用户名: 密码: 验证码:
私有云中虚拟资源的节能调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云计算(Cloud computing)是一种新的基于虚拟资源池的大规模分布式计算模式,是分布式计算、并行计算、网格计算、效用计算、Web service等的不断融合与深入发展。云计算使用户无论身在何处,只需要接通网络,就可以通过即付即用、按用量收费的方式来获取云数据中心提供的各种IT相关服务,如基础设施、平台与软件等。同时它也符合绿色计算的基本思想,通过弹性高可扩展地管理资源池,同时降低客户端的硬件需求(“瘦”终端),它能够较大程度地缩减能源消耗,降低用户与数据中心的成本,是低碳经济时代最有前景的计算模式之一。
     目前,作为云计算应用模式之一的私有云正受到国内外越来越多企业与研究机构的青睐。与公有云相比,私有云具有其自身的一些特点与需求,尤其是在资源管理与节能调度方面。本文通过深度挖掘这些特性,提出了一系列节能调度方法,能够在基本保证任务执行效率与系统吞吐率的前提下,尽可能地减少能耗,具体有以下几个方面,其中(2)、(3)和(4)为本文的创新点。
     (1)通过深入考察私有云的产生原因与应用场景,结合虚拟化环境下资源管理与节能调度的基本问题,总结出了私有云在资源管理方面的一系列敏感特性。基于这些特性,采用三个基本指标作为衡量节能调度优劣的依据,即请求响应时间、节能量与负载均衡程度,并通过四个范式来规范节能与负载均衡之间的矛盾。
     (2)在虚拟机节能调度方面,有别于当前大多数研究中所采用的通过阈值来改变目标节点状态的方式,提出了一种基于布局的方法,它采用主动休眠机制,并能够通过预调度来提高任务的响应效率,通过最小负载优先法来均衡负载。实验表明,这种方法能够降低虚拟机请求的响应时间,同时减少能源消耗,还能够使负载更均衡地分布。
     (3)在虚拟磁盘节能调度方面,提出了一种节能优化方法,其原型是虚拟机调度中基于布局的方法。该方法能够根据用户请求的规模动态改变虚拟磁盘工作池的规模,并缓解因磁盘休眠而造成的响应时间延长问题。实验表明,这种方法能够有效缩短用户的等待时间,并减少磁盘空转时间。
     (4)在虚拟网络节能调度方面,对于因多虚拟机通信造成的内部网络拥塞问题,提出了一种基于对称多处理虚拟机的调度方法。这种方法能够有效地减少安全组内虚拟机的个数,降低了通信门槛,从而提高了并行计算任务的执行效率。同时,它通过减少通信域的数量,大大降低了对内部网络的通信依赖,从而达到了节能网络的目标。
     (5)通过对已有计算机支持的协作学习系统的综述,发现了底层资源可扩展性不强、能耗较高等问题。通过将私有云作为其底层架构,并应用上述节能机制,实现了基于弹性云服务的节能协作学习系统。该系统能够为用户提供在线虚拟化的协作学习环境,为资源的弹性扩展提供良好支持,并能够有效地利用能源。
As a novel large-scale distributed computing paradigm based on virtualized resource pool, cloud computing derived from the ever-increasing interaction and profound development of distributed computing, parallel computing, grid computing, utility computing, web services, etc. If only with accesses to cloud data centers, cloud computing could enable users all over the planet to on-demand leverage a variety of IT-related services based on a pay-per-use model, e.g. infrastructure, platform, software, etc. In addition, cloud computing also corresponds with the basic idea of green computing. Through elastic and high-scalable management of the resource pool, as well as relaxation of the terminal (the“thin”terminal), cloud computing can conserve much energy and cut the cost of both user’s and data center’s down. It is one of the most promising computing paradigms in the coming low carbon economy.
     Recently, one of the applied models of cloud computing in industry, private cloud, is getting more and more popular among lots of companies and research centers around the world. Compared to public cloud, private cloud has some special features and requirements, especially respect to resource management and power-aware scheduling. After in-depth exploring theses features, we propose couples of power-aware approaches, which could conserve more energy with acceptable overhead on job efficiency and data center’s throughput rate, including the following aspects, among which (2), (3) and (4) are contributions of this dissertation.
