、挤压和伸展构造演化过程,产生了褶皱-逆冲、走滑剪切、韧性剪切、正断层等构造变形样式。该段河谷地貌的形成演化受构造运动和气候等影响。雅鲁藏布江加查段河流至少从上新世以来沿构造运动产生的不同性质断裂构造溯源侵蚀和气候变化的影响发育而成。
     野外考察发现雅鲁藏布江中游河谷发育了11级以上河流阶地,应用ESR、OSL、14C、风成砂和红土-古土壤序列等定年方法,初步确定了阶地的形成时代分别为T11>2000kaBP、T10-1783kaBP、T9-1238kaBP、 T8-684kaBP、T7-382kaBP、T6-150kaBP、T5-82kaBP、T4-67kaBP、T3-43kaBP、T2-28kaBP、Tr-10kaBP,从而对雅鲁藏布江发育历史有了明确认识。根据阶地的沉积特征和年代数据的分析,发现基准面变化、构造运动、气候变化和河曲移动共同控制着雅鲁藏布江中游阶地的形成。最高级河流阶地是河流开始出现的重要标准。在加查县虾日拔河高度560m和朗县北格拔河高度630m雅鲁藏布江的最高级阶地发现渐新世-早中新世大竹卡组砾石,说明雅鲁藏布江最高级阶地在渐新世-早中新世之后形成,由于最高级阶地接近青藏高原主夷平面海拔高度,因此至少7MaBP(中新世晚期)雅鲁藏布江已经存在,这套古老巨厚的河流相砾石层在接近雅鲁藏布江谷底位置的发现,表明雅鲁藏布江很早就已经从青藏高原山顶面下切了2000m以上,已在接近其现今谷底的位置上存在,把青藏高原隆升时代争论推向第四纪之前。这对于研究古雅鲁藏布江的河谷发育及其与青藏高原隆升的关系,具有重要的指示意义。
     雅鲁藏布江历史上多次被阻塞形成众多的堰塞湖,已报道过有萨嘎、汀当、大竹卡、仁布、杰德秀、格嘎等古堰塞湖,但都缺乏全而认识雅鲁藏布汀古堰塞湖。本文在雅鲁藏布江中下游第四纪堰塞湖沉积典型剖面观测的基础上,提出雅鲁藏布大峡谷第四纪发育4期堰塞湖,测定了堰塞湖沉积时代,探讨了堰塞湖与冰川发育之间的关系。确定该湖泊4次存在时问是691~505kaBP中更新世冰期、75-40kaBP末次冰期早冰阶、27-8kaBP末次盛冰期和1.8~1.2kaBP新冰期,湖泊存在时间逐渐缩短反l映冰川规模和堰塞坝冰碛物补充能力逐渐减小,堰塞湖和堰塞坝规模也逐渐减小。格嘎至赤白12km雅鲁藏布江河谷为堵江地点。从构造和气候等因素分析了南迦巴瓦峰西坡则隆弄冰川仲入雅鲁藏布江河谷堵江成湖及堰塞湖消亡原因。
     雅鲁藏布江河谷植被与地质地貌有密切关系,尤其是植被分布与雅鲁藏布江河谷独特的地貌-垂直自然带较大差异分布有紧密关系。雅鲁藏布江河谷的第四纪孢粉组合有的以木本植物花粉为主,有的以草本植物花粉为主,有的以蕨类植物化粉为主,其含量随地而异。古植被景观主要处于高山灌丛草甸、草原与草甸、草原和森林的交替变化之中。分析了雅鲁藏布江河谷典型沉积剖面的孢粉组合,揭示了青藏高原南部第四纪晚期的古植被演化历史和古气候环境变迁过程。
The Yarlung Zangbo River is a great river on the Tibetan Plateau, the landform of river valley and geological evolution history of development for the study of the Tibetan Plateau geology has an important significance. As a result of the Yarlung Zangbo River basin with a harsh geographical environment, predecessor did less research work for the river valley landform and geological environment evolution of the area, even if some work, but also the lack of exact age determination, it makes the development history of the Yarlung Zangbo River is still not very clear. This paper, through a large number of field work, is not limited to the former more research work at the Grand Bend of the Yarlung Zangbo River, but also all over the middle reaches of Yarlung Zangbo River. The anatomy of profiles for the Grand Bend of Yarlung Zangbo River, Linzhi, Gyaca, Jiedexiu and Dazhuka et al., thus the development history of Yarlung Zangbo River is to know. Discussion of the glacier debris flow and distribution of Aeolian sand in the Yarlung Zangbo River valley is important for the geological disaster prevention. Discussion of the glacial deposits, outwash and ancient soil and other topography has significance for the paleoclimate research on the area.
