用户名: 密码: 验证码:
汶川地震区地震动估计经验模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日,我国四川省汶川县遭遇了Mw7.9级大地震,强烈的地震动以及所带来的地质灾害,致使房屋、桥梁等结构物和构筑物倒塌不计其数,受灾地区人民生命财产和经济社会发展蒙受巨大损失。地质灾害和结构破坏的主要诱因是汶川地震区的强地面运动(又称强地震动)。地震动的研究是地震工程学中很重要的一部分。基于丰富的汶川地震动数据研究好汶川地震的地震动参数对我国的其他地震区、带的地震动研究有很大的借鉴意义。
     地震动是一个复杂的结合体,它是震源效应、地球介质衰减以及场地效应三者联合作用的产物。地震动的长周期成分具有明显的确定性,一般用表示定理给出。表示定理给出的地震动能较好地拟合地震动长周期波形。但是地球介质的复杂性导致根据物理模型求解的格林函数精度有限。同时,由于震源破裂过程的复杂性、地球介质的非均匀性、地形以及场地类别的多样性导致地震动的高频成分具有很强的随机性。因此,地震动场的预测和估计更多地依靠经验模型。
     经验模型主要分为两种,衰减关系模型和随机模型。对于强震动记录丰富的地区,衰减关系模型比较可靠,如美国加州、日本及中国台湾地区。我国强震动观测工作起步较晚,大震级的强震动数据较少,制约了我国在衰减关系模型的研究,导致大部分衰减关系并非根据我国强震动记录数据拟合而来,而为根据其他资料转换得到。然而,地震动有很强的地域性,这种转换方法的有效性需要未来大量地震数据的检验。对于强震动记录较少的地区,随机模型成为常用方法。国内应用随机模型的研究大部分参考国外的震源参数、衰减函数以及场地放大系数进行计算。但是,震源参数受目标区域地质构造、地壳应力场分布、发震断层类型等影响,衰减函数也受地壳厚度、地质构造等影响,由于地表土层参数对场地反应影响甚大,场地放大系数具有强烈的地域性特点。因此,采用其他地区的随机模型来模拟我国地震动场的方法需要用我国未来的强震动数据复核以及改进相应的模型参数。
     本论文分别从衰减关系和随机模型两方面拟合汶川地震强余震数据,建立了基于汶川地震强余震(Ms3.8~6.3)的地震动经验模型,并应用有限断层随机模型重演了汶川地震主震地震动场。
     本文采用的衰减关系模型为NGA Campbell-Bozorgnia模型,它用Vs30参数衡量场地特征。而汶川地震震感强烈的四川、甘肃地区大部分台站钻孔数据小于20m,为了获得较为准确的Vs30,本文基于147个四川、甘肃地区强震动观测台的建台报告,统计了我国西南地区浅硬土层场地的平均场地参数,得到了地区Vs30估计的经验模型。该模型可以为我国西南地区强震动记录数据结合国外的经验模型提供场地分类依据。结合Vs30的估计结果,利用NGA Campbell-Bozorgnia模型拟合汶川地震的强余震记录数据,得到了汶川地震强余震的地震动衰减关系。
     基于汶川余震序列的震源集中、台站数据密集等特点,分析了地震动衰减关系模型拟合的误差,将误差分解为震源误差、路径误差、场地误差及偶然误差。分析结果表明:基于单一路径的数据进行衰减关系研究,可以将误差的方差减小50%。
     根据13个汶川余震序列,反演了松潘-甘孜地块和四川盆地的Q模型、13个余震序列的震源参数以及浅硬土层场地和深厚土层的平均放大系数和高频衰减系数,构建了基于汶川地震强余震的点源随机模型。通过点源随机模型与衰减关系模型的对比,发现点源随机模型能更好估计近场地震动。
     论文最后应用有限断层模型重现了汶川地震主震地震动场。结果表明,有限断层模型能较好地模拟汶川地震主震近场地震动,可以为汶川地震中的结构破坏研究提供数据保障,也可用于预测将来该地区的大地震地震动场。
On12May2008, an earthquake with Mw7.9occurred in Wenchuancounty, Sichuan province, China, which gave rise to many landslides,structural damage and collapses and resulted in widespread damage and agreat number of casualties. The main cause of those damage is strong groundmotion. The research of strong ground motions is a important part ofEarthquake Engineering. In particular, the research of strong ground motion inWenchuan earthquake is significant to other seismic areas of China.