     (1) Under in-depth exploring the cause and the applied scenarios of private clouds, in association with the basic problem of resource management and power-aware scheduling in virtualized environments, we sum up series of sensitive characteristics of private clouds. In this manner, three metrics are applied, i.e. response time of requests, conserved energy and load balancing level, to evaluate the performance of power-aware scheduling solutions. Additionally, we also introduce four paradigms to manage the tradeoff problem between energy consumption and load balancing.
     (2) As respect to power-aware scheduling of virtual machines, a layout-based approach is proposed using active sleep mechanism, other than addressing the modes of target nodes via thresholds according to most previous researches. Through this approach, the response time can be cut down by a pre-power technique, and the workloads across nodes can be balanced by a min-load-first algorithm. And the experiments show that, this approach can not only shorten the response time of requests, conserve more energy, but also achieve higher level of load balancing.
     (3) As respect to power-aware scheduling of virtual disks, a power-aware optimization approach is proposed, which is derived from the layout-based approach proposed in power-aware scheduling of virtual machines. It can dynamically adjust the volume of the working pool and alleviate the prolonged problem of response time in case target disk is being stuck on sleep mode. And the experiments show that, this approach can effectively cut job’s response time down, meanwhile, reduce the idle time of physical disks.
     (4) As respect to power-aware scheduling of virtual network, a symmetric multi-processing virtual machine based approach is introduced against the traffic jam problem due to communications among multiple virtual machines within local network. This approach can effectively reduce the number of virtual machines within a secure group, lower the communication threshold and promote the performance of parallel computing jobs. Moreover, through cutting down the number of communication zones, this approach can greatly relax the coupling connection between virtual group and local network, and therefore, it can meet the objective of power-aware network.
     (5) After reviewing existing computer-supported collaborative learning systems, some limitations related to underlying resources, such as insufficient scalability and high energy dissipation, are concluded. Using private clouds as the base infrastructure, an elastic cloud service based power-aware collaborative learning system is proposed using the above-mentioned power-aware approaches. It can enable users with virtualized collaborative environment on demand, support elastic scalability of resources and make good use of energy.
引文
[1] I. Foster, Y. Zhao, I. Raicu et al. Cloud computing and grid computing 360-degree compared [C]. Grid Computing Environments Workshop (GCE’08), pp.1-10, 2008.
    [2] M. Armbrust, A. Fox, R. Griffith et al. A view of cloud computing [J]. Communications of the ACM, vol.53, no.4, pp.50-58, 2010.
    [3] M. D. Dikaiakos, D. Katsaros, G. Pallis et al. Cloud computing distributed internet computing for IT and scientific research [J]. IEEE Internet Computing, pp.10-13, 2009.
    [4] J. D. Li, W. Zhang, J. J. Peng et al. A carbon 2.0 framework based on cloud computing [C]. In Proceedings of International Conference on Information Systems (ICIS 2010), pp.153-158, 2010.
    [5] R. Buyya, C. S. Yeo, S. Venugopal et al. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility [J]. Future Generation Computer Systems, vol.25, no.6, pp.599-616, 2009.
    [6] Q. Zhang, Lu Cheng, Raouf Boutaba. Cloud computing: state-of-the-art and research challenges [J]. Journal of Internet Services and Applications, vol.1, no.1, pp.7-18, 2010.
    [7] Amazon AWS, http://aws.amazon.com/.
    [8] J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters [C]. In Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI 2004), pp.137-149, 2004.
    [9] Google App Engine, http://appengine.google.com/.
    [10] IBM Blue Cloud, http://www.ibm.com/cloud-computing/us/en/.
    [11] P. Barham, B. Dragovic, K. Fraser et al. Xen and the art of virtualization [C]. In Proceedings of the 19th ACM symposium on Operating systems principles (SOSP’03), pp.164-177, 2003.
    [12] IBM PowerVM, http://www-03.ibm.com/systems/power/software/virtualization/.
    [13] Apache Haddop, http://hadoop.apache.org/.
    [14] B. Rochwerger, D. Breitgand, E. Levy et al. The reservoir model and architecture for open federated cloud computing [J]. IBM Journal of Research and Development, vol.53, no.4, pp.1-11, 2009.
    [15] Microsoft Azure, http://www.microsoft.com/windowsazure/.
    [16] VMware vSphere, http://www.vmware.com/products/vsphere/overview.html/.