     Field investigation found the Yarlung Zangbo River valley across strait widely distributed fluvial-lacustrine sediments, moraine, ancient soils and river sediments with acquisition of a large number of samples. Using ESR,14C, OSL and other dating methods analysis of the collected samples we determine many ancient dammed lakes for many period. A combination of a sample of pollen analysis obtained the ancient climate evolution of the Yarlung Zangbo River basin. In the study area we gather a lot of granite samples and known the valley landform of Yarlung Zangbo River basin with the Zircon and Apatite fission track analysis and planation surface evidence. Measurement of the cross-strait terrace of Yarlung Zangbo River valley, combined with the sample to determine the time, we known the development history of Yarlung Zangbo River in the Quaternary period.
     We collected22granite samples in different locations on the basin of the Yarlung Zangbo River at Lazhi County, Renbu County, Qushui County, Sangri County and Linzhi County for zircon and apatite fission track dating. To analyze the basin uplift denudation of the Neogene tectonic geomorphology and evolution it provides a thermal time data constraint. The obtained samples of apatite fission track age of (1.6+0.2)~(21.8+1.2) MaBP, track length is (12.1+2.6)~(14.2+1.4) μm, single particle age and track length showed a single peak distribution. Zircon fission track age center in33~23MaBP,22~9MaBP. The match of1.6~21.8MaBP fission track age and9~5MaBP after collision events, which represents the main uplift and exhumation period, is the high rate deposition event record in the zone. Furthermore, combination of the Yarlung Zangbo River basin with the planation surface morphology characteristics and distribution regularity and forming age of the Yarlung Zangbo River valley during the early development.
     Field investigations of the geomorphology of river valleys and tectonics in Gyaca sector of the Yarlung Zangbo River in Tibet show that the sector is characterized by a parallel type drainage pattern and narrow and wide valleys. The sector has undergone a tectonic evolution from collision through compression to extension, thus forming such tectonic deformation styles as folds-thrusts, strike-slip shear, rheological shear, normal faults and graben. The geomorphology of river valleys in Gyaca sector has been controlled by tectonic movement and climate. The drainage system in Gyaca sector of the Yarlung Zangbo River has been formed by headward erosion along faults of different characteristics generated by tectonic movement and climate variation since Pliocene at least.
     Field investigation of the geomorphology of river valleys found that the Yarlung Zangbo River middle reaches of the valley developed more than11level river terraces. Application dating methods of ESR (Electron Spin Resonance),14C, Aeolian sand and red clay-paleosol sequence initially identified the formation age of these terraces were T11>2000kaBP, T10-1783kaBP, T9-1238kaBP, T8-684kaBP, T7-382kaBP, T6-150kaBP, T5-82kaBP, T4-67kaBP, T3-43kaBP, T2-28kaBP and T1-10kaBP respectively, therefore we have a clear understanding of the development history of the Yarlung Zangbo River. According to terraces of sedimentary features and age of data analysis, found base level change, tectonic movement, climate change and meander migration joint controlled the terrace formation of the Yarlung Zangbo River. These terrace ages of the middle reaches of Yarlung Zangbo River close to the ages of river terraces near the margin rivers of the Tibetan Plateau, shows that the uplift of Tibetan Plateau and geomorphic of both the overall response have consistency and also differences within the region. Analyzing the linear relation between terrace ages and heights above the river, we calculated the average incision rates of the middle reaches of Yarlung Zangbo River, which is not coincident with the incision rates of otner rivers near the Tibetan Plateau, and reflects the Tibetan Plateau tectonic movement in the time and space differences since Pleistocene. We found Oligocene to early Miocene Dazhuka Formation gravel on the highest order terrace of elevation of3700m (560m above the river level at Xiari in Gyaca County and630m above the river level at Beige in Lang County), which illustrates the Yariung Zangbo River the highest order terrace formed after Oligocene to early Miocene, as it close to the altitude of Main Planation Surface of Tibetan Plateau, so at least7MaBP (Late Miocene) the Yarlung Zangbo River has already existed. These old and thick fluvial gravel layers near the lower location of the Yarlung Zangbo River valley were found, show that the Yarlung Zangbo River has already been cut down2000m or more from the Summit Surface of Tibetan Plateau, has been close its current location on the bottom, advance the uplift era of controversy of the Tibetan Plateau to the previous Quatsrnary. This study of the relationship between the ancient valley development of the Yarlung Zangbo River and the uplift of the Tibetan Plateau has an important significance.
