用户名: 密码: 验证码:
马尾松材性与产脂性状遗传改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松是我国南方地区的当家树种,在生产工业用材和松脂中发挥着举足轻重的作用。目前,马尾松栽种面积约占到南方17省区市森林总面积的40%,但以低产林居多,木材和松脂产量低,迫切需要通过遗传改良选育出优质高产马尾松良种,来改善这种现状。为此,本研究以马尾松中心分布区优树无性系(初级种子园母株)及其子代测定林家系为材料,测定了木材密度、木材化学组分、木材管胞形态等重要材性性状,以及产脂力等经济性状,并据此进行了马尾松纸浆材、建筑材、高产脂优良基因型筛选研宄,取得如下研究结果:
     1. 马尾松木材密度的家系间变异主要存在于径向中层,即速生期(10a-15a)形成的木材。而15年生时马尾松木材壁腔比属优质,柔性系数属II级材,胸径年增长量达到第2峰值,从纸浆性能和木材产量角度进行考虑,初步确定马尾松纸浆材合理采伐年龄为第15年。
     2. 在木材化学组分方面,发现马尾松木材纤维素含量在家系间呈现极显著差异,遗传力为0.26,且与木材密度成极显著正相关(相关系数0.556)。可以木材密度为指标对木材纤维素含量进行正向选择。
     3. 在木材管胞形态方面,发现马尾松木材年轮宽与管胞宽度、管胞长度、管胞长宽比、管胞壁厚、壁腔比、柔性系数、刚性系数7个管胞形态指标呈显著相关。可使用胸径年增长量作为造纸性能优劣的间接选择指标。
     4. 在产脂能力方面,研究发现马尾松产脂能力与与光合作用面积和胸径处截面积显著正相关,进而制定了新的产脂能力评价方法。采用亲一子代回归分析方法估算出马尾松产脂性状的遗传力在0.5以上。
     5. 本研究一共选择出作为改良代种子园的建园材料的建筑材优良基因型35个;纸浆材优良基因型69个;可用于进行马尾松良种示范推广的建筑材优良家系4个;高产脂优良基因型6个。对于广西以及我国南方马尾松的良种生产与推广具有重要意义。
     本研究系统分析了马尾松材性、高产脂等重要经济性状的遗传变异规律,为这些性状的遗传改良提供了理论依据。同时对初级种子园子代家系进行选择评价,为马尾松无性系种子园的去劣疏伐提供理论依据;为营建速生、优质、高产的马尾松原料林基地提供良种;有效地保存马尾松优良基因资源,为后续育种提供宝贵的原始材料。
Masson pine {Pinus massoniana Lamb) is one of the most important native tree species in southChina, It plays a key role in providing wood and resin for industiral uses. The area of masson pineplantation has reached up to 40% of total forest area in 17 provinces of south China, but they are mostlysecondary forests with low-yield and low-quality of wood and resin. So, it is of urgency to conductgenetic improvement to generate high-yield and high-quality vaireties for large-scale extension. In thisstudy, the gametes from typical plus trees (gametes of individuals in Pirmary Seed Orchard ) and thefamilies from various-age progeny test plantations were used for measurement of wood properties
     (including wood density, wood chemical composition and wood tracheid morphology ) and economictrait (resin-yielding capacity) . The data from these expeirments were further used to screen forsuperior genotypes of building-use materials, paper-making mateirals and resin-yielding trees. Theresults were descirbed as below:
     1. Family variations of wood basic density mainly occurred in the middle annual layer ( 10a-15a)of wood disc. Aged 15 years masson pine wood exhibited a good ratio of wall to cavity and flexibilityfactor of grade II and its diameter annual increment arrived the second growing peak. From the view ofpulp properties and wood production, The reasonable harvesting age of masson pine for pulpwood wasat the 15th year.
     2. Cellulose content of masson pine showed significant differences between families, withheritability of 0.26. Its association with basic density was significant and the correlation coeiffcient was0.556, which indicates that wood basic density can be the positive predicator for cellulose content ofmasson pine.
     3. Annual growth ring of masson pine showed signiifcantly positive correlations with 7 ifbermorphology characteristics, including tracheid width, tracheid length, ratio of tracheid length to width,tracheid wall thickness, ratio of wall to cavity, lfexibility factor and rigidity coeiffcient. The associationanalyses suggested that the annual increment of DBH can be an indirect indicator for selection of thepros and cons of paper-making industry.
     4 .The pro-offspring regression analysis showed that the heritability of resin-yielding capacity wasmore than 0.5. The correlation analysis suggested a close relationship between tree factors andgrease-producing capacity. Subsequently, a new method was developed for evaluation ofgrease-producing capacity.
     5 .A total of 110 superior genotype was selected for future uses atfer genetic analyses. Of thesegenotypes, 35 for building wood, 69 for pulpwood and 6 for high resin-yielding. These materials are of significance for Guangxi masson pine seed production.
     This study systematically analyzed genetic vairations of key wood properties and importanteconomic traits in Masson pine, which established a theoretical basis for the improvement of vairoustraits. The selection and evaluation of pirmary seed orchard pedigree not only laid a solid theoreticalfoundation for thinning of clone seed orchards, but also selected many improved vaireties forbuilding-use, paper-making and resin-yielding industry. Additionally, this study made considerablecontirbutions in effectively saving the genetic resources of Masson pine for future genetic improvement.
引文
1.安徽农学院.马尾松[M].北京:中国林业出版社.1982.
    2.蔡邦平,梁一池.马尾松高产脂优树选择方法的研究[J].福建林学院学报,1998,18(1):32-35.
    3.蔡邦平,张秀英.马尾松产脂力与生长力性状的典范相关分析.福建林业科技[J].1999,26(增1):165-168.