    [17] Salesforce CRM, http://www.salesforce.com/.
    [18] EMC云存储, http://www.emc.com/.
    [19] Apple Mobile Me, http://www.me.com/.
    [20]百度“框计算”, http://boxcomputing.baidu.com/.
    [21]中国移动“大云”, http://bigcloud.com/.
    [22] D. Nurmi, R. Wolski, C. Grzegorczyk et al. The eucalyptus open-source cloud-computing system [C]. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2009), pp.124-131, 2009.
    [23] J Zhan, L. Wang, B. Tu et al. Phoenix cloud: consolidating heterogeneous workloads of large organizations on cloud computing platforms [C]. The first Workshop on Cloud Computing and its Applications (CCA 08), 2008.
    [24] Y. Zhang, Y. Zhou. Transparent computing: a new paradigm for pervasive computing [C]. In Proceedings of the 3rd International Conference on Ubiquitous Intelligence and Computing (UIC-06), pp.1-11, 2006.
    [25]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报, vol.20 no.5, pp.1337-1448, 2009.
    [26] K. Liu, H. Jin, J. Chen et al. A compromised-time-cost scheduling algorithm in SwinDeW-C for instance-intensive cost-constrained workflows on cloud computing platform [J]. International Journal of High Performance Computing Applications, vol.24, no.4, pp.445-456, 2010.
    [27] G. Cheng, H. Jin, D. Zou et al. Building dynamic and transparent integrity measurement and protection for virtualized platform in cloud computing [J]. Concurrency and Computation: Practice and Experience, vol.22, no.13, pp.1893-1910, 2010.
    [28]陈海波.云计算平台可信性增强技术研究[D].复旦大学博士学位论文, 2009.
    [29]吴吉义.基于DHT的开放对等云存储服务系统研究[D].浙江大学博士学位论文, 2011.
    [30]王庆波,金涬,何乐等.虚拟化与云计算[M].电子工业出版社,北京, 2009.10.
    [31] N. Leavitt. Is cloud computing really ready for prime time? [J]. IEEE Computer, vol.42, no.1, pp.15-20, 2009.
    [32] P. Kurp. Green computing [J]. Communications of the ACM, vol.51, no.10, pp.11-13, 2008.
    [33] A. Berl, E. Gelenbe, M. Di Girolamo et al. Energy-efficient cloud computing [J]. The Computer Journal, vol.53, no.7, pp.1045-1051, 2010.
    [34] C. Lefurgy, K. Rajamani, F. Rawson et al. Energy management for commercial servers [J]. IEEE Computer, vol.36, no.12, pp.39-48, 2003.
    [35] S. Srikantaiah, A. Kansal, F. Zhao et al. Energy aware consolidation for cloud computing [C]. In Proceedings of the 2008 conference on Power aware computing and systems, pp.1-5, 2008.
    [36] R. Buyya, A. Beloglazov, J. Abawajy. Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges [C]. In Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), pp.1-12, 2010.
    [37] G. Dhiman, G. Marchetti, T. Rosing. vGreen: a system for energy efficient computing in virtualized environments [C]. In Proceedings of 14th IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED’09), pp.243-248, 2009.
    [38] R. Nathuji, K. Schwan. VirtualPower: coordinated power management in virtualized enterprise systems [C]. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP’07), pp.265-278, 2007.
    [39] R. Raghavendra, P. Ranganathan, V. Talwar et al. No“power”struggles: coordinated multi-level power management for the data center [C]. In Proceedings of the 13th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '08), pp.48-59, 2008.
    [40] A. Verma, P. Ahuja, A. Neogi. Power-aware dynamic placement of HPC applications [C]. In Proceedings of 22nd ACM International Conference on Supercomputing (ICS’08), pp.175-184, 2008.
    [41] A. Verma, P. Ahuja, A. Neogi. pMapper: power and migration cost aware application placement in virtualized systems [J]. Lecture Notes in Computer Science, vol.5346, pp. 243–264, 2008.
    [42] N. Bobroff, A. Kochut, K. Beaty. Dynamic placement of virtual machines for managing SLA violations [C]. In Proceedings of 10th IFIP/IEEE International Symposium on Integrated Network Management (IM’07), pp.119-128, 2007.