     The Yarlung Zangbo River has a history of being blocked many times to form some large lakes. It has been reported with Saga, Jiangdang, Dazhuka, Renbu, Jiedexiu and Gega ancient lakes, but they lack a comprehensive understanding of ancient lakes in the Yarlung Zangbo River valley. This paper based on the observation of lake sediments of Quaternary typical profiles in the Yarlung Zangbo River downstream, and put forward to develop four stage dammed lakes during Quaternary, and determine lake depositional age, and discuss the relationship between lakes and glaciers. The lacustrine sediments14C (10537±268aBP at Linzhi Brick and Tile Factory,22510±580aBP and139251204aBP at Bengga,21096±1466aBP at Yusong) and a series of ESR ages at318road in Linzhi town with previous data by other experts, paleolakes persisted for691-505kaBP middle Pleistocene ice age,75-40kaBP the early stage of last glacier,27-8kaBP Last Glacier Maximum (LGM),1.8-1.2kaBP New Glacier Period, existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Yarlung Zangbo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai about12km. This article according to moraines and lacustrine sediments yielded paleolakes scale:the lowest lake base altitude2850m, the highest lake surface altitude3585m,3240m,3180m and2940m, area2885km2,820km2,810km2and100km2, lake maximum depth of735m,390m,330m and90m.
     The vegetation and physiognomy in the Yarlung Zangbo River valley are closely related. The vegetation distribution in the Yarlung Zangbo River valley has close relationship with the unique landforms-vertical natural zone of bigger difference distribution in the Yarlung Zangbo River valley. The quaternary palynology in the Yarlung Zangbo River valley is mainly in woody plants pollen or herb pollen or ferns pollen with its content varies. The plant landscape was mainly in alpine shrub meadow, grassland and meadow, grassland and forest change alternately. Analysis of Palynological Assemblages of typical deposition profiles in the Yarlung Zangbo River valley, the paper reveals the paleovegetation evolution history and ancient climate changes in the southern Tibetan Plateau during late Quaternary.
引文
陈建军,季建清,龚俊峰,庆建春.2008.雅鲁藏布江大峡谷的形成.地质通报,27(4):491-499.
    陈万勇.1980.西藏林芝盆地新生代晚期的自然环境.古脊椎动物与古人类,18(1):52-48.
    陈亚宁.1984.西藏南迦巴瓦峰地区冰川作用的初步观察.新疆地理,7(8):5-9.
    陈正位,曹忠权,谢平,金花,洪顺英.2007.拉萨地区晚第四纪地壳的抬升与拉萨河的向南迁移.地质力学学报,13(4):307-314.
    陈志明.1981.西藏高原湖泊的成因.海洋与湖泊,12(2):178-187.
    成都地质矿产研究所.2002.1:25万墨脱幅正式报告.成都,1-330.
    成都地质矿产研究所.2005.青藏高原及邻区1:150万地质图说明书.成都,1-143.
    崔之久,高全洲,刘耕年,潘保田,陈怀录.1996.青藏高原夷平而与岩溶时代及其起始高度.科学通报,41(15):1402-1406.
    丁林,钟大赉,潘裕生,黄萱.1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,40(16):1497-1500.
    关志华,陈传友,区裕雄,范云崎,张有实,陈志明,鲍世恒,俎玉亭,何希吾,章铭陶.1984.西藏河流与湖泊.北京:科学出版社,1-238.
    何果佑,曾莉.2007.论雅鲁藏布江不同河段河谷形态的变化与地质构造和经济发展的关系.水利规划与设计,4:1-4.
    何果佑.2006.论西藏泥石流、滑坡的时空分布特性.水利规划与设计,6:21-26.
    胡敬仁,孙中良,陈国结,尼采,夏抱本,刘鸿飞,万永文,蒋光武,范跃春.2004.日喀则市幅地质调查新成果及主要进展.地质通报,23(5-6):463-470.
    黄麒.1988.青海湖沉积物的沉积速率及其古气候演变的初步研究.科学通报,33(22):1740-1744.
    黄韶怡,林玉侬,陈于高,赖光胤,钟令和,尹功明,刘静伟,曹忠权.2007.雅鲁藏布江中游湖相沉积物之隐示及野外初探.2007年台湾地球科学联合学术研讨会,论文摘要.
    靳鹤龄,董光荣,刘玉璋,张春来.1998.0.8 MaBP以来西藏雅鲁藏布江中游地区沙地演化和气候变化.中国沙漠,18(2):97-104.
    李炳元,潘保田.2002.青藏高原古地理环境研究.地理研究,21(1):61-70.
    李炳元,王富葆,张青松,杨逸畴,尹泽生,景可,李文漪,郑亚惠,黄赐璇,李家英,梁玉莲,王燕如.1983.西藏第四纪地质.北京:科学出版社,1-179.
    李炳元.2000.青藏高原湖泊的演化.中国西藏(中文版),中国西藏杂志社,(01):57-60.
