用户名: 密码: 验证码:
自动变速箱换挡品质控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换挡品质控制是自动变速箱控制技术中的一个关键问题,它不仅关系到换挡过程的乘坐舒适性,而且对离合器使用寿命有重要的影响,因此研究换挡品质控制具有十分重要的理论意义和工程意义。
     本文以装有湿式离合器的液力机械式自动变速箱为研究对象,对换挡品质的闭环控制进行了研究。受摩擦片磨损程度、润滑油氧化程度以及温度等多方面的影响,离合器摩擦特性在使用过程中会发生变化,所以如何克服和抑制离合器摩擦特性的变化对换挡品质控制的影响是本文主要考虑的问题。在解决上述问题的基础上,为进一步改善换挡品质,文中对基于动力传动系的整体换挡控制策略也进行了研究。
     首先,为分析和研究换挡品质控制,建立了车辆动力传动系仿真环境和控制模型。本文从换挡品质控制的角度出发,结合高精度发动机仿真软件enDYNA,在MATLAB/Simulink环境下建立了包括发动机、变速箱以及传动轴和负载的仿真、分析环境。根据车辆传动轴特征的不同,给出了刚性传动轴、柔性传动轴两种情况下的换挡品质控制模型,并在仿真环境下进行了验证。
     其次,针对刚性传动轴研究了基于涡轮转速调节的换挡控制器设计问题。通过涡轮转速控制能够有效控制离合器的闭合过程,在实现换挡的同时保证离合器使用寿命。本文通过静态输出反馈控制律,设计了两自由度PID涡轮转速控制器。该控制器一方面利用前馈通道抑制涡轮力矩变化对涡轮转速控制的影响,另一方面利用反馈通道解决了针对离合器摩擦特性和液压系统参数不确定性的鲁棒控制问题。
     再次,本文讨论了柔性传动轴下的具有抑制输出轴力矩波动能力的换挡控制器设计问题。由于液力变矩器在抑制输出轴力矩波动中具有重要作用,本文将液力变矩器引入被控对象,基于静态输出反馈的滑模控制理论设计了离合器压力控制策略,克服了离合器摩擦特性变化对输出轴力矩波动和系统稳定性的影响。该控制器融合了变速箱和底盘控制系统的测量信息,通过闭合离合器压力控制,同时实现了涡轮转速调节和输出轴力矩波动抑制控制。
     最后,在解决离合器摩擦特性对换挡的影响、抑制输出轴力矩波动的基础上,讨论了基于动力传动系整体的换挡控制策略。该控制策略将变速箱中液压系统输入、发动机节气门开度和点火角修正系数同时作为控制输入,基于反步法和控制量分配原则,设计了动力传动系整体换挡控制器。该控制器在保证涡轮转速控制精度的前提下,通过发动机力矩调节进一步平顺了输出轴力矩、提高了换挡品质。
Gearshift control is a key point in automatic transmission control, which not onlyconcerns about the comfort in gear shifting but also plays an important role in the lifetimeof a clutch, so the research of shift quality control has great theoretical significance andhigh value in engineering.
     Based on a hydraulic mechanical automatic transmission with wet clutches, the dis-sertation is dedicated to study the closed-loop gearshift control. Under the in?uence of thewear of clutch materials, the oxidation of automatic transmission ?uid (ATF) and variationof temperature, clutch friction characteristics change during the usage, therefore, how toovercome and suppress its in?uence on the shift quality is the major concern in the study.After that, in order to further enhance the shift quality, the power-train integrated gearshiftcontrol is studied as well.
     Firstly, in order to study and analyze the gearshift control, power-train model andthe simulation environment are built. In this dissertation, from the perspective of gearshiftcontrol, combing with the professional engine simulation software enDYNA, the simula-tion platform is set up in the MATLAB/Simulink environment for the sake of analysis, inwhich the model of engine, automatic transmission, as well as axle shaft and vehicle loadare involved. With different axle shaft, two control-oriented gearshift models with stiff,torsional axle shaft are given and verified in the simulation environment.