    4.蔡树威,龙伟,杨章旗.马尾松不同种源采脂量与树体因子关系的研究[J].广西林业科学.2006,35(增1):18-19.
    5.曹朴芳.对中国造纸工业发展的思考[J].中国造纸,1998(4):44-48.
    6.曹仁忠.马尾松采脂材组织比量及树脂道的研究[J].安徽林业,2007(4):41.
    7.曹逸霞,张真,刘随存,等.针叶树树脂的抗害功能及抗害机制[J].昆虫知识,2007,44(6):804-811.
    8.陈崇信.不同地域马尾松优树产脂量影响因素分析[J].林业调查规划,2007,32(3):60-62.
    9.陈敬德.马尾松无性系种子园产量变异的研究[J].南京林业大学学报,1988,22(3):81-85.
    10.陈舜耳.关于马尾松高产脂力品种的研究[J].林化科技,1974(3):101-106.
    11.陈天华,王章荣,徐立安.马尾松木材性状的遗传变异及其在造纸工业中的应用[J].林产化学与工业,1996,16(3):1-8.
    12.陈益泰.林木早期研究新进展[J].林业科学研究,1994(7):11-22.
    13.陈志林,秦采风,刘为民,等.河南省马尾松采脂量与树体因子关系的研究[J].河南林业科技.1999,19(4):8-10.
    14.成俊卿.人工林及天然林长白落叶松木材材性比较试验研究[J].林业科学,1962,6(1):18-27.
    15.成俊卿.木材学[M].北京:中国林业出版社,1985:86-92.
    16.丁彪,王军辉,张守攻,等.日本落叶松无性系化学组成遗传变异的研究[J].河北农业大学学报,2006,29(2):50-53.
    17.丁贵杰.马尾松人工纸浆材林采伐年龄初步研究[J].林业科学,2000,36(1):15-20.
    18.丁贵杰,周志春,王章荣,等.马尾松纸浆用材林培育与利用[M].北京:中国林业出版社,2005.
    19.段喜华.长白落叶松生长及材性遗传改良研究[D].哈尔滨:东北林业大学,1997.
    20.樊明亮.马尾松无性系种子园亲本及子代性状变异与亲本选择[D].南京:南京林业大学,2003.
    21.范林元.马尾松实生种子园亲本多性状育种值评定及其去劣疏伐研究[D].南京:南京林业大学,2001.
    22.福建省马尾松高产脂类型研究协作组.高产脂马尾松苗期和幼林的生长分析试验报告[J].福建林业科技,1987(1):13-19.
    23.耿世磊,吴玉荷,赵晟,等.马尾松茎初生树脂道发生和发育研究[J].华南农业大学学报,2000,21(3):44-47.
    24.关百钧,魏宝麟,主编.世界林业发展概况[M].北京:中国林业出版社,1994,8,187-197.
    25.广东省高脂松研究协作组.马尾松高产脂力类型选育之研究[J].广东林业科技,1988(6):14-19.
    26.郭宇渭,赵文书,汪福斌,等.思茅松林分生物环境因子与产脂量关系的研究[J].云南林业科技,1993(4):11-16.
    27.何波祥,连辉明,曾令海,等.高脂马尾松优树松脂化学组分及其地理变异的研究[J].广东林业科技.1999,15(4):1-7.
    28.何天相.粤北马尾松两个变型的材性初步研究[J].林业科学,1964,9(4):332-344.
    29.胡芳名,谭晓风,刘惠民.中国主要经济树种栽培与利用[M].北京:中国林业出版社,2006.
    30.胡兴宜,许业洲,杨代贵.高产脂湿地松引种评价及优树选择[J].林业科技开发,2006,20 (1):19-21.
    31.胡彦师,梁一池.我国林木遗传改良的研究现状及展望[J].林业科技.2002,27(5):8-12.
    32.黄益江,蔡邦平,梁一池.叶绿素含量与马尾松产脂力相关研究[J].福建林学院学报.1998,18(1):58-61.
    33.姜笑梅,骆秀琴,殷亚方.不同湿地松种源木材材性遗传变异的研究[J].林业科学,2002,38(3):130-135.
    34.蒋连,王先华.安徽省徽州地区马尾松的形态与产脂量的关系[J].生物质化学工程.1981,(3):7-11.
    35.蒋恕,陈岳武.马尾松形态解剖特征的地理变异[J].南京林学院学报,1985(2):29-38.
    36.蒋云东,李思广,胡光辉,等.思茅松高产脂优树再选择的研究[J].西部林业科学,2008,37(3):1-5.
    37.金春德,王成,金玉善.天然林赤松木材材质变异规律的初步研究[J].东北林业大学学报,2000,28(1):39-42.
    38.金国庆,秦国峰,刘伟宏.马尾松生长性状交配效应的遗传分析及杂交组合选择[J].林业科学,2008,44(6):28-33.
    39.李爱民,全妙华,牛友芽,等.马尾松松脂产量影响因素研究进展[J].湖南林业科技,2008,35(1):58-60.
    40.李火根.马尾松成熟林木材性状地理变异的研究[D].南京:南京林业大学,1991.
    41.李火根,王章荣,陈天华.中国林木遗传育种进展[M].北京:科学技术文献出版社,1993;27-31.
    42.李火根,王章荣.马尾松木材性状幼成过渡年龄及幼成相关[J].浙江林学院学报,1994,11(1):33-37.
    43.李思广,付玉嫔,张快富,等.高产脂思茅松半同胞子代测定[J].浙江林学院学报,2008a,25(2):158-162.
    44.李思广,付玉嫔,张快富,等.高松香思茅松无性系的选育[J].东北林业大学学报,2009a,37(3):4-5.