    李渤生.1984.南迦巴瓦峰地区植被垂直带谱.山地研究,2(3):175.
    李浩敏,郭双兴.1976.西藏南木林中新世植物群.古生物学报,15(1)
    李吉均,方小敏,马海洲,朱俊杰,潘保田,陈怀录.1996.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑),26(4):316-322.
    李吉均,方小敏,潘保田,赵志军,宋友桂.2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,21(5):381-391.
    李建国,郭震宇,张一勇.2009.西藏日喀则恰布林剖面人竹卡组孢粉组合及其时代和古环境、古地理意义.古生物学报,48(2):163-174.
    李森,王跃,哈斯,杨萍,靳鹤龄,张甲坤.1997.雅鲁藏布江河谷风沙地貌分类与发育问题.中国沙漠,17(4): 342-350.
    李亚林,工成善,工谋,伊海生,李勇.2006.藏北长江源地区河流地貌特征及其对新构造运动的响应.地质通报,33(2):822-826.
    粱定益,郭铁鹰,莫宣学,徐宝文.1980.雅鲁藏布江人断裂是“地缝合线”吗?《国际交流地质学术论文集》(26届国际地质大会)1,构造地质,地质力学,北京:地质出版社.
    林振耀,吴祥定.1981.青藏高原气候区划.地理学报,36(1):22-32.
    林振耀,吴祥定.1984.南迦巴瓦峰地区垂直气候带及气候类型.山地研究,2(3):165-173.
    林振耀,吴祥定.1985.南迦巴瓦峰地区气候基本特征.山地研究,3(4):250-257.
    刘国纬.1992.西藏高原的水文特征.水利学报,5:1-8.
    刘世建.2004.南迦巴瓦峰地区泥石流概要.山地研究,2(3):212-215.
    刘文灿,张祥信,王克友.2003.西藏江孜地区第四纪地貌特征及土地资源类型.地球科学,27(增刊)205-208.
    刘宇平,Montgomery D. R., Hallet B.,唐文清,张建龙,张选阳.2006.西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件.第四纪研究,26(1):52-62.
    路晶芳,向树元,江尚松,刘超,曾方明.2008.西藏日喀则末次冰期风成黄土粒度分析及其意义.干旱区资源与环境,22(4):80-85.
    莫宣学,董国臣,赵志丹,周肃,王亮亮,邱瑞照,张风琴.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290.
    潘保田,高红山,李古均.2002.关于夷平面的科学问题—兼论青藏高原夷平面.地理科学,22(5):520-526.
    潘保田,刘小丰,高红山,王勇,李吉均.2007.渭河上游陇西段河流阶地的形成时代及其成因.自然科学进展,17(8):1063-1068.
    潘桂棠,王培生,徐耀荣.1990.西藏高原新生代构造演化.北京:地质出版社.
    潘裕生.1999.青藏高原的形成与隆升.地学前缘,9:153-163.
    彭补拙,杨逸畴.1996.南迦巴瓦峰地区自然地理与自然资源.北京:科学出版社,1-380.
    钱定宇.1985.论秋乌煤系及拉达克至冈底斯陆缘山链磨拉石的时代.地质出版社,青藏高原地质文集(16):229-241.
    沈玉昌,龚国元.1986.河流地貌学概论.北京:科学出版社:1-207.
    施雅风,贾玉连,于革,杨达源,范云崎,李世杰,王云飞.2002.40-30 kaBP青藏高原及邻区高温大降水事件的特征、影响及原因探讨.湖泊科学,14(1):1-14.
    施雅风,汤懋苍,马玉贞.1998b.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D辑),28(3):263-271.
    施雅风.1998a.第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系.冰川冻土,20(3):197-208.
    史兴民,杨景春.2003.河流地貌对构造活动的响应.水土保持研究,10(3):48-51.
    孙殿卿,吴锡浩.1986.中国第四纪构造气候旋回的初步研究.中国第四纪研究,7(2):1-9.
    唐领余,沈才明,廖淦标,于世永,李春海.2004.末次盛冰期以来西藏东南部的气候变化—西藏东南部的花粉记录.中国科学D辑(地球科学),34(5):436-442.
    汪佩芳,夏玉梅,王曼华.1981.西藏南部全新世泥炭孢粉组合及自然环境演化的探讨.地理科学,1(2)
    王二七,陈良忠,陈智樑.2002.在构造和气候因素制约下的雅鲁藏布江的演化.第四纪研究,22(4)365-373.
    王二七,周勇,陈智樑,BURCHFIEL C B,季建清.2001.东喜马拉雅缺口的地质与地貌成因.地质科学,36(1):122-128.
    王富葆,张厚生.1985.南迦巴瓦峰地区第四纪地质拾零.山地研究,3(4):321-324.