     The ground motion is complex of source effect, crustal attenuation andsite condition effect.The long period component of ground motion isdeterministic and is given by representation theorem, which can simulate thelong period wave form very well. However, the precision of green fuction islimited by the heterogeneity and complexity of crust. Meanwhile, the highfrequency component of ground motion is stochastic, because of thecomplexity of source rupture process, the heterogeneity of crust and thevariety of site condition. As a result, empirical model is a more reliablemeasure for the prediction of ground motion.
     There are two empirical models for the prediction of ground motion,attenuation relationship model and stochastic model. Attenuation relationshipmodel is suitable for the region with sufficient strong motion records, such asEast America, Japan and Taiwan. Because chinese strong motion observationwork just initiate and the strong motion records is sparse, the attenuationrelationship for China are not derived from strong motion records, but fromother data, such as intensity data. Since the ground motion is characteristic ofregion, the reliability of this mothod need to be verified by the strong motionrecords in the future. For the region with limited strong motion data,stochastic model is a better choice. At present, many researcher usestochastic model, which are inverted from the strong motion records in WestAmerica or East Canada, to simulate the ground motion of Chinese earthquake.However, there are many aspects which result in ground motion differencesbetween the earthquake in China and other regions. Firstly, differentgeological structure and type of faulting classification will cause differentsource parameters. Secondly, the difference of crustal thickness andgeological structure will lead to different attenuation function. Thirdly, siteamplification factor is mainly determined by the surface soil, which isstrongly characrictic of region. As a result, the mothod, which use foreignparameter to simulate the ground moiton of earthquake in china, need Chinesestrong motion data to validate and update in the future.
     This thesis use attenuation relationship model and stochastic modelseparately to fit Wenchuan aftershocks (Ms3.8~6.3) and develop empirical ground motion model for Wnchuan aftershocks. At last, the ground moiton ofWenchuan mainshock are simulated by finite fault stochastic model.
     NGA Campbell-Bozorgnia model are used to fit Wenchuan aftershockdata, which take Vs30to describe the site classification. However, the drillingdepth of most strong motion stations in Sichuan and Gansu provinces is lessthan20meters. In order to extrapolate the profile of20meters to30meters,the empirical extrapolation model for the estimate of Vs30are derived from theconstruction report of147strong motion stations in Sichuan and Gansuprovinces. Based on the strong motion records of64wenchuan afterhshock,we get a new attenuation relationship, which consideres the site effect.Moreover, the estimate of Vs30can offer facility for the application of foreignmodel to Chinese data.
     Since the Wenchuan aftershocks are characteristic of concentratedSource location and multiple records at single station, the bias of attenuationrelationship regression can be decomposed into source bias, path bias,sitecondition bias and occasional bias. The results show that, if single path isconsidered, the sigma can be reduced to50%of the corresponding sigma forattenuation relationship regression.
     Based on the13wenchuan aftershocks, we invert the Q model separatelyfor the hanging wall and footwall of Longmenshan fault, stress dropes of the13afterhocks and site amplification factor for the shallow soil sites anddeep soil sites at Southwest China. Then the point source stochastic model isconstructed. Through the comparison of point source stochastic model andattenuation relationshiop model, it is noted that the point source stochasticmodel can simulate the near-fault ground motion better.
     Finally, finite fault stochastic model is used to simulate Wenchuanmainshock data. The fit of data show that the empirical model can simulatethe near-fault motion very well. The constructed model can offer artificialground motion for structure engineering and can be used to predict the groundmoion of large magnitude earthquake in Souchwest China.
引文
[1]崔建文,李世成,高东等.云南分区地震动衰减关系[J].地震研究.2006,129(14):386-391.
    [2]胡聿贤.地震工程学(第二版).地震出版社,2006,北京.
    [3]胡聿贤,张敏政.缺乏强震观测资料地区地震动参数估计方法[J].地震工程与工程振动,1984,4(11):1-11.
    [4]胡聿贤,周克森,阎秀杰.缺乏地震动加速度记录地区地震动估计的映射法[J].地震工程与工程振动,1996,16(3):1-10.
    [5]华卫,陈章立,郑斯华.2008年汶川8.0级地震序列震源参数分段特征的研究[J].地球物理学报,2009,52(2):365-371.