     Secondly, gearshift controller design with stiff axle shaft is studied on the basis of theturbine speed regulation. When the clutch slip control is controlled effectively by turbinespeed regulation, the lifetime of the clutch can be guaranteed during gear shifting. Atwo-degree-of-freedom PID (2DOF PID) gearshift controller is designed by static outputfeedback control theory. On the one hand, feedforward channel is applied in this controllerto suppress the in?uence of changed turbine torque on turbine speed regulation; on theother hand, for the varies of clutch friction characteristics and parameter uncertainties ofhydraulic control system, robust control is discussed in the feedback channel design.
     Moreover, anti-shudder gearshift controller design with torsional axle shaft is pro-posed in the following. For torque converter plays an important role in the suppressionof output shaft torque oscillation, it is involved as the controlled plant in this study, and clutch pressure controller is designed on the basis of the sliding mode output feedbackcontrol technique, the in?uence of variable clutch friction characteristics on the outputshaft torque oscillation and the system stability is overcome. By clutch pressure con-trol, the proposed approach combines with the measurement information of the chassiscontrol system and gearbox, achieves turbine speed regulation and suppression of outputshaft torque oscillation at the same time.
     Lastly, based on anti-shudder gearshift controller, which overcomes the in?uence ofclutch friction characteristics on gearshift control and suppress the output shaft torquesoscillation, a discussion of the power-train integrated gearshift control is further presentedto enhance shift quality. The control strategy takes electro-hydraulic system inputs, enginethrottle opening and efficiency correction factor of spark angle as control inputs, and thepowertrain integrated gearshift controller is designed by applying backstepping techniqueand control allocation. By the proposed controller, not only turbine speed is controlledproperly, but also the shift quality is improved as well by further smoothing output shafttorque.
引文
1赵强,谢峰,余天明.汽车自动变速箱的发展现状及其技术趋势[J].机械,2010, 37(12):01–06.
    2葛安林.自动变速器(一)―液力变矩器的闭锁与滑差控制[J].汽车技术,2001, (5):01–03.
    3牛铭奎,程秀生,高炳钊,等.双离合器式自动变速箱换挡特征研究[J].汽车工程, 2004, 26(4):453–457.
    4廖林清,张裕强,杨翔宇.双离合器自动变速器的研究分析[J].重庆工学院学报, 2007, 21(10):28–30.
    5吴光强,杨伟斌,秦大同.双离合器式自动变速器控制系统的关键技术[J].机械工程学报, 2007, 43(2):13–21.
    6王立公,王红岩,秦大同.金属带式无级变速器速比控制的试验研究[J].汽车工程, 2003, 25(6):569–573.
    7王进.电子技术在汽车领域的应用及发展[J].公路与汽运, 2003, (6):01–03.
    8李永军,陈树星,崔勇,等.机械式自动变速器起车过程综合控制[J].汽车工程, 2003, 25(2):178–181.
    9刘东,宋健,李磊. AMT产品起步控制策略的研究[J].车辆与动力技术, 2008,(1):05–07.
    10鲁统利,王衍军.基于模糊控制的双离合器式自动变速器起步过程仿真研究[J].汽车工程, 2009, 31(8):746–750.
    11雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程, 2000,22(4):299–269.
    12程秀生,冯巍,陆中华,等.湿式双离合器自动变速器起步控制[J].农业机械学报, 2010, 41(1):18–22.
    13陈然,孙冬野.自动变速车辆起步模糊神经网络控制策略仿真[J].系统仿真学报, 2010, 22(4):912–914.
    14 J. David, N. Natarajan. Plant Identification and Design of Optimal Clutch Engage-ment Controller[C]//Proceedings of the Society of Automotive Engineers WorldCongress. Detroit, Michigan, USA: Paper No.2006-01-3539.
    15程秀生,冯巍,陆中华,等.湿式双离合器自动变速器的起步控制[J].系统仿真学报, 2010, 31(2):145–149.
    16姚晓涛,秦大同,刘振军.双离合器自动变速器起步控制仿真分析[J].重庆大学学报, 2007, 30(1):13–17.
    17秦大同,刘永刚,胡建军,等.双离合器式自动变速器两离合器起步控制与仿真[J].重庆大学学报, 2010, 46(18):121–126.
    18邹慧,周云山. DCT起步模糊控制研究及仿真分析[J].机械传动, 2010,(9):20–25.