    王国灿,张克信,曹凯,王岸,徐亚东,孟艳宁.2010.从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程.地球科学-中国地质大学学报,35(5):713-727.
    王鸿祯.1983.试论西藏地质构造分区问题.地球科学,1.
    工立全,朱弟成,潘桂棠.2004.青藏高原1:25万区域地质调查主要成果和进展综述(南区).地质通报,23(5-6):413-420.
    王明业,郑绵平.1965.西藏高原第四纪冰川遗迹.地理学报,31(1):63-72.
    工志超.1984.南迦巴瓦峰地区古冰川遗迹概述.山地研究,2(3):216-220.
    吴锡浩,王苏民,安芷生,蒋复初,肖华国,孙东怀,薛滨.1998.关于晚新生代准1.2 Ma周期构造气候旋回.地质力学学报,4(4):1-11.
    吴珍汉,吴中海,胡道功,赵逊,赵希涛,叶培盛.2009.青藏高原新生代构造活动演化与隆升过程.北京:地质出版社,1-333.
    吴中海,张永双,胡道功,赵希涛,叶培盛.2007.西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨.地质学报,81(10):1328-1337.
    西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社,1-707.
    徐纪人,赵志新,石川有三.2005.青藏高原中部的东西向扩张构造运动.岩石矿物学杂志,24(5):447-452.
    徐祖丰,刘细元,罗小川.2006.青藏高原冈底斯当穹错-许如错—带新近纪-第四纪地堑的基本特征.地质通报,25(7):822-826.
    许炯心.1996.中国不同自然带的河流过程.北京:科学出版社,2-3.
    许荣华.1986.西藏聂拉木群主要变质时代的讨论.岩石学报,2.
    阎顺,陈亚宁.1992.西藏南迦巴瓦峰地区第四纪环境探讨.山地研究,10(3):167-171.
    杨森楠,杨巍然.1985.中国区域大地构造学.北京:地质出版社,1-341.
    杨逸畴,李炳元,尹泽生,张青松,王富葆,景可,陈志明.1983.西藏地貌.北京:科学出版社:1-238.
    杨逸畴.1984a.再记南迦巴瓦峰科学考察.山地研究,2(1):43-48.
    杨逸畴.1984b.南迦巴瓦峰地区地貌的基本特征和成因.山地研究,2(3):124-141.
    杨逸畴.1986.南迦巴瓦峰登山科学考察.自然资源,4:97-99.
    杨逸畴.1991.南迦巴瓦峰地区地貌的形成及其对自然环境的影响.地理科学,11(2):165-171.
    尹光侯,张留青,包钢,包俊跃,段国玺,苏学军.2005.西藏林芝地区第四纪新知.地层学杂志,29(增刊):626-630.
    尹集祥,郭师曾.1976.珠穆朗玛峰北坡冈瓦纳相地层的发现.地质科学,4.
    于祥江,季建清,龚俊峰,孙东霞,庆建春,王丽宁,钟大赉,张志诚.2011.雅鲁藏布大峡谷气候因素引起地壳剥蚀冷却的证据.科学通报,56(10):765-773.
    袁万明,董金泉,保增宽,朱炳玉.2008.西藏冈底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束.原子能科学技术,42(6):570-573.
    张进江,季建清,钟大赉,丁林,何顺东.2003.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学D辑,33(4):373-383.
    张沛全,刘小汉,孔屏.2008.雅鲁藏布江大拐弯地区末次冰期以来的冰川活动证据及其构造~环境意义.地质科学,43(3):588-602.
    张文敬.1983.南迦巴瓦峰的跃动冰川.冰川冻土,5(4):75-76.
    张文敬.1985.南迦巴瓦峰跃动冰川的某些特征.山地研究,3(4):234-238.
    张振利,田立富,范永贵,李广栎,魏文通,郭金城,孙肖,刘洪章.2004.萨嘎县幅、桑桑区幅、吉隆县幅地质调查新成果及主要进展.地质通报,23(05-06):427-433.
    张振拴.1984.南迦巴瓦峰地区冰川沉积的初步研究.河北地质学院学报,27(3):37-45.
    张振拴.1988.南迦巴瓦峰西坡末次冰期以来的冰川变化.冰川冻土研究,10(2):181-188.
    赵希涛,吴中海,叶培盛,仝亚博,胡道功.2011.云南怒江河谷新近纪砾石层与堰塞湖相沉积的发现及其意义.地质学报,85(12):1963-1976.
    赵希涛,张永双,胡道功.2009.第四纪地质与新构造运动.//张永双,胡道功,吴中海,蒋良文,赵希涛,张家桂,吴树仁,曲永新,郭长宝,王科,雷伟志,石菊松,刘景儒,姚鑫,王献礼著,滇藏铁路沿线地壳稳定性及重大工程地质问题.北京:地质出版社:37-100.