    [43] M. Cardosa, M. R. Korupolu, A. Singh. Shares and utilities based power consolidation in virtualized server environments [C]. In Proceedings of 12th IFIP/IEEE International Symposium on Integrated Network Management (IM’09), pp.3279-334, 2009.
    [44] J. Stoess, C. Lang, F. Bellosa. Energy management for hypervisor-based virtual machines [C]. In Proceedings of the USENIX Annual Technical Conference (USENIX'07), pp.1-14, 2007.
    [45] H. N. Van, F. D. Tran, J. M. Menaud. Performance and power management for cloud infrastructures [C]. In Proceedings of the 3rd International Conference on Cloud Computing (CLOUD 2010), pp.329-336, 2010.
    [46] B. Lawson, E. Smirni. Power-aware resource allocation in high-end systems via online simulation[C]. In Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05), pp.229-238, 2005.
    [47] G. Dhiman, T. S. Rosing. System-level power management using online learning [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.28, no.5, pp.676-689, 2009.
    [48] I.Whalley, A. Tantawi, M. Steinder et al. Experience with collaborating managers: node group manager and provisioning manager [J]. Journal of Cluster Computing, vol.9, no.4, pp.401-416, 2006.
    [49] J. O. Kephart, H. Chan, R. Das. Coordinating multiple autonomic managers to achieve specified power-performance tradeoffs [C]. In Proceedings of the 4th IEEE International Conference on Autonomic Computing (ICAC'07), pp.24-33, 2007.
    [50] A. Beloglazov, R. Buyya. Energy efficient resource management in virtualized cloud data centers [J]. In Proceedings of the 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2010), pp.826-831, 2010.
    [51] G. Tesauro, R. Das, H. Chan, et al. Managing power consumption and performance of computing systems using reinforcement learning [C]. In Proceedings of the 21st Annual Conference on Neural Information Processing Systems (NIPS'07), pp.1-8, 2007.
    [52] R. Das, J. O. Kephart, C. Lefurgy et al. Autonomic multi-agent management of power and performance in data centers [C]. In Proceedings of the 7th International conference on autonomous agents and multi-agent systems (AAMAS'08), pp.107-114, 2008.
    [53] M. Steinder, I. Whalley, J. E. Hanson et al. Coordinated management of power usage and runtime performance [C]. In Proceedings of IEEE/IFIP Network Operations and Management Symposium: Pervasive Management for Ubiquitous Networks and Services (NOMS 2008), pp.387-394, 2008.
    [54] W. Felter, K. Rajamani, T. Keller. A performance-conserving approach for reducing peak power consumption in server systems [C]. In Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05), pp.293-302, 2005.
    [55] D. Bradley, R. Harper, S. Hunter. Workload-based power management for parallel computer systems [J]. IBM Journal of Research and Development, vol.47, no.5, pp.703-718, 2003.
    [56] S. K. Garg, C. S. Yeo, A. Anandasivam. Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers [J]. Journal of Parallel and Distributed Computing, vol.71, no.6, pp.732-749, 2011.
    [57] D. Colarelli, D. Grunwald. Massive arrays of idle disks for storage archives [C]. In Proceedings of the 2002 ACM/IEEE conference on Supercomputing (Supercomputing’02), pp.1-11, 2002.
    [58] E. Pinheiro, R. Bianchini. Energy conservation techniques for disk array-based servers [C]. In Proceedings of the 18th annual international conference on Supercomputing (ICS’04), pp.68-78, 2004.
    [59] Q. Zhu, Z. Chen, L. Tan et al. Hibernator: helping disk arrays sleep through the winter [C]. In Proceedings of the 20th ACM symposium on Operating systems principles (SOSP’05), pp.177-190, 2005.
    [60] D. Narayanan, A. Donnelly, A. Rowstron. Write off-loading: practical power management for enterprise storage [C]. In Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST’08), pp.253-267, 2008.
    [61] E. Y. Chung, L. Benini, A. Bogliolo et al. Dynamic power management for nonstationary service requests [J]. IEEE Transactions on Computing, vol.51, no.11, pp.1345-1361, 2002.
    [62] E. Pinheiro, R. Bianchini, C. Dubnicki. Exploiting redundancy to conserve energy in storage systems [C]. In Proceedings of the joint international conference on Measurement and modeling of computer systems (SIG-METRICS’06/Performance’06), pp.15-26, 2006.