    19葛安林.自动变速器(三)―自动变速器综述[J].汽车技术, 2001, (7):01–04.
    20 R. Hibino, M. Osawa, K. Kono, et al. Robust and Simplified Design of Slip ControlSystem for Torque Converter Lock-up Clutch[J]. Journal of Dynamic Systems,Measurement, and Control, 2009, 131(1):01–10.
    21 K. Adachi, Y. Ochi, S. Segawa, et al. Slip Control for a Lock-up Clutch with aRobust Control Method[C]//SICE Annual Conference. Sapporo, 2004:744–749.
    22刘钊,黄宗益,李庆.轿车用自动变速箱的发展动态[J].传动技术, 2000,14(1):01–08.
    23 J. O. Hahn, K. I. Lee. Nonlinear Robust Control of Torque Converter Clutch SlipSystem for Passenger Vehicles Using Advanced Torque Estimation Algorithms[J].Vehicle System Dynamics, 2002, 37(3):175–192.
    24 A. Higashimata, Kazutaka, S. Segawa, et al. Development of a Slip Control Sys-tem for a Lock-up Clutch[C]//Proceedings of the Society of Automotive EngineersWorld Congress. Detroit, Michigan, USA: Paper No.2004-01-1227.
    25贺小军,王红岩,袁伟.自动变速车辆换挡规律的研究[J].装甲兵工程学院学报, 2004, 18(4):28–31.
    26张勇,刘杰,卢新田,等.工程车辆自适应模糊换挡决策方法[J].同济大学学报, 2003, 31(1):104–108.
    27张俊智,王丽芳,葛安林.自动换挡规律的研究[J].机械工程学报, 1999,35(4):38–41.
    28葛安林,李焕松,武文治,等.动态三参数最佳换挡规律的研究[J].汽车工程,1992, 14(4):239–247.
    29闫磊,黄海东,赵丁选,等.工程车辆四参数自动换挡策略研究[J].农业机械学报, 2005, 36(4):01–04.
    30韩顺杰,赵丁选.基于四参数的工程车辆自动变速节能换挡策略[J].江苏大学学报, 2006, 27(6):505–508.
    31 K. Hayashi, Y. Shimizu, A. a. H. A. Dote, Y. ans Takayama. Neuro Fuzzy Transmis-sion Control for Automobile with Variable Loads[J]. IEEE Transactions on ControlSystems Technology, 1995, 3(1):49–53.
    32孙以泽,王其明.车辆AMT中道路条件及驾驶意图的模糊识别[J].汽车工程, 2001, 23(6):419–422.
    33陈清洪,秦大同.自动变速箱汽车神经网络三参数换挡策略[J].控制理论与应用, 2010, 27(11):1580–1584.
    34王卓,赵丁选.工程车辆自动变速器换挡的神经网络控制系统[J].西安交通大学学报, 2002, 36(3):274–277.
    35 G. Qin, A. Ge, J. J. Lee. Knowledge-based Gear-position Decision[J]. IEEE Trans-actions on Intelligent Transportation Systems, 2004, 5(2):121–125.
    36 M. Kawai, H. Aruga, K. Iwatsuki, et al. Development of a Shift Control Sys-tem for Automatic Transmissions Using Information from a Vehicle NavigationSystem[C]//Proceedings of the Society of Automotive Engineers World Congress.Detroit, Michigan, USA: Paper No. 1999-01-1095.
    37 D. Kim, H. Peng, S. Bai, et al. Control of Integrated Powertrain with ElectronicThrottle and Automatic Transmission[J]. IEEE Transactions on Control SystemsTechnology, 2007, 15(3):474–482.
    38胡建军,秦大同,刘振军.金属带式无极变速传动速比变化特性研究[J].汽车工程, 2003, 25(1):25–29.
    39王幼民,唐铃凤.金属带式无极变速器的研究综述[J].机械传动, 2007,31(6):95–100.
    40邹乃威.无极变速混合动力汽车动力耦合及速比控制研究[D].长春:吉林大学, 2009:75–80.
    41宋锦春,周生浩,程乃士,等.车辆无级变速器液压系统的模糊控制[J].中国机械工程, 2003, 14(8):644–645.