    郑来林,金振民,潘桂棠,耿全如,孙志民.2004.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化.地质学报,78(6):744-751.
    郑锡澜,常承法.1979.雅鲁藏布江下游地区地质构造特征.地质科学,2:116-126.
    中国地质调查局.2004.雅鲁藏布江结合带区域地质调查成果与进展.地质通报,23(1):40-44。
    钟大赉,丁林.1996.青藏高原隆升及其机制探讨.中国科学D辑,26(4):289-295.
    钟大贵,吴根耀,丁林.1998.藏东新生代陆内变形特征.见:潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.广州:广东科技出版社,333-364.
    周中民.1987.雅鲁藏布中游断裂河谷地貌特征的探讨.华中师范大学学报,12:611-618.
    朱照宇,丁仲礼,汉景泰.1994.新构造活化与气候恶化.第四纪研究,2(1):56-66.
    祝嵩,赵希涛,吴珍汉.2011.雅鲁藏布江加查段河流地貌对构造运动和气候的响应.地球学报,32(3):349-356.
    (?)玉亭,关志华.1980.桑日-加查峡谷考察纪行.今日中国(中文版),(Z3):83-86.
    An Zhisheng, John E. Kutzbach, Warren L. Prell and Stephen C. Porter.2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature,411(3):62-66.
    Anders A M, Roe G H, Montgomery D R and Hallet B.2008. Influence of precipitation phase on the form of mountain ranges. Geology,36(6):479-482.
    Bookhagen B, Thiede R C and Strecker M R.2005. Abnormal monsoon year and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth Plant Science Letters,231:131-146.
    Brandon M T.2002. Decompcsition of mixed grain age distributions using Binomfit. On Track,24:13-18.
    Budel J.1957. Double surface of leveling in the Humid Tropics. Zeit Geomorph,1(2):223-225.
    Burbank D W, Blythe A E, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A and Ojha T P.2003. Decoupling of erosion and precipitation in the Himalayas. Nature,426:652-655.
    Burg J. P and Podladchikov Yu.1999. Lithospheric scale folding:numerical modeling and application to the Himalayan syntaxes. International Journal of Earth Sciences,88:190-200.
    Burg Jean-Pierre, Nievergelt Peter, Oberli Felix, Seward Diane, Davy Philippe, Maurin Jean-Christophe, Diao Zhizhong and Meier Martin.1998. The Namche Barwa syntaxis:Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences,16:239-252.
    Chamberlain C P and Poage M A.2000. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology,28(2):115-118.
    Copeland Peter, Harrison T Mark, Pan Yyun, Kidd W S F, Roden Mary and Zhang Yuquan.1995. Thermal evolution of the Gangdese batholith Southern Tibet:A history of episodic unroofing. Tectonics,14:223-236.
    Ding Z L, Derbyshire E, Yang S. L.,Yu Z.W., Xiong S. F. and Liu T.S..2002. Stacked 2.6 Ma grain sizer record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography,17(3):1-21.
    Donelick R A, O'Sullivan P B and Ketcham R A.2005. Apatite fission-track analysis. Rev Miner Geochem,58: 49-94.
    Emmel B, Jacobs J and Razakamanana T.2004. Titanite and apatite fission track analyses on basement rocks of central-southern Madagascar:constraints on exhumation and denudation rates along the eastern rift shoulder of the Morondava basin. Journal of African Earth Sciences,38:343-361.
    Finlayson David P, David R. Montgomery and Bernard Hallet.2002. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology,30(3):219-222.
    Finnegan N J, Bernard Hallet, David R. Montgomery, Peter K. Zeitler, John O. Stone, Alison M. Anders and Liu Yuping.2008. Coupling of rock uplift and river incision in the namche barwa-gyala peri massif, Tibet. Geological Society of America Bulletin,120(1/2):142-155.
    Fitzgerald P G, Sorkhabi R B, Redfield T F and Stump E.1995. Uplift denudation of the central Alaska Range:A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res,100:20175-20192.
    Fleischer R L, Price P B and Walker R M.1975. Nuclear tracks in solids:Principles and techniques. California: University of California Press.
    Fucks K, von Gehlen K, Malzer H, Murawski H and Semmel A (Editors).1983. Plateau Uplift. Berlin, Heidelberg: Springer-Verlag,101-113.
    Galbraith R F and Laslett G M.1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements,21 (4):459-470.
    Gilchrist A R, Summerfield M A and Cockburn H A P.1994. Landscape dissection, isostatic uplift, and the morphologic development of orogens. Geology,22:963-966.