    [63] D. Li, J. Wang. Eeraid: energy efficient redundant and inexpensive disk array [C]. In Proceedings of the 11th ACM SIGOPS European Workshop, pp.29-es, 2004.
    [64] X. Yao, J. Wang. Rimac: a novel redundancy-based hierarchical cache architecture for energy efficient, high performance storage systems [C]. In Proceedings of 1st ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys 2006), pp.249-262, 2006.
    [65] K. Greenan, D. Long, E. Miller et al. Spin-up saved is energy earned: achieving power-efficient, erasure-coded storage [C]. In Proceedings of 4th Workshop on Hot Topics in System Dependability (HotDep08), pp.1-6, 2008.
    [66] C. Weddle, M.Oldham, J. Qian et al. Paraid: a gear-shifting power-aware raid [J]. ACM Transactions on Storage (TOS), vol.3, no.3, pp.13:1-13:33, 2007.
    [67] M. Armbrust, A. Fox, R. Griffith et al. Above the clouds: a Berkeley view of cloud computing [S]. Technical Report No.UCB/EECS-2009-28, pp.1-23, 2009.
    [68] Q. Zhu, F. M. David, C. F. Devara et al. Reducing energy consumption of disk storage using power-aware cache management [C]. In Proceedings of the 10th International Symposium on High Performance Computer Architecture (HPCA’04), pp.118-129, 2004.
    [69] S. D. Carson, S. Setia. Analysis of the periodic update write policy for disk cache [J]. IEEE Transactions on Software Engineering, vol.18, no.1, pp.44-54, 1992.
    [70] J. C. Mogul. A better update policy [C]. In Proceedings of the USENIX Summer Technical Conference (USTC’94), pp.99-111, 1994.
    [71] F. Douglis, P. Krishnan, B. N. Bershad. Adaptive disk spin-down policies for mobile computers [C]. In Proceedings of the 2nd Symposium on Mobile and Location-Independent Computing (MLICS’95), pp.121-137, 1995.
    [72] R. Golding, P. Bosch, C. Staelin et al. Idleness is not sloth [C]. In Proceedings of the USENIX Winter Technical Conference (UWTC’95), pp.201-212, 1995.
    [73] E. Y. Chung, L. Benini, G. De Micheli. Dynamic power management using adaptive learning tree [C]. In Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’99), pp.274-279, 1999.
    [74] C. H. Hwang, A. CH Wu. A predictive system shutdown method for energy saving of event-driven computation [J]. ACM Transactions on Design Automation of Electronic Systems, vol.5, no.2, pp.226-241, 2000.
    [75] M. B. Srivastava, A. P. Chandrakasan, R. W. Brodersen. Predictive system shutdown and other architectural techniques for energy efficient programmable computation [J]. IEEE Transactions on Very Large Scale Integration Systems, vol.4, no.1, pp.42-55, 1996.
    [76] A. E. Papathanasiou, M. L. Scott. Energy efficient prefetching and caching [C]. In Proceedings of the USENIX Annual Technical Conference (ATC’04), pp.255-268, 2004.
    [77] Y. H. Lu, E. Y. Chung, T. Simunic et al. Quantitative comparison of power management algorithms [C]. In Proceedings of the conference on Design, automation and test in Europe (DATE’00), pp.20-26, 2000.
    [78] L. Ye, G. Lu, S. Kumar et al. Energy-efficient storage in virtual machine environments [C]. In Proceedings of the 2010 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’10), pp.75-84, 2010.
    [79] AutoMAID: http://nexsan.com/library/automaid.aspx.
    [80] K. Christensen, B. Nordman, R. Brown. Power management in networked devices [J]. IEEE Computer, vol.37, no.8, pp.91-93, 2004.
    [81] R. Bolla, R. Bruschi, F. Davoli et al. Energy efficiency in the future Internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures [J]. IEEE CommunicationsSurveys & Tutorials, vol.13, no.2, pp.223-244, 2011.
    [82] L. G. Roberts. A Radical New Router [J]. IEEE Spectrum, vol.46, no.7, pp.34-39, 2009.
    [83] J. Baliga, R. Ayre, K. Hinton et al. Photonic switching and the energy bottleneck [C]. In Proceedings the International Conference on Photonics in Switching, pp.125-126, 2007.