    45.李思广,付玉嫔,张快富,等.思茅松高产脂优良无性系选育研究[J].林业科技,2008b,33(3):8-10.
    46.李思广,蒋云东,何俊,等.高产脂思茅松无性系的选育[J].中南林业科技大学学报.2007,27(3):45-48.
    47.李思广,张快富,付玉嫔,等.高△3-蒈烯思茅松无性系选择研究[J].中南林业科技大学学报,2009b,29(4):49-53.
    48.李仲训,翟其骅.湿地松刺激剂化学采脂技术的研究[J].林产化学与工业,1993(增1) :46-52.
    49.连辉明,何波祥,曾令海,等.马尾松速生、优质及高产脂半同胞家系综合选择的研究[J].广东林业科技,2002,18(1):1-6.
    50.连辉明,曾令海,何波祥,等.马尾松木材基本密度、管胞长度遗传变异规律及其与生长量、产脂力的相关性研究[J].广东林业科技,2006,22(1):5-13.
    51.梁保松,朱景乐,王军辉,等.Pilodyn在华山松活立木木材材性估测中的应用[J].南京林业大学学报;自然科学版,2008,32(6):97-101.
    52.梁庆松,王炳章,罗邦敏.马尾松优良家系再选择研究[J].林业科技开发,1999(3):22-23.
    53.梁一池,蔡邦平.马尾松产脂力的最优拟合模型[J].福建林学院学报,1997,17(4):297-300.
    54.梁有祥.马尾松高产脂优树选择[J].广西林业科学,2004,33(4):214-216.
    55.林金星,李正理.三种正常与矮化松树次生木质部中树脂道的比较观察[J].植物学报,1993,35(5):362-366.
    56.林思京.福建省马尾松优树子代初步评定[J].福建林学院学报,1997,17(3):255-258.
    57.刘青华,金国庆,张蕊,等.24年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J].林业科学,2009,45(10):55-61.
    58.刘青华,张蕊,金国庆,等.马尾松年轮宽度和木材基本密度的种源变异及早期选择[J].林业科 学,2010,46(5):49-54.
    59.刘乐平,吴天文,王希群,等.湿地松高产脂繁殖材料选择与利用的研究[J].湖北林业科技,2003,(1):12-14.
    60.刘木添,连辉明,曾令海,等.河源市马尾松中龄人工林采脂分析[J].广东林业科技,2008,24(6):46-49.
    61.刘月蓉.高产脂马尾松半同胞的产脂力优良单株的选择[J].林业科技,2006,31(3):1-4.
    62.刘月蓉.高产脂马尾松半同胞、全同胞子代产脂力测定[J].西南林学院学报,2005,23(3):33-35.
    63.刘昭息,何玉友,孙海菁.火炬松种源遗传变异研究及纸浆材优良种源评选Ⅰ;性状的地理变异和相关分析[J].林业科学研究,1997,10(4):395-401.
    64.楼建强,张春华,李启良,等.脂用马尾松选优试验[J].浙江林学院学报,1990,7(4):387-390.
    65.楼浙辉,舒洪岚.松树高产脂力遗传改良的研究进展[J].江西林业科技,2002(5):40-42.
    66.吕鸥信,潘志刚,王以姗,等.湿地松高产脂家系的产脂力变异及增益[J].林业科学研究.1992,5(6):700-705.
    67.栾启福.几种松树杂交选育及其遗传分析[D].北京:中国林业科学研究院,2010.
    68.栾启福,卢萍,井振华,等Pilodyn评估杂交松活立木的基本密度及其性状相关分析[J].江西农业大学学报,2011,33(3):0548-0552.
    69.罗敏,王以珊,曾令海,等.松属树种生长量和产脂力的比较分析[J].广东林业科技.2002,18(3):16-19.
    70.毛桃.马尾松优树子代测定林生长和材质的遗传分析及联合选择[D].南京:南京林业大学,2007.
    71.南京林业大学森环院,亚热带林业研究所.马尾松材性遗传变异与制浆造纸材优良种源选择研究报告[R].南京:南京林业大学,1995.
    72.潘建中,潘攀,牟长城,等.长白落叶松人工林的适宜经营密度[J].东北林业大学学报,2007,35(9):4-6.
    73.潘志刚,管宁,韦善华.我国南方杂交松生长和材性的研究[J].林业科学研究,1999,12(4);398-402.
    74.祁万宜,孙晓梅,张守攻,等.北亚热带高山区日本落叶松纸浆用材林初植密度的研究[J].华中农业大学学报,2007,26(4):552-556.
    75.秦国峰,周志春,洪杏春.马尾松生长和木材密度的种源与地点互作效应[J].林业科学研究,1994,7(2):81-88.
    76.秦国峰.马尾松造纸材最优产地的确定[J].林业科学研究,1995,8(3):266-271.
    77.秦国峰主编.马尾松改良及培育[M].杭州:浙江大学出版社,2000.
    78.秦特夫,黄洛华.5种不同品系相思木材的化学性质-木材化学组成及差异性[J].林业科学研究2005,18(2):191-194.
    79.覃冀,连辉明,曾令海,等.高产脂马尾松半同胞子代20年生测定林产脂力分析[J].广东林业科技.2005,21(2).30-34.
    80.覃冀,罗敏,潘庆优,等.高脂马尾松良种规模化造林效果评价初报[J].广东林业科技.2009,25(1):13-15.
    81.丘龙广.马尾松天然林优树自由受粉子代木材比重遗传变异的研究[D].南京:南京林业大学,1990.
    82.全国马尾松种子园课题协作组编.马尾松种子园建立技术论文集[G].学术书刊出版社,1990.