    Gleadow A J W, Duddy I R, Green P F and Lovering J F.1986. Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology,94:405-415.
    Grujic D, Coutand I, Bookhagen B, Bonnet S, Blythe A and Duncan C.2006. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology.34:801-804.
    Harrison T M, Copeland P and Kidd W.1995. Activation of the Nyainqentanghla shear zone:implications for uplift of the southern Tibetan Plateau. Tectonics,14:658-676.
    Harrison T M, Copeland P, Kidd W S F and Yin An.1992. Raising Tibet. Science,255:1663-1670.
    Harrison T M, Yin A and Grove M.2000. Displacement history of the Gangdese thrust, Zedong window, southeastern Tibet. Earth Science Frontiers,7(Supp.):109.
    Hodges K V, Wobus C, Ruhl K, Schildgen T and Whipple K.2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Plant Science Letters,220:379-389.
    Holbrook J and Schumm S A.1999. Geomorphic and sedimentary response of rivers to tectonic deformation:a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics,305:287-306.
    Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X.2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in Southern Tibet. Earth Planet Sci Lett,220:139-155.
    House M A, Wemicke B P and Fareley K A.1998. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature,396:66-69.
    Huntington K W, Blythe A E and Hodges K V.2006. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Plant Science Letters,252:107-118.
    Hurford A J.1990. Standardization of fission track dating calibration:Recommendation by the Fission Track Working Group of the IUGS, Subcommission on geochronology. Chem Geol,80:171-178.
    Hutton J T and Prescott J R.1992. Field and laboratory measurements of low-level thorium, uranium and potassium. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,20(2):367-370.
    Johnson C.1997. Resolving denudational histories in orogenic belts with apatite fission track thermochronology and structural data:An example from southern Spain. Geology,25:623-626.
    Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N and Wu C.2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau:Fission-track constrains. Tectonophysics,343:111-134.
    Koppes M N and Montgomery D R.2009. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nature Geoscience,2:644-647.
    Korup Oliver and David R. Montgomery.2008. Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo gorge. Nature,455:786-790.
    Li Jijun, Xie Shiyou and Kuang Mingsheng.2001. Geomorphic evolution of the Yangtze Gorges and time of their formation. Geomorphology,41:125-135.
    Lucchitta I.1979. Late Cenozoic Uplift of the southwestern Colorado Plateau and adjacent lower Colorado River region. Tectonophysics,61(1):63-95.
    Miler C, Schuster R, Klotzliu, Frank W and Purtscheller F.1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol,40:1399-1424.
    Molnar P and England P.1990. Late Cenozoic uplift of mountain ranges and global climate change:Chicken or egg? Nature,346:29-34.
    Molnar P, England P and Martinod J.1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys,31:357-396.
    Molnar P.2003. Nature, nurture and landscape. Nature,426:612-614.
    Montgomery D R, Hallet B, Liu Yuping, Finnegan N, Anders A, Gillespie A and Greenberg H M.2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet. Quaternary Research,62: 201-207.
    Montgomery D R.2002. Valley formation by fluvial and glacial erosion. Geology,30:1047-1050.
    Montgomery David R. and Drew B. Stolar.2006. Reconsidering Himalayan river anticlines. Geomorphology,1-12.
    Pan Y and Kidd W.1992. Nyainqentanghla shear zone:a late Miocene extensional detachment in the southern Tibetan Plateau. Geology,20:775-778.
    Qiang X K, Li Z X, Powell C Mca and Zheng H.B.2000. Magneto stratigraphic record of the Late Miocene onset of the East Asia monsoon, and Pliocene uplift of Northern Tibet. Earth Planet Scilett,187:83-92.
    Quade J, Cerling T E and Bowman J R.1989. Development of Asia monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature,342:163-165.
    Quade Jay, Daniel O. Breecker, Mathieu Daeron and John EILER.2011. The paleoaltimetry of Tibet:An isotopic perspective. American Journal of Science,311:77-115.
    Raymo M E. and Ruddiman W F.1992. Tectonic forcing of iate Cenozoic climate. Nature,359:117-122.
    Robert A. Spicer, Nigel B.W. Harris, Mike Widdowson, Alexei B. Herman, Shuangxing Guo, Paul J. Valdes, Jack a. Wolfe and Simon P. Kelley.2003. Constant elevation of southern Tibet over the past 15 million years. Nature,421:622-524.
    Ruddiman W F, Prell W L, and Raymo M E.1989. Late Cenozoic uplift in South Asia and the American West: Rationale for general circulation modeling experiments. Journal of Geophysical Research,94(D15) 18379-18391.
    Schumm S A.1993. River response to base level change:Implications for sequence stratigraphy. The Journal of Geology,101(2):278-294.