    [6]霍俊荣.近场强地面运动衰减规律的研究.哈尔滨:国家地震局工程力学研究所(导师:胡聿贤).1989,博士研究生学位论文.
    [7]姜慧,胡聿贤,俞言祥,王喜珍,吕桂林.厚盖层场地的联合效应和强地面运动随机模拟[J].地震工程与工程振动,2004,24(2):29-35.
    [8]姜慧.地震动随机模拟方法中的场地效应研究.北京:国家地震局地球物理研究所(导师:胡聿贤,赵凤新).2005,博士研究生学位论文.
    [9]康兰池,金星.四川地区中小地震地震动衰减规律研究[J].地震学报,2009,31(4):403-410.
    [10]雷建成,高孟潭,俞言祥.四川及邻区地震动衰减关系[J].地震学报,2007,29(5):500-511.
    [11]雷建设,赵大鹏,苏金蓉,等.龙门山断裂带精细结构与汶川地震发震机理[J].地球物理学报,2009,52(2):339-345.
    [12]李小军.汶川8.0级地震余震流动台站观测未校正加速度记录.地震出版社,2009,北京.
    [13]李小军.汶川8.0级地震余震固定台站观测未校正加速度记录.地震出版社,2009,北京.
    [14]李小军.中小震近场地震动估计中地震动衰减关系的适用性分析[J].地震工程与工程振动,2005,25(1):1-7.
    [15]卢大伟,李小军,崔建文.汶川中强余震地震动峰值衰减关系[J].应用基础与工程科学学报.2010,18:138-151.
    [16]卢寿德,李小军.汶川8.0级地震未校正加速度记录.地震出版社,2008,北京.
    [17]谈洪波,申重阳,玄松柏.地壳分层与地壳厚度对汶川地震同震效应的影响[J].大地测量与地球动力学,2010,30(4):29-35.
    [18]陶夏新,王国新.近场强地震动模拟中对破裂方向性效应和上盘效应的表达[J].地震学报,2003,25(2):191-199.
    [19]汪素云,裴顺平,许忠淮等.利用ML振幅研究地壳横波Q值I:不同构造区的衰减特征[J].地球物理学报,2007,50(6):1740-1747.
    [20]王椿镛,楼海,姚志祥,罗兴华,吕智勇.龙门山及其邻区的地壳厚度和泊松比[J].第四纪研究,2010,30(4):652-661.
    [21]王国新,史家平.随机有限断层法在汶川强地震动模拟中的应用[J].自然科学进展,2009,19(6):664-669
    [22]王海云.2010年4月14日玉树Ms7.1地震加速度场预测[J].地球物理学报,2010,53(10):2345-2354
    [23]徐锡伟,闻学泽,叶建青等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质.2008,30(3):597-629.
    [24]喻畑,李小军.基于NGA模型的汶川地震区地震动衰减关系[J].岩土工程学报.2012,(3).
    [25]喻畑,李小军.汶川地震余震震源参数及地震动衰减与场地影响参数反演分析[J].地震学报.2012
    [26]俞言祥,汪素云.青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系[J].地震学报.2004,26(6):591-600.
    [27]俞言祥,汪素云.中国东部和西部地区水平向基岩加速度反应谱衰减关系[J].震灾防御技术,2006,1(3):206-217.
    [28]赵翠萍,陈章立,周连庆,李志雄,康英.汶川Mw8.0级地震震源破裂过程研究:分段特征[J].科学通报,2009,54(22):3475-3482.
    [29]张培震,闻学泽,徐锡伟等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J].科学通报,2009,54(7):944-953.
    [30]张勇,冯万鹏,许力生,周成虎,陈运泰.2008年汶川大地震的时空破裂过程[J].中国科学,2008,38(10):1186-1194.
    [31]赵珠,范军,郑斯华等.龙门山地震带地壳速度结构和震源位置的精确修订[J].地震学报,1997,19(6):615-622.
    [32]中华人民共和国国家标准,建筑抗震设计规范(2008年版)(GB50011-2001).中国建筑工业出版社,2008,北京
    [33] Abrahamson, N.A., G. Atkinson, D. M. Boore, Y. Bozorgnia, K. Campbell, B., I. M.Idriss, W. Silva, and R. Youngs. Comparisons of of NGA Ground-MotionRelations[J], Earthquake Spectra,2008,24(1):45-66.