    83.荣文琛,马尾松造纸材种源选择[J].林业科学研究,1992,5(1):7-13.
    84.荣文琛,曾志光,孙成志.江西马尾松纸浆材种源选择[J].江西农业大学学报,1994,16(3):297-302.
    85.石淑兰,王军辉,张守攻.日本落叶松木材的化学组成研究[J].林业科学研究,2004,17(5):570-576.
    86.宋云民,黄铨,黄永利.湿地松家系生长和材性遗传变异分析[J].林业科学研究,,1995,8 (6):671-676.
    87.孙晓梅,张守攻,李时元,等.日本落叶松纸浆材优良家系多性状联合选择[J].林业科学,2005,41(4):48-54.
    88.万细瑞,姜红仁,李江南.湿地松高产脂家系的产脂力研究[J].林业科技通讯.1995,(1):33.
    89.王长新.马尾松采脂量的相关因子分析[J].河南科技大学学报;农学版,2004,24(3):22-25.
    90.王光仁,朱国发.湿地松产脂量的相关因子分析及高产脂单株的选择[J].林产化工通讯,1994(1):27-29.
    91.王慧梅,夏德安,王文杰.红松种源材质性状研究[J].植物研究,2004,15(4):112-115.
    92.王以珊,曾令海,罗敏,等.马尾松天然林采脂试验分析[J].广东林业科技,2002,18(2):1-4.
    93.王章荣,陈天华,周志春.马尾松木材性状在林分间和林分内个体间的变异[J].南京林业大学学报,1988,12(2):38-42.
    94.王章荣,陈天华,周志春,等.马尾松五年生自由授粉子代木材比重与管胞长度的遗传变异[G]//马尾松种子园建立技术论文集.学术书刊出版社,1990a:306-312.
    95.王正喜,刘大椿,韩旅莎,等.湿地松高产脂力单株和类型选择及松脂成份的研究[J].林产化学与工业,1983(3):2-9.
    96.王正喜,黄素琼.湿地松不同林龄产脂量的研究[J].林产化学与工业,1993,13(增1):53-58.
    97.王之颖,赵仁富.气象因子对湿地松松脂产量的影响[J].林业科技开发.2001,15(6):18-19.
    98.温常域,张建中.湿地松乙烯利采脂试验[J].浙江林业科技,1999(1):28-32.
    99.翁海龙,贾红亮,陈宏伟,等.思茅松高产脂优树产脂量相关因子分析[J].东北林业大学学报。2008,36(11):69-70.
    100.吴鸿.油松树脂道的发生和发育研究[J].武汉植物学研究,1990(3):311-316.
    101.吴际友,龙应忠,余格非.湿地松半同胞家系主要经济性状的遗传分析及联合选择[J].林业科学,2000(增1):57-61.
    102.肖晖.马尾松优树子代材性的初步研究[J].福建林业科技,1998,25(3):36-39.
    103.谢善高,广西马尾松采脂林综合经营技术及其产业化模式研究[D].北京:北京林业大学,2010.
    104.徐阿生.西藏波密高山松产脂量与测树因子的关系[J].西藏科技,1996(4):24-28.
    105.徐立安,陈天华,王章荣.马尾松种源子代材性变异与制浆造纸材优良种源选择[J].南京林业大学学报,1997,21(2):1-6.
    106.徐立安,王章荣.马尾松制浆造纸材良种选育目标及不同变异层次选择策略[J].南京林业大学学报,2001,25(2):19-22.
    107.徐六一,虞沐奎.湿地松高产脂品系早期性状的研究[J].安徽农业科学,2001,29(2):228-229.
    108.徐曼琼,鹿振友,李黎,等.火炬松木材的抗弯弹性模量和抗弯强度的变异[J].北京林业大学学报,2001,23(4):56-59.
    109.徐有明,方文彬.火炬松木材纤丝角和管胞长度的变异及其相关分析[J].林业科学研究,1997a,15(4):1-6.
    110.徐有明,林汉,万伏红.马尾松纸浆材材性变异和采伐林龄的确定[J].浙江林学院学报,1997b,14(1):8-15.
    111.徐有明,唐万鹏,徐期瑚,等.武汉引种火炬松种源基本密度的变异与综合选择的研究[J].华中农业大学学报,1999b,18(2):180-184.
    112.徐有明,唐万鹏.荆州引进火炬松木材基本密度的变异[J].东北林业大学学报,1999a,27(4):33-37.
    113.徐有明,鲍春红,周志翔.湿地松种源生长量、材性的变异与优良种源综合选择[J].东北林业大学学报,2001,29(5):18-21.
    114.颜聪炎.马尾松高产脂优树与普通松树产脂率测定[J].福建林业科技,1991,18(2):78-79.
    115.杨代贵,许业洲,胡兴宜,等.彭场林场高产脂、高产材湿地松优树选择研究[J].湖北林业科技,2005,13(6):1-4.
    116.杨宗武,郑仁华,傅忠华.马尾松工业用材优良家系选择的研究[J].林业科学,2003,39(1):1-7.
    117.姚璧君,胡玉熹.松柏类植物叶子的比较解剖观察[J].植物分类学报,1982,20(3):275-293.
    118.姚庆瑞,张金文,洪长福,等.闽南山地按树纤维材优良品系的选择研究[J].桉树科技,2002,(2):23-32.
    119.余柏英,万细瑞.湿地松高产脂家系苗期试验初报[J].江西林业科技,1998(增1):33-34.
    120.虞沐奎,赖天碧,徐六一.火炬松材性变异及优良种源选择研究[J].江苏林业科技,2000,27(1):1-6.