    [84] R. Bolla, R. Bruschi, F. Davoli et al. Performance constrained power consumption optimization in distributed network equipment [C]. Green Communications Workshop in conjunction with IEEE ICC’09 (GreenComm’09), pp.1-6, 2009.
    [85] R. Bolla, R. Bruschi, A. Carrega et al. Green network technologies and the art of trading-off [C]. In Proceedings of the IEEE INFOCOM 2011 Workshop on Green Communications and Networking, pp.301-306, 2011.
    [86] A. Wierman, L. L. H. Andrew, A. Tang. Power-aware speed scaling in processor sharing systems [C]. In Proceedings of the 28th IEEE Conference on Computer Communications (INFOCOM 2009), pp.2007-2015, 2009.
    [87] S. Nedevschi, L. Popa, G. Iannaccone. Reducing network energy consumption via sleeping and rate-adaptation [C]. In Proceedings 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI’08), pp.323-336, 2008.
    [88] M. Jimeno, K. Christensen, B. Nordman. A network connection proxy to enable hosts to sleep and save energy [C]. In Proceedings IEEE International Performance Computing and Communications Conference (IPCCC 2008), pp.101-110, 2008.
    [89] Y. Wang, E. Keller, B. Biskeborn et al. Virtual routers on the move: live router migration as a network-management primitive [J]. ACM SIGCOMM Computer Communication Review, vol.38, no.4, 2008.
    [90] Y. Chen, T. X. Wang, R. H. Katz. Energy efficient Ethernet encodings [C]. In Proceedings IEEE Conference on Local Computer Networks (LCN 2008), pp.122-129, 2008.
    [91] L. Liu, H. Wang, X. Liu et al. GreenCloud: a new architecture for green data center [C]. In Proceedings of the 6th international conference industry session on Autonomic computing and communications industry session (ICAC-INDST’09), pp.29-38, 2009.
    [92] X. Liao, L. Hu, H. Jin. Energy optimization schemes in cluster with virtual machines [J]. Cluster Computing, vo.13, no.2, pp.113-126, 2010.
    [93] J. D. Li, J. J. Peng, Z. Lei et al. An energy-efficient scheduling approach based on private clouds [J]. Journal of Information and Computational Science, vol.8, no.4, pp.716-724, 2011.
    [94] S. Nanda, T. Chiueh, S. Brook. A survey on virtualization technologies [S]. RPE Report TR-179, pp.1-42, 2005.
    [95]英特尔开源软件技术中心,复旦大学并行处理研究所.系统虚拟化:原理与实现[M].北京,清华大学出版社, 2009.3.
    [96] G. J. Popek, R. P. Goldberg. Formal requirements for virtualizable third generation architectures [J]. Communications of the ACM, vol.17, no.7, pp.412-421, 1974.
    [97] ACPI Specification V4.0a, http://www.acpi.info/spec.htm, 2010.
    [98] J. D. Li, J. J. Peng, W. Zhang. A scheduling algorithm for private clouds [J]. Journal of Convergence Information Technology, vol.6, no.7, pp.1-9, 2011.
    [99] ENERGY STAR Program of U.S. Environmental Protection Agency. Report to congress on server and data center energy efficiency, Public Law 109-431 [S]. EPA Report, pp.1-130, 2007. http://www.energystar.gov.
    [100] S. Ghemawat, H. Gobioff, Shun-Tak Leung. The Google file system [C]. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03), pp.29-43, 2003.
    [101] C. A. Thekkath, T. Mann, E. K. Lee. Frangipani: a scalable distributed file system [C]. In Proceedings of the 16th ACM symposium on Operating systems principles (SOSP’97), pp.224-237, 1997.
    [102] B. Gr?nvall, A. Westerlund, S. Pink. The design of a multicast-based distributed file system [C]. In Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI’99), pp.251-264, 1999.
    [103] S. A. Weil, S. A. Brandt, E. L. Miller et al. Ceph: a scalable, high-performance distributed file system [C]. In Proceedings of the 7th symposium on Operating systems design and implementation (OSDI’06), pp.307-320, 2006.
    [104] F. Chang, J. Dean, S. Ghemawat et al. Bigtable: a distributed storage system for structured data [J]. ACM Transactions on Computer Systems, vol.26, no.2, 2008.