    [34] Abrahamson, N.A., W.J.Silva. Empirical response spectral attenuation relations forshallow crustal earthquakes, Seismol. Res. Lett.1997,68(1):94-127.
    [35] Abrahamson, N.A., W.J. Silva. NGA Ground Motion Relations for the GeometricMean Horizontal Component of Peak and Spectral Ground Motion Parameters.PEER report.2007.
    [36] Abrahamson, N.A., W.J. Silva. Summary of the Abrahason&Silva NGA groundmotion relations. Earthquake Spectrum,2008,24(1):67-98.
    [37] Abrahamson, N.A., R.R.Youngs. A stable algorithm for regression analyses usingthe random effect model[J]. Bull.Seism.Soc.Am,1992,82(2):505-510.
    [38] Aki, K. and P. Richards. Quantitative Seismology. Theory and Methods, W. H.Freeman and Company,1980, San Francisco.
    [39] Al Atik, L., N. Abrahanson, J.J. Bommer, F. Scherbaum, F.Cotton, and N. Kuehn.The variability of Ground-motion prediction models and its components,Seism.Res.Let.,2010,81(5):794-801.
    [40] Anderson, J.G. and J.N.Brune. Probabilistic seismic hazard assessment without theergodic assumption. Seism. Res.Let.1999,70(1):19-28.
    [41] Anderson, J.G. and S.E. Hough. A Model for the Shape of the Fourier AmplitudeSpectrum of Acceleration at High Frequencies[J]. Bull.Seism. Soc.Am.,1984,74(5):1969-1993.
    [42] Atkinson. PEER-SShac conference.2010.
    [43] Atkinson, G.M.. Attenuation of strong ground motion in Canada from a randomvibrations approach. Bull. Seism. Soc. Am.,1984,74(5):2629-2653.
    [44] Atkinson, G.M.. Single-station sigma, Bull. Seism.Soc.Am,2006,96(2):446-455.
    [45] Atkinson G.M. and D.M. Boore. Ground-motion relations for eastern North America.Bull. Seism.Soc.Am,1995,85(1):17-30.
    [46] Atkinson G.M. and D.M. Boore. Evaluation of models for earthquake source spectrain eastern North America. Bull. Seism. Soc. Am.,1998,88(4):917–934.
    [47] Atkinson, G.M. and D.M. Boore. Some comparisons between recent ground-motionrelations. Seism. Res. Lett.1997,68(1):24-40.
    [48] Atkinson G.M., Mereu R.F. the shape of ground motion attenuation curves inSoutheastern Canada [J]. Bull.Seism. Soc.Am.,1992,82(5):2014-2031.
    [49] Atkinson G.M., W.J. Silva. Stochastic modeling of California ground motions [J].Bull.Seism. Soc.Am.,2000,90(2):255-274.
    [50] Beresnev,I.A., G.M.Atkinson. Modeling Finite-Fault Radiation from theωnSpectrum. Bull. Seism.Soc.Am.,1997,87(1):67-84.
    [51] Beresnev,I.A., G.M.Atkinson. Stochastic finite-fault modeling of ground motionsfrom the1994Northridge, California, earthquake. II. Widespread Nonlinearresponse at soil sites. Bull. Seism.Soc.Am.,1998,88(6):1402-1410.
    [52] Bolt, B.A. and Abrahamson, N.A. New attenuation relations for peak and expectedaccelerations of strong ground motion. Bull. Seism.Soc.Am.,1982,72(6):2307-2321.
    [53] Bommer, J.J. and N.A. Abrahamson. Why do modern probabilistic seismic-hazardanalyses often lead to increased hazard estimates? Bull. Seism.Soc.Am.,2006,96(6):1967-1977.
    [54] Boore. D. M. Personal communication,2010.
    [55] Boore, D.M. Stochastic simulation of high-frequency ground motions based onseismological models of the radiated spectra. Bull. Seism.Soc.Am.,1983,73(6):1865-1894.
    [56] Boore, D.M. Short-period P-and S-wave radiation from large earthquakes:implications for spectral scaling relations. Bull. Seism. Soc. Am.,1986,76(1):43-64.
    [57] Boore, D. M. Estimating Vs(30)(or NEHRP Site Classes) from Shallow VelocityModels(Depth<30m).Bull.Seism.Soc.Am.,2004,94(2):591-597.