    Seward Diane and Burg Jean-Pierre.2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge:Constraints form structural and thermochronological data. Tectonophysics,451:282-289.
    Shackleton R M and Chang Chengfa.1988. Cenozoic uplift and deformation of the Tibetan Plateau:the geomorphologic evidence. Philosophical transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences,327(1594):365-377.
    Spiegel C, Sachsenhofer R F, Privalov V A, Zhykalyak M V and Panova E A.2004. Thermotectonic evolution of the Ukrainian Donbas Foldbelt:evidence from zircon and apatite fission track data. Tectonophysics,383: 193-215.
    Starkel L.1994. Reflection of the glacial-interglacial cycle in the evolution of the Vistula river basin. Terra Nova,6: 486-494.
    Stewart R.J., Hallet B., Zeitler P.K., Malloy M.A., Allen C.M. and Trippett D.2008. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology,36:711-714.
    Tapponnier P, Mattauer M, Proust F and Cassaigneau C.1981. Mesozoic ophiolites, and large scale tectonic movements in Afghanistan. Earth and Planetary Science Letters,52:355-371.
    Tapponnier P, Peltzer G. and Armijo R.1986. On the mechanics of the collision between India and Asia, in Collision Tectonics, Coward & Ries (eds.):Geological Society Special Publication,19:113-157.
    Tapponnier Paul, Xu Zhiqin, Francoise Roger, Bertrand Meyer, Nicolas Arnaud, Gerard Wittinger and Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science,294:1671-1677.
    Thiede R C, Bookhagen B, Arrowsmith J R, Sobel E R and Strecker M R.2004. Climate control on rapid exhumation along the Southern Himalayan Front. Earth Plant Science Letters,222:791-806.
    Vandenberghe J.1995. Timescales, climate and river development. Quaternary Science Review,14:631-638.
    Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert Peter C., Graham Stephan A., Coe Robert S., Yi Haisheng, Zhu Lidong, Liu Shun and Li Yalin.2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America,105:4987-4992.
    Whipple K X, Kirby E and Brocklehurst S H.1999. Geomorphic limits to climatically induced increases in topographic relief. Nature,401:39-43.
    Whipple K X.2001. Fluvial landscape response time:How plausible is steady-state denudations? American Journal of Science,301:313-325.
    William W. Hay, Emanuel Soeding, Robert M. DeConto and Christopher N. Wold.2002. The late Cenozoic uplift-climate change paradox. International of journal earth science,91:746-774.
    Williams Helen, Turner Simon, Kelley Simon and Harris Nigel.2001. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to post-collisional volcanism. Chem Geol,29:339-342.
    Wohl E E and Merritt D M.2001. Bedrock channel morphology. Geological Society of American Bulletin,113(9): 1205-1212.
    Yin An and Harrison T M.2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annu Rev Earth Planet Sci, 28:211-280.
    Yin An, Harrison T. Mark, Ryerson F. J., Chen Wenji, Kidd W.S.F. and Peter Copeland.1994. Tertiary structural evolution of the Gandese thrust system in southeastern Tibet. Journal of Geophysics Research,99: 18175-18201.
    Yin An.2006. Cenozoic tectonic evolution of the Himalayan Orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews,76:1-131.
    Zeitler P K, Koons P O, Bishop M P, Chamberlain C P, Craw D, Edwards M A, Hamidullah S, Jan M Q, Khan M A, Khattak M U K, Kidd W S F, Mackie R L, Meltzer A S, Park S K, Pecher A, Poage M A, Sarker G, Schneider D A, Seeber L and Shroder J F.2001b. Crustal reworking at Nanga Parbat, Pakistan:Metamorphical coupling facilitated by erosion. Tectonics,20:712-728.
    Zeitler Peter K., Anne S. Meltzer, Peter O. Koons, David Craw, Bernard Hallet, C. Page Chamberlain, William S.F. Kidd, Stephen K. Park, Leonardo Seeber, Michael Biship and John Shroder.2001a. Erosion, Himalayan geodyanmics, and the geomorphology of metamorphism. GSA Today,11(1):4-9.
    Zhang D.D.1998. Geomorphological problems of the middle reaches of the Tsangpo River, Tibet. Earth Surface Processes and Landforms,23:889-903.
    Zhu Song, Wu Zhenhan and Zhao Xitao.2012b. The Age and Causes of terrace development in the middle reaches of the Tsangpo River (特刊).
    Zhu Song, Wu Zhenhan, Zhao Xitao, Li Jianping and Wang Hua.2012a. Middle-Late Pleistocene Glacial Lakes in the Grand Canyon of the Tsangpo River. Tibet. Acta Geologica Sinica,86 (1):266-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700