    [105] G. DeCandia, D. Hastorun, M. Jampani et al. Dynamo: Amazon's highly available key-value store [C]. In Proceedings of 21st ACM SIGOPS symposium on Operating systems principles (SOSP’07), pp.205-220, 2007.
    [106] E. Sciore. SimpleDB: a simple java-based multiuser system for teaching database internals [C]. In Proceedings of the 38th SIGCSE technical symposium on Computer science education (SIGCSE’07), pp.561-565, 2007.
    [107] D. A. Patterson, G. Gibson, R. H. Katz. A case for redundant arrays of inexpensive disks (RAID) [C]. In Proceedings of the 1988 ACM SIGMOD international conference on Management of data (SIGMOD’88), pp.109-116, 1988.
    [108] Non-RAID drive architectures, http://en.wikipedia.org/wiki/JBOD#JBOD.
    [109] MAID, http://en.wikipedia.org/wiki/MAID.
    [110] G. A. Gibson, R. V. Meter. Network attached storage architecture [J]. Communications of the ACM, vol.43, no.11, 2000.
    [111] J. Tate, F. Lucchese, R. Moore. Introduction to storage area networks (4th edition) [M]. IBM/Redbooks, 2006.
    [112] LVM, http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux).
    [113] Barracuda 7200.12 Serial ATA, Seagate product manual, 2010.
    [114] K. Li, R. Kumpf, P. Horton et al. A quantitative analysis of disk drive power management in portable computers [C]. In Proceedings of the USENIX Winter Technical Conference (WTEC’94), pp.279-291, 1994.
    [115]李建敦,彭俊杰,张武.云存储中一种基于布局的虚拟磁盘节能调度方法[J].电子学报, 2011.(已投出).
    [116]谢希仁.计算机网络(第五版)[M].电子工业出版社, 2008.1.
    [117]都志辉.高性能计算之并行编程技术: MPI并行程序设计[M].清华大学出版社, 2001.8.
    [118] G. Southern, David Hwang, Ronald Barnes. SMP virtualization performance evaluation [C]. In Proceedings of the 2nd International Workshop on Virtualization Performance: Analysis, Characterization, and Tools (VPACT), pp.1-7, 2009.
    [119] J. D. Li, J. J. Peng, W. Zhang. Using SMP VMs to serve HPC jobs in clouds: an energy-aware co-scheduling mechanism [C]. Cognitive Workshop of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC 2011), 2011. (Accept)
    [120] OpenNebula, http://www.opennebula.org/.
    [121] OpenStack, http://www.openstack.org/.
    [122] CloudSigma, http://www.cloudsigma.com/.
    [123] ElasticHosts, http://www.elastichosts.com/.
    [124] RightScale, http://www.rightscale.com/.
    [125] Nimbus, http://www.nimbusproject.org/.
    [126] Enomalism, http://www.enomaly.com/.
    [127] Cluster-On-Cluster (COD), http://www.cs.duke.edu/nicl/cod/.
    [128] oVirt, http://www.ovirt.org/.
    [129] M. Beckman. Collaborative learning: preparation for the workplace and democracy [J]. College Teaching, vol.38, no.4, pp.128-133, 1990.
    [130] A. W. Chickering, Z. F. Gamson. Development and adaptations of the seven principles for good practice in undergraduate education [J]. New Directions for Teaching and Learning, vol.1999, no.80, 1999.
    [131] L. Lipponen, K. Hakkarainen, S. Paavola. Practices and orientations of CSCL [M]. What we know about CSCL and implementing it in higher education, Kluwer Academic Publishers Norwell, MA, USA, pp.31-50, 2004.
    [132] P. Resta, T. Laferrière. Technology in support of collaborative learning [J]. Educational Psychology Review, vol.19, no.1, pp.65-83, 2007.
    [133] G. Stahl, T. Koschmann, D. Suthers. Computer-supported collaborative learning: an historical perspective [M]. The Cambridge Handbook of the Learning Sciences, Cambridge University Press, 2006.
    [134] M. Dougiamas, P. Taylor. Moodle: using learning communities to create an open source course management system [C]. In Proceedings of World Conference on Educational Multimedia, Hypermedia & Telecommunications (ED-MEDIA 2003), pp.171-178, 2003.
    [135] National programme on technology enhanced learning, http://www.nptel.iitm.ac.in.