    42王红岩,王立公,孙冬野.无级变速汽车的自适应模糊控制研究[J].控制理论与应用, 2004, 21(1):70–74.
    43 J. Fredriksson, B. Egardt. Nonlinear Control Applied to Gearshifting in AutomatedManual Transmissions[C]//Proceedings of the 39th IEEE Conference on Decisionand Control. 2000:444–449.
    44 M. Pettersson, L. Nielsen. Gear Shifting by Engine Control[J]. IEEE Transactionson Control Systems Technology, 2000, 8(3):495–507.
    45 Z. Sun, K. Hebbale. Challenges and Opportunities in Automotive TransmissionControl[C]//American Control Conference. Portland, 2005:3284–3289.
    46 R. Watts, R. Nibert, M. Tandon. Anti-shudder Durability of Automatic Transmis-sion Fluids: Mechanism of the Loss of Shudder Control[J]. Tribotest journal, 1997,29(4):29–50.
    47 T. Kugimiya, N. Yoshimura, J. Mitsui. Tribology of Automatic TransmissionFluid[J]. Tribology Letters, 1998, 5(1):49–56.
    48 R. Ma¨ki. Wet Clutch Tribology - Friction Characteristics in Limited Slip Differen-tials[D]. Sweden:Lulea? University of Technology, 2005:01–05.
    49 K. Berglund. Lubricant Ageing Effects on Wet Clutch Friction Characteristics[D].Sweden:Lulea? University of Technology, 2008:17–22.
    50 A. Crowther, N. Zhang, D. K. Liu, et al. Analysis and Simulation of Clutch En-gagement Judder and Stick-slip in Automotive Powertrain Systems[J]. Proc. InstnMech. Engrs, Part D: J. Automobile Engineering, 2004, 218(12):1427–1446.
    51 D. Centea, H. Rahnejat, M. Menday. The In?uence of the Interface Coefficientof Friction upon the Propensity to Judder in Automotive Clutches[J]. Proc. InstnMech. Engrs, Part D: J. Automobile Engineering, 1999, 213(3):245–258.
    52 T. Cameron, T. C. ans M. Devlin, S. Tersigni, et al. ATF Friction Properitiesand Shift Quality[C]//Proceedings of the Society of Automotive Engineers WorldCongress. Detroit, Michigan, USA: Paper No.2004-01-3027.
    53 T. M. Cameron, S. H. Tersigni, T. McCombs, et al. ATF Effects on Friction Stabil-ity in Slip-controlled Torque Converter Clutches[C]//Proceedings of the Society ofAutomotive Engineers World Congress. Detroit, Michigan, USA: Paper No.2003-01-3255.
    54 T. Kugimiya, N. Yoshimura, T. Kuribayashi, et al. Next Generation High Per-formance ATF for Slip-controlled Automatic Transmission[C]//Proceedings of theSociety of Automotive Engineers World Congress. Detroit, Michigan, USA: PaperNo.972927.
    55 D. W. Florkowski, T. E. King, A. P. Skrobul, et al. Development and Introduc-tion of Chrysler’s New Automatic Transmission Fluid[C]//Proceedings of the So-ciety of Automotive Engineers World Congress. Detroit, Michigan, USA: PaperNo.982674.
    56 S. H. Tersigni, L. D. Saathoff, C. S. Cleveland, et al. A New Automatic Trans-mission Fluid with Extended Friction Durability and Minimal Temperature Depen-dence[C]//Proceedings of the Society of Automotive Engineers World Congress.Detroit, Michigan, USA: Paper No.2008-01-1728.
    57 T. Hirano, K. Maruo, X. Gu, et al. Development of Friction Material and Quanti-tative Analysis for Hot Spot Phenomenon in Wet Clutch System[C]//Proceedingsof the Society of Automotive Engineers World Congress. Detroit, Michigan, USA:Paper No.2007-01-0242.
    58 K. Glitzenstein, J. Hedrick. Adaptive Control of Automatic Transmis-sion[C]//American Control Conference. San Diego, 1990:1849–1855.
    59 P. Dolcini, H. Bechart, C. C. de Wit. Observer-based Optimal Control of Dry ClutchEngagement[C]//IEEE Conference on CDC-ECC. Seville, 2005:440–445.