    121.曾令海,李召青,王以珊,等.马尾松高产脂力类型的选择及子代测定的遗传评价[J].广东林业科技,1994(2):35-38.
    122.曾令海,连辉明,何波祥,等.马尾松杂交组合生长及产脂力早期评价[J].广东林业科技.2006,22(4):1-6.
    123.曾令海,王以珊,阮梓材,等.高脂马尾松子代与优树性状的典型相关分析[J].广东林业科技.1998,14(3):1-6.
    124.翟其骅.马尾松产脂类型与轴向树脂道关系的研究[J]林化学与工业,.1987,7(4):32-40.
    125.张冬梅,孙佩光,沈熙环,等.油松种子园自由授粉与控制授粉种子父本分析[J].植物生态学报,2009,33(2):302-310.
    126.张梦琴,邓昭成.南亚松产脂力的研究[J].林产化学与工业,1990,10(1):29-37.
    127.张铭光,沈晓玲,曾令海,等.不同产脂力马尾松的热脱附-气相色谱/质谱研究[J].华南师范大学学报;自然科学版,2009(1):95-99.
    128.张乃春,周家维,王孜昌,等.贵州马尾松家系产地及个体木材基本密度变异规律分析[J].种子,2008,27(7):67-69.
    129.张如华.马尾松不同种源光合特性研究[J].安徽农业科学,2006,34(19):4921-4922.
    130.张耀丽,徐永吉,龙应忠,等.湿地松种植密度对纸浆材主要化学成分的影响[J].南京林业大学学报,2002,26(6):60-62.
    131.张支有,刘月蓉,叶功富,等.高产脂马尾松嫁接种子园的产脂力测定[J].福建林业科技,2004,34(4):58-61.
    132.赵荣军,杨培华.油松半同胞子代及亲本木材构造与物理力学性质的研究[J].西北林学院学报,2000,15(2):25-29.
    133.郑仁华,杨宗武,傅玉狮.马尾松材性遗传改良的现状及展望[J].福建林业科技.2000(6):18-21.
    134.郑仁华,陈国金,俞白楠.马尾松家系木材基本密度遗传变异的研究[J].西北林学院学报,2001,16(4):6-9.
    135.郑元英,洪蓉.马尾松产脂力、生长量和针叶中糖、淀粉含量的节律性变化[J].福建林业科技,1995,22(增1):12-16.
    136.郑元英.高产脂类型马尾松调查分析[J].福建林业科技,1988(1);52-57.
    137.中国林学会遗传育种学会.林木遗传改良讨论会文集[C].湖南,1991.
    138.周志春.马尾松木材性状遗传变异的研究[D].南京:南京林业大学,1987.
    139.周志春,王章荣,陈天华.马尾松木材性状株内变异与木材取样方法的探讨[J].南京林业大学学报,1988,12(4):52-60.
    140.周志春,金国庆,秦国峰.马尾松幼龄材密度、管胞长度的地理变异及性状相关[J].林业科学研究,1990a,3(4):393-397.
    141.周志春,汪名昌,吕勤.马尾松种子园无性系生长性状和木材性状的当代表现[J].浙江林业科技,1991,11(5):23-26.
    142.周志春,傅玉狮,吴天林.马尾松生长和材性的地理遗传变异及最优种源区的划定[J].林业科学研究,1993,6(5):556-564.
    143.周志春,金国庆,周世水.马尾松自由授粉家系生长和材质的遗传分析及联合选择[J].林业科学研究,1994,7(3):323-328.
    144.周志春,秦国峰,李光荣,等.马尾松遗传改良的成就、问题和思考[J].林业科学研究,1997,10(4):435-442.
    145.周志春.马尾松优质纸材选择及其生态遗传学研究[D].南京:南京林业大学,2000.
    146.朱国法,何晓元,王光仁,等.湿地松高产脂树人工控制授粉试验初报[J].安徽林业科技,1996(1):21-23.
    147.朱国法,何晓元.湿地松采脂负荷大小对树木生长影响试验[J].安徽林业科技,1994(2):44-45.
    148.朱秋云,黄益江.马尾松树脂道与产脂力的回归分析研究[J].福建林业科技,2002,29(4):15-17.
    149.朱永安,刘海仓,刘菊花.湿地松产脂量与直径的相关关系研究[J].湖南林业科技,2001,28(2):4143.
    150.祝志勇,于建云.生态因子对马尾松产脂的影响初探[J].华东森林经理,2002,16(3):35-37.
    151.庄伟瑛,欧阳道明,范国荣.湿地松松脂中单萜类组分研究续报[J].江西农业大学学报.2009,31(3):388-392.
    152.庄伟瑛,张玉英,邹元熹.高产脂湿地松选择和相关因子的分析[J].江西农业大学学报,2007,29(1):55-60.
    153. Bannan M W.Vertical resin ducts in the secondary wood of the Abietineae[J]. New Phytol,1936, 35(1):11-46.
    154. Barralho N M G,Cotterill P P, Kanowski P J.Breeding objectives for pulp production of Eucalyptus globules under different industrial cost structures[J]. Can J For Res,1993,23(4):648-656.
    155. Barnes R D,Birks J S,Battle G.The genetic control of ring width,wood density and tracheid length in the juvenile core of Pinus patula[J]. South African Forestry Journal,1994,169(1):15-20.
    156. Belonger P J,McKe S E,Jett J B.Genetic and environmental effects on biomass production and wood density in Loblolly pine[J]. Tree Improvement for Sustainable Tropical Forestry,1996(2): 307-310.
    157.Bendtsen B A. Properties of wood from improved and intensively managed trees[J]. Forestry Product Journal.1978,28(10):61-72.