    [136] H. Abelson. The creation of OpenCourseWare at MIT [J]. Journal of Science Education and Technology, vol.17, no.2, pp.164-174, 2008.
    [137] C. Arteaga, R. Fabregat, J. Eyzaguirre et al. Adaptive support for collaborative and individual learning (ASCIL): integrating AHA! and CLAROLINE [J]. Lecture Notes in Computer Science, Vol.3137, pp.571-582, 2004.
    [138] S. J. H. Yang. Context aware ubiquitous learning environments for peer-to-peer collaborative learning [J]. Educational Technology & Society, vol.9, no.1, pp.188-201, 2006.
    [139] H. Ogata, Y. Yano. Context-aware support for computer-supported ubiquitous learning [C]. In proceedings of 2nd IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE’04), pp.27-34, 2004.
    [140] L. B. Miguel, G. Eduardo, V. Guillermo et al. Gridcole: a tailorable grid service based system that supports scripted collaborative learning [J]. Computers & Education, vol.51, no.1, pp.155-172,2008.
    [141] L. Yacine, H. Khaled, H. Mourad. COLEG: collaborative learning environment within Grid [J]. Journal of Computing and Information Technology, vol.18, no.1, pp.69-90, 2010.
    [142] O. Ardaiz, P. Artigas, L. Díaz de Cerio et al. ULabGrid, an infrastructure to develop distant laboratories for undergrad students over a grid [J]. Lecture Notes in Computer Science, Vol.2970, pp.265-272, 2004.
    [143] S. B. Shum, D. D. Roure, M. Eisenstadt et al. CoAKTinG: collaborative advanced knowledge technologies in the grid [C]. In Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing (HPDC-11), pp.1-8, 2002.
    [144] H. Zhuge, Y. Li, J. Bi et al. KGCL: a knowledge-grid-based cooperative learning environment [J]. Lecture Notes in Computer Science, Vol.2436, pp. 192–202, 2002.
    [145] C. Huang, F. Xu, X. Xu et al. Towards an agent-based robust collaborative virtual environment for e-learning in the service grid [J]. Lecture Notes in Computer Science, vol.4088, pp.702–707, 2006.
    [146] B. Dong, Q. Zheng, J. Yang et al. An e-learning ecosystem based on cloud computing infrastructure [C]. In Proceedings of the 9th IEEE International Conference on Advanced Learning Technologies (ICALT 2009), pp.125-127, 2009.
    [147] B. Dong, Q. Zheng, M. Qiao et al. BlueSky cloud framework: an e-learning frame-work embracing cloud computing [J]. Lecture Notes in Computer Science, Volume 5931, pp.577-582, 2009.
    [148] I. Marenzi, E. Demidova, W. Nejdl. LearnWeb 2.0 integrating social software for lifelong learning [C]. In proceedings of 2008 World Conference on Educational Multimedia, Hypermedia & Telecommunications (ED-MEDIA 2008), pp.1793-1802, 2008.
    [149] A. Z. Mohammed. E-learning on the cloud [J]. International Arab Journal of e-Technology, vol.1, no.2, pp.58-64, 2009.
    [150] O. Casquero, J. Portillo, R. Ovelar et al. iGoogle and gadgets as a platform for integrating institutional and external services [C]. Workshop on Mash-Up Personal Learning Environments (MUPPLE’08) in conjunction with the 3rd European Conference on Technology Enhanced Learning (EC-TEL08), pp.37-41, 2008.
    [151] Virtual Computing Lab, http://vcl.ncsu.edu/.
    [152] N. K. Richard. The tower and the cloud [M]. EDUCAUSE E-Book, 2008.
    [153] M. Vouk, S. Averitt, M. Bugaev et al. Powered by VCL–using virtual computing laboratory (VCL) technology to power cloud computing [C]. In Proceedings of the 2nd International Conference onVirtual Computing (ICVCI’08), pp.1-10, 2008.
    [154] F. Doelitzscher, A. Sulistio, C. Reich et al. Private cloud for collaboration and e-learning services: from IaaS to SaaS [J]. Computing, vol.91, no.1, pp.23-42, 2011.
    [155] J. D. Li, J. J. Peng, Z. Lei et al. A computer-supported collaborative learning platform based on clouds [J]. Journal of Computational Information Systems, vol.7, no.11, pp.3811-3818, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700