    [58] Boore, D.M. and G.M. Atkinson. Stochastic prediction of ground motion andspectral response parameters at hard-rock sites in eastern North America. Bull.Seism. Soc. Am.,1987,77(2):440-467.
    [59] Boore, D.M. and G.M. Atkinson. Ground-motion prediction equation fro the averagehorizontal component of PGA, PGV, and5%-Damped PSA at spectral periodsbetween0.01s and10s. Earthquake Spectrum,2008,24(1):99-138.
    [60] Boore, D.M., Joyner W.B. Site amplifications for generic rock sites [J], Bull.Seism.Soc.Am.,1997,87(2):327-341.
    [61] Boore, D.M., J.W. Lamprey. N.A.Abrahamson. Orientation-independent measuresof ground motion[J]. Bull.Seism.Soc.Am,2006,96(4):1502-1511.
    [62] Brune, J.N. Tectonic Stress and the spectra of Seismic Shear waves fromearthquakes. J.Geophys. Res.1970,75:4997-5009.
    [63] Brune, J.N. Correction, J.Geophys. Res.1971,76:5002.
    [64] Campbell, K. and Y.Bozorgnia.NGA Ground Model for the Geometric MeanHorizontal Component of PGA, PGV, PGD and5%Damped Linear ElasticResponse Spectra for Periods Ranging from0.01to10s. Earthquake Spectrum,2008,24(1):139-172.
    [65] Chiou, B., R. Darragh, N. Gregor, and W. Silva. NGA Project Strong-MotionDatabase., Earthquake Spectra,2008,24(1):23-44.
    [66] Chiou. B., R.B.Youngs. An NGA model for the average horizontal component ofPeak Ground motion and Response. Spectra. Earthquake Spectrum,2008,24(1):173-216.
    [67] EPRI. Guidelines for determining design basis ground motions, Early site permitdemonstration program, vol.1, RP3302,1993, Electric Power Research Institute,Palo Alto, California.
    [68] Ghasemi, H.,Y. Fukushima, K.Koketsu, Zifa. Wang et al. Ground-motion simulationfor the2008Wenchuan, China, Earthquake Using the stochastic Finite-Fault Method,Bull. Seism.Soc.Am.2010,100(5):2476-2490.
    [69] Hanks, T.C.fmax. Bull. Seism. Soc. Am.,1982,72(6a):1867-1879.
    [70] Hanks, T.C. and H.Kanamori. A moment-magnitude scale, J.Geophys. Res.1979,84:2348-2350.
    [71] Hanks, T.C. and R.K.Mcguire.. The character of High-Frequency strong groundmotion. Bull. Seism.Soc.Am.1981,71(6):2071-2095.
    [72] Hartzell, S.H. Earthquake aftershocks as Green’s functions. Geophys.Res.Letters,1978,5:1-14.
    [73] Herrmann R.B. An extension of random vibration theory estimates of strong groundmotion to large distance [J]. Bull.Seism. Soc.Am.,1985,75(5):1447-1453.
    [74] Idriss, I.M. An NGA Empirical model for estimating the horizontal spectral valuesgenerated by shallow crustal earthquakes. Spectra. Earthquake Spectrum,2008,24(1):217-242.
    [75] Joyner W.B. and D.M. Boore. Peak horizontal acceleration and velocity from strongmotion records including record from the1979Imperial valley, California,Earthquake[J].Bull.Seism. Soc.Am.,1981,71(6):2011-2038.
    [76] Joyner W.B. and D.M. Boore. Joyner, W., and D. Boore. On simulating largeearthquakes by Green’s function addition of smaller earthquakes, inEarthquakeSource Mechanics, American GeophysicalMonograph,1986,37:269–274.
    [77] Joyner W.B.,Warrick R.E,Fumal T.E. The effect of quaternary alluvium on strongground motion in the Coyote Lake, California, Earthquake of1979[J]. Bull.Seism.Soc.Am.,1981,71(4):1333-1349.
    [78] Kanai, K. et al. Observation of strong earthquake motions in Matsushiro Area, Part I,BERI,1966,44(3):1269-1296.
    [79] Li Xiaojun. Strong motions and engineering structure performances in recent majorearthquakes. Earthquake Science,2010,23(1):1-3.
    [80] Li XiaoJun, Lang Liu, Yu Shi Wang, and Tian Yu. Analysis of HorizontalStrong-Motion Attenuation in the Great2008Wenchuan Earthquake[J]. Bull.Seism.Soc.Am.2010,100(5b):2440-2449.