    158. Berryman A A.Resistance of conifers to invasion by bark beetle-fungus associations[J]. Biological Sciences,1972,22(10):598-602.
    159. Blanche C A,Lorio P L,Sommers R A,et al.Seasonal cambial growth and development of loblolly pine:xylem formation,inner bark chemistry,resin ducts, and resin flow[J].Forest Ecology and Management,1992,49(1/2):151-165.
    160. Blinka K W.Resin flow in clonal Loblolly Pine[D]. North Carolina State University,2007.
    161. Brown M W, Nebeker T E,Honea C R.Thinning increases loblolly pine vigor and resistance to bark beetles[J]. Southern Journal of American Forestry,1987(11):28-31.
    162. Chang T. Bark structure of North American conifers[J]. America:USDA,1954:86.
    163. Clements R W.Modern gum naval stores methods[J]. America:USDA,1974:1-29.
    164. Donaldson L A,Evans R,Cown D J.Clonal variation of wood density variables in Pinus radiata[J]. New Zealand Journal of Forestry Science,1996,25(2):175-188.
    165. Donaldson LA,Croucher M,Clonal variation of wood chemistry variables in Radiata pine(Pinus radiata D. Don.)wood[J]. Holzforschung,1997,51(6):537-542.
    166. Dunn J P,Lorio P L Jr.Modified water regimes affect photosynthesis,xylem water potential, cambial growth and resistance of juvenile Pinus taeda L.to Dendroctonus frontalis (Coleoptera:Scolytidae) [J]. Environ. Entomol,1993,22(5):948-957.
    167. Esau K. Plant anatomy[M]. New York:Wiley,1965.
    168. Fahn A.Secretory tissues in plants[C]. London, New York:Academic Press,1979:247-277.
    169. Fahn A. Morphological and anatomical changes related to resin stimulation[R]. Jerusalem, Israel: Hebrew University of Jerusalem,1970.
    170. Franceschi V R, Krekling T, Christiansen E. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem [J]. Am J Bot,2002,89(4): 578-586.
    171. Fries A, Ericsson T. Estimating genetic parameters for wood density of Scots pine(Pinus sylvestris L.) [J]. Silvae Genetica.2006,55(2):84-92.
    172. Grote R, Pretzsch H. A model for individual tree development based on physiological processes[J]. Plant Biol,2002,4(2):167-180.
    173. Gough G, Barnes R D. A comparison of three methods of wood den-sity assessment in a Pinus elliottii progeny test[J]. South AfricanForestry.1984,128:22-25.
    174. Guo H X.Mcmillin J D,Wagner M R,et al. Altitudinal variation in foliar chemistry and anatomy of yunnan pine,Pinus yunnanensis,and pine sawfiy(Hym.,Diprionidae)performance [J]. J Appl Ento, 1999,123(8):465-471.
    175. Gwaze D P, Bridgwater F E,Byram T D. Genetic parameter estimates for growth and wood density in Loblolly pine(Pinus taeda L.)[J]. Forest Genetics,2001,8(1):47-55.
    176. Hanes C S. Resin canals in seedling conifers [J]. J Linn Soc Bot,1927,47(318):613-636.
    177. Hannrup B, Ekberg I.Age-age correlations for tracheid length and wood density in Pinus sylvestris[J]. Canadian Journal of Forest Research,1998,28:1373-1379.
    178. Hodge G R, Purnell R C. Genetic parameter estimates for wood density, transition age, and radial growth in Slash pine[J]. Canadian Journal of Forest Research,1993,23(9):1881-1891.
    179. Hodges J D, Elam W W.Watson WF. Physical properties of the oleoresin system of the four major southern pines[J]. Can J For Res,1977,7(3):520-525.
    180. Horn R A. How fiber morphology affects pulp characteristic and properties of paper[J]. Chemistry, 1972,26(8):39-44.
    181. Jain K K. Intra increment variation in specific gravity of wood in Blue pine[J]. Wood Science and Technology,1979,13(4):239-248.
    182. Jokela A, Sarjala T, Huttunen S. The structure and hardening status of Scots pine needles at different potassium availability levels [J]. Trees,1998,12(8):490-498.
    183. Jokela A, Sarjala T,Kaunisto S, et al. Effects of foliar potassium concentration on morphology, ultrastructure and polyamine concentrations of Scots pine needles [J]. Tree Physiol,1997,17(11): 677-685.
    184. Kainulainen P, Holopainen J, Palomaki V, et al. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid[J]. Journal of Chemical Ecology,1996,22:617-636.
    185. Kedharnath S.Evolving high oleo-resin yielding strains of chir pine (Pinus roxburghii) through breeding[C]//Proc Seminar, sympine, delhi,1971:1-5.
    186. King J N, Yeh F C, Heaman J C, et al.Selection of wood density and diameter in controlled crosses of coastal Douglas fir[J]. Silvae Genetica,1988(5):85-89.
    187. Kytoe M,Niemela P,Annila E,et al. Effects of forest fertilization on the radial growth and resin exudation of insect-defoliated Scots pines[J]. J Appl Ecol,1999,36(5):763-769.
    188. LaPasha C A, Wheeler E A. Resin canals in Pinus taeda:Longitudinal canal lengths and interconnections between longitudinal and radial canals[J]. IAWA Bulletin,1990,11(3):227-238.
    189. Lichtenegger H, Reiterer A, Stanzl T, et al. Variation of Cellulose Microfibril Angles in Softwoods and Hardwoods A Possible Strategy of Mechanical Optimization[J]. Journal of Structural Biology, 1999,128(3):257-269.
    190. Lieutier F, Day K R, Battisti A, et al. Bark and wood boring insects in living trees in Europe:a synthesis [M]. Dordrecht:Kluwer Academic Publishers,2004,135-180.
    191. Lin J X, Sampson D A, Ceulemans R. The effect of crown position and tree age on resin-canal density in Scots pine(Pinus sylvestris L.) needles[J]. Can J Bot,2001,79(11):1257-1261.
    192. Little E L., Dorman J., Keith W.Slash pine (Pinus elliottii), including south Florida slash pine: Nomenclature and description[R]. America:Southeastern Experiment Station,1954:65.
    193. Lombardero M J, Ayres M P, Lorio P L, et al. Environmental effects on constitutive and inducible resin defenses of Pinus taeda[J]. Ecol.Lett,2000,3(4):329-339.
    194. Loo J A, Tauer C G, Mcnew R W. Genetic variation in the time of transition from juvenile to mature wood in Loblolly Pine (Pinus taeda L.) [J]. Silvae Genetica,1985,34(1):14-19.
    195. Lorio P L Jr, Sommers R A, Blanche C A, et al.Modeling pine resistance to bark beetles based on growth and differentiation balance principles[C]. Portland:Timber Press,1990:402-409.
    196. Lorio PL.Jr. Growth-differentiation balance:a basis for understanding southern pine beetle tree interactions[J]. For Ecol Manage,1986,14(4):259-273.
    197. Manninen A M, Utriainen J, Holopainen T, et al. Comparing the Variation of Needle and Wood Terpenoids in Scots Pine Provenances[J]. Can J For Res,2002,28(1):211-228.
    198. Matson P A, Hain F P, Mawby W. Indices of tree susceptibility to bark beetles vary with silvicultural treatment in a loblolly pine plantation[J]. For Ecol Manage,1987,22:107-118.
    199. McReynolds R D, Gansel C R. High-gum-yielding slash pine:performance to age 30[J]. South J Appl For,1985,9(1):29-32.
    200. Mergan F, Echols R M. Number and size of radial resin ducts in slash pine[J]. Science,1955, 121(3139):306-307.
    201. Michael AP, Jorg B, Jonathan G. Molecular regulation of induced terpenoid biosynthesis in conifers[J]. Phytochemistry Reviews,2006,5(1):179-189.
    202. Mitchell H L. Wood quality evaluation from increment cores[J]. Journal of Tapioca,1958,41(4): 150-156.
    203. Miyata M, Ubukata M, Eiga S. Clonal differences of the chemical constituents's contents of grafted plus-tree woods of Japanese red pine and Japanese black pine[J]. Journal of the Japanese Forestry Society,1991,73(2):151-153.
    204. Moura V P G., Dvorak W S, Nogueira M V P. Variation in wood density, stem volume and dry matter of the Mountain Pine Ridge,Belize, provenance of Pinus tecunumanii grown at Planaltina, Brazil[J]. Scientia-Forestalis,1998,53:7-13.
    205. Mugasha A G, Iddi S. Survival,growth and wood density of Pinus kesiya and Pinus oocarpa provenances at Kihanga Arboretum,Sao Hill,Tanzania[J].Forest Ecology and Management,1996, (8):1-11.
    206. Muneri A, Balodis V. Variation in wood density and tracheid length in Pinus patula grown in Zimbabwe[J]. Southern African Forestry Journal,1998,182(1):41-50.
    207. Myers B J, Talsma T. Site water balance and tree water status in irrigated and fertilised stands of Pinus radiata[J]. For Ecol Manage,1992,52:17-42.
    208. Nebeker T E, Hodges J D, Honea C R., et al. Preformed defensive system in loblolly pine: variability and impact on management practices[C]. Blacksburg:VPI Press,1988:147-162.
    209. Nebeker T E., Hodges J D, Blanche C A, et al. Variation in the constitutive defensive system of loblolly pine in relation to bark beetle attack[J]. Forest Science,1992,38(2):257-266.
    210. Nyakuengama J G, Evans R, Matheson C. Wood quality and quantitative genetics of Pinus radiata D.Don:fibre traits and wood density[J]. Appita Journal,1999,52(5):348-350.
    211. Page C N.New and maintained genera in the conifer families Podocarpaceae and Pinaceae[J]. Notes Roy Bot Gard Edinburgh,1989,45:377-395.
    212. Peters W J. Variation in oleoresin yielding potential of selected slash pines[J]. For Sci,1971,17(3): 306-307.
    213. Pot D. Chantre G, Rozenberg P. et al. Genetic control of pulp and timber properties in maritime pine(Pinus pinaster Ait) [J]. Ann For Sci,2002,59:563-575.
    214. Prud homme R E, Noah J. Determination of fibril angle distribution in wood fiber:a comparison between the X-ray diffraction and the polarized microscope methods[J]. Wood and Fiber,1975,6(4): 282-289.
    215. Reid R W, Watson J A. Sizes, distributions, and numbers of vertical resin ducts in lodgepole pine[J]. Can J Bot,1966,44(4):519-525.
    216. Roberds J H, trom B L, Hain F P, et al.Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine[J]. Can J For Res,2003,33:2469-2476.
    217. Robert E, Jugo I. Rapid prediction of wood stiffness from microfibril angle and density[J]. Forest Products Journal,2001,51(3):53-57.
    218. Rockwood D L. Variation in the monoterpene composition of two oleoresin systems of loblolly pine[J]. Forest Science,1973,19(2):147-153.
    219. Rolland C, Lemperiere G. Effects of climate on radial growth of Norway Spruce and interactions with attacks by the bark beetle (Dendroctonus micans (Kug., Coleoptera:Scolytidae):a dendroecological study in the FrenchMassif[J]. Central.Forest Ecol.Manag.,2004,201(1):89-104.