    [81] Li Xiaojun, Z. H. Zhou, H. Y. Yu, R. Z. Wen, D. W. Lu, Moh Huang, Y. N. Zhouand J. W. Cui. Strong motion observations and recordings from the great WenchuanEarthquake. Earthquake Engineering and Engineering Vibration,2008,7(3):235-246.
    [82] Li Xiaojun, Z. H. Zhou, H. Y. Yu, R. Z. Wen, D. W. Lu, Moh Huang, Y. N. Zhouand J. W. Cui. Preliminary Analysis of Strong-Motion Recordings from theMagnitude8.0Wenchuan, China Earthquake of May12,2008. Seism. Res. Letters,2008,79(6):844-854.
    [83] Motazedian, D., G.M.Atkinson. Stochastic Finite-Fault Modeling Based on aDynamic Corner Frequency. Bull. Seism.Soc.Am.2006,95(3):995-1010.
    [84] Nakamura, T., S. Tsuboi, Y. aneda, Y.Yamanaka. Rupture process of the2008Wenchuan, China earthquake inferred from teleseismic waveform inversion andforward modeling of broadband seismic waves. Tectonophysics,2010,491:72-84.
    [85] Ou, G. B. and R. B. Herrmann. Estimation theory of peak ground motion, Seism.Res. Letters,1990,61(1):99-107.
    [86] Ou, G. B. and R. B. Herrmann. A Statistical model for ground motion produced byearthquakes at local and regional distance, Bull.Seism. Soc.Am.1990,80(6):1397-1417.
    [87] Papageorgiou, A.S., K. Aki. Aspecific barrier for the quantitative description ofinhomogeneous faulting and the prediction of strong ground motion. II. Applicationof the model, Bull. Seism. Soc. Am.,1983,73(4):953-978.
    [88] Pei Shunping, Zhao Junmeng, C.A.R, Wang Suyun et al. ML Amplitudetomography in North China. Bull. Seism.Soc.Am.,2006,96(4a):1560-1566.
    [89] P.Lin., B. Chiou, N.Abrahamson, M.Walling, C.Lee and C.T.Cheng(2010).Repeatable source, Site, and path effects on the standard deviation fro EmpiricalGround-Motion Prediction Models. Submitted to BSSA.
    [90] Press W.H.,Teukolsky S.A.,Vetterling W.T.,etal. Numerical recipes in Fortran.Cambridge University Press,2005.
    [91] Silva W.J. Description and validation of the stochastic ground motion model [M].A report to Engineering research and applications division department of nuclearenergy BROOKHAVEN national laboratory,1996.
    [92] Silva W.J.,Darragh B,Li S,etla. Surface Geology-based strong motion amplificationfactors for San Francisco and Los Angeles areas. PEER Report,1999.
    [93] Silva, W.J. and K. Lee. WES RASCAL code for synthesizing earthquake groundmotions. State-of-the-Art for Assessing Earthquake Hazards in the United States,Report24, U.S. Army Engineers Waterways Experiment Station, MiscellaneousPaper S-73-1.,1987.
    [94] Toro, G. and R. McGuire. An investigation into earthquake ground motioncharacteristics in eastern North America, Bull Seism. Soc. Am.1987,77(2):468-489.
    [95] Wald, D.J., Trevor I. Allen. Review Article: Topographic Slope as a Proxy forSeismic Site Conditions and Amplification. Bull.Seism. Soc.Am.2007,97(5):1379-1395.
    [96] Walling.M., W.J.Silva, N.A.Abrahamson. Nonlinear site amplification factors forconstraining the NGA models[J]. Earthquake spectra,2008,24(1):243-256.
    [97] Wells, D., and K. Coppersmith. New empirical relationships among magnitude,rupture length, rupture width, rupture area, and surface displacement, Bull. Seism.Soc. Am.1994,84(4):974–1002.
    [98] Yong, A.. Personal communication,2010.
    [99] Yong, A., Hough, S.E., Braverman, A., and Iwahashi, J. A terrain-based Vs30estimation map of the contiguous United States, Seism. Res. Letters,2010,81(2):294.
    [100]Yu.Tian, Li Xiaojun, W.J.Silva. Vs30estimate for Southwest China. Submitted toEarthquake Engineering and Engineering Vibration.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700