    220. Ruel J J., Ayres MP., Lorio P L. Loblolly pine responds to mechanical wounding with increased resin flow [J]. Can J For Res,1998,28(4):596-602.
    221. Scagel R F. An Evolutionary survey of the plant Kingdom[M]. Belmont, Calif.:Wadsworth Pub C, 1965.
    222. Schopmeyer C S, Larson P R.Effects of diameter, crown ratio, and growth rate on gum yields of slash and longleaf pine[J]. Journal of Forestry,1955,53(11):822-826.
    223. Sehgal R N, and Chauhan S K. Genetic improvement research on Pinus roxburghii in the last two decades-a review[J]. Indian Journal of Forestry,1995,18(2):107-114.
    224. Shelbourne T, Evans R, Kibblewhite P. Inheritance of tracheid transverse dimensions and wood density in radiata pine[J]. Appita Journal,1997,50(1):47-67.
    225. Sheriff DW, Rook DA. Wood density and above-ground growth in high and low wood density clones of Pinus radiata D Don[J]. Australian Journal of Plant Physiology,1990,17(6):615-628.
    226. Spurr AR. Organization of the procambium and development of the secretory cells in the embryo of Pinus strobes L.[J]. Am J Bot,1950,37:185-196.
    227. Squillace A E., Bengston GW. Inheritance of gum yield and other characteristics of slash pine[C]. Proc South For Tree Improv Conf,1961:85-96.
    228. Squillace A E, Wells O O, Rockwood D L. Inheritance of monoterpene composition in cortical oleoresin of loblolly pine[J]. Silvae Genetica,1980,29(3,4):141-151.
    229. St Clair JB.Genetic variation in tree structure and its relation to size in Douglas-fir, I.Biomass partitioning,foliage efficiency, stem form, and wood density[J]. Canadian Journal of Forest Research,1994,24(6):1226-1235.
    230. Steele C L, Lewinsohn E, Croteau R. Induced oleoresin biosynthesis in grand fir as a defense against bark beetles[C]. Proc Natl Acad Sci,1995:4164-4168.
    231. Susumu Mikami. Breeding for wood quality of Japanese larch[J]. Bulletin of Forest Tree,1988(6): 146-148.
    232. Tadesse W, Nanos N, Aunon F J, et al. Evaluation of high resin yielders of Pinus pinaster Ait[J]. For Genet,2001a(8):271-278.
    233. Tadesse W, Nanos N, Aunon F J, et al. Genetic improvement of resin yield from maritime pine in spain[J]. For Chem,2001b(1):10-16.
    234. Valencia M S, Vargas H J, Manzo J V, et al. Genetic correlations and simultaneous selection for growth and wood density in Pinus patula[J]. Agrociencia,2001,35(1):109-120.
    235. Vargas H J, Adams W T. Genetic relationships between wood density components and cambial growth rhythm in young coastal Douglas-fir[J]. Canadian Journal of Forest Research,1994,24(9): 1871-1876.
    236. Vargas H J, Adams W T. Genetic variation of wood density components in young coastal Douglas-fir:implications for tree breeding[J]. Canadian Journal of Forest Research,1991,21(12): 1801-1807.
    237. Wang T L, Aitken S N. Selection for improved growth and wood den-sity in lodgepole pine:effects on radial patterns of wood variation[J]. Wood Fiber Sci,2000,32(4):391-403.
    238. Watt M S, Garnett B T, Walker J C. The use of the Pilodyn for assessing outerwood density in New Zealand radiata pine[J]. Forest-Products-Journal,1996,46:101-106.
    239. Werker E, Fahn A. Resin ducts of Pinus halepensis Mill.-their structure,development and pattern of arrangement[J]. Bot J Linn Soc,1969,62(4):379-411.
    240. White J B, Beals H O. Variation in number of resin canals per needle in pond pine[J]. Bot Gaz, 1963,124(4):251-253.
    241. Wilkens R T, Ayres M P, Lorio P L, et al. Environmental effects on pine tree carbon budgets and resistance to bark beetles[M]//Global change and disturbance in southern ecosystems. New York: Springer-Verlag,1998:591-616.
    242. Williams C G, Megraw R A. Juvenile mature relationships for wood density in Pinus taeda[J]. Canadian Journal of Forest Research,1994,24(4):714-722.
    243. Winner R. Multivariate structure property relations for pinewood[J]. IAWA Bull,1992,14(13): 265-266.
    244. Witztum A, Zamski E. Methods for observation on resin droplets in resin duct cells of Pinus halepensis Mill[J]. Isr J Bot,1969,18:55-59.
    245. Wooding F B P, Northcote D H. The fine structure of the mature resin canal cells of Pinus pinea[J]. J Ultrastruct Res,1965,13(3):233-244.
    246. Wright J A, Gibson G L, Barnes R D. Variation in volume and wood density of eight provenances of Pinus oocarpa and P. patula subsp. tecunumanii in Conocoto[J]. Instituto de Pesquisase Estudos Florestais,1990, (1):55-57.
    247. Zamski E, Fahn A. Observations on resin secretion from isolated portions of resin ducts of Pinus halepensis Mill[J]. Isr J Bot,1972a,21:35-38.
    248. Zamski E. Temperature and photoperiodic effects on xylem and vertical resin duct formation in Pinus halepensis Mill[J]. Israel J Bot,1972b,1(2):99-107.
    249. Zamudio F, Ozenberg P R, Baettig R, et al. Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile[J].Annals of forest science,2005,62(2): 105-114.
    250. Zobel B J, Breeding for wood properties in forest trees[J]. Unasylva,1964,18:89-103.
    251. Zobel B J, Buijtenen J P. Wood variation:its causes and control[J]. Forestry,1989,63(3):307-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700