    60 A. H. Fraj, F. Pfeiffer. Optimal Control of Gear Shift Operations in AutomaticTransmissions[J]. Journal of Franklin Institute, 2001, 338(2-3):371–390.
    61 K. J. Yang, K. S. Hong, D. il”Dan”Cho. A Robust Control for Engine and Trans-mission Systems: Enhancement of Shift Quality[J]. JSME International Journal,Series C, 2001, 44(3):697–707.
    62 A. Gibson, I. Kolmanovsky. Modeling and Analysis of Engine Torque Modula-tion for Shift Quality Improvement[C]//Proceedings of the Society of AutomotiveEngineers World Congress. Detroit, Michigan, USA: Paper No.2006-01-1073.
    63 T. Tokura, T. Asami, Y. Hasegawa, et al. Development of Smooth Up-shift ControlTechnology for Automatic Transmissions with Integrated Control of Engine andAutomatic Transmission[C]//Proceedings of the Society of Automotive EngineersWorld Congress. Detroit, Michigan, USA: Paper No.2007-01-1310.
    64黄英,赵长禄,张付军,等.车辆动力传动系一体化控制对换挡过程影响的试验研究[J].汽车工程, 2004, 26(6):710–713.
    65陈慧岩,廖承林,丁华荣.整体控制对改善换挡品质的研究[J].车用发动机,2000, 3:40–42.
    66陈宁,赵丁选,丁微波.改善动力换挡变速箱换挡品质的研究[J].机床与液压,2004, 10:29–31.
    67赵丁选,王卓,张静波.改善工程车辆换挡品质的变结构模糊控制系统研究[J].农业机械学报, 2003, 34(1):08–10.
    68黄宗益,李兴华.变速箱换挡品质电子控制(1)[J].工程机械, 2007,38(9):40–42.
    69 A. H. Fraj, F. Pfeiffer. Optimization of Gear Shift Operations in AutomaticTransmissions[C]//Inernational Workshop on Advanced Motion Control. Nagoya,2000:469–473.
    70 F. Marciszko. Torque Sensor Based Powertrain Control[D]. Sweden:Linko¨pingsUniversity, 2004:22–23.
    71王健.换挡质量综合评价系统的研究[D].长春:吉林大学, 2007:07–09.
    72王健,雷雨龙,郭孔辉,等.车辆换挡质量概念的完善与评价[J].工程机械,2007, 37(9):1014–1018.
    73雷雨龙,王健,田华,等.基于支持向量机的换挡质量评价系统[J].工程机械,2007, 19(24):5818–5823.
    74陈刚,张为公,龚宗洋,等.基于模糊神经网络的汽车换挡品质评价系统[J].汽车技术, 2008, (7):22–24.
    75张建国,雷雨龙,王健,等.基于BP神经网络的换挡品质评价方法[J].工程机械, 2007, 37(5):1019–1022.
    76黄宗益,谢代鹏,王康,等.汽车液力机械式自动变速箱发展概述[J].上海汽车, 1998, (9):19–22.
    77岳崇平,杨秀红.电、液控自动变速箱液压控制系统的分析研究[J].汽车研究与开发, 2002, (5):17–23.
    78 Q. Zheng, K. Srinivasan, G. Rizzoni. Dynamic Modeling and Characteriza-tion of Transmission Response for Controller Design[C]//Proceedings of the So-ciety of Automotive Engineers World Congress. Detroit, Michigan, USA: PaperNo.981094.
    79 Q. Zheng, K. Srinivasan, G. Rizzoni. Transmission Shift Controller Design Basedon a Dynamic Model of Transmission Response[J]. Control Engineering Practice,1999, 7(8):1007–1014.
    80 Q. Zheng, K. Srinivasan. Transmission Clutch Pressure Control System: Model-ing, Controller Development and Implementation[C]//Proceedings of the Society ofAutomotive Engineers World Congress. Detroit, Michigan, USA: Paper No.2000-01-1149.
    81 T. Minowa, T. Ochi, H. Kuroiwa, et al. Smooth Gear Shift Control Technology forClutch-to-clutch Shifting[C]//Proceedings of the Society of Automotive EngineersWorld Congress. Detroit, Michigan, USA: Paper No.1999-01-1054.
    82 B. K. Shin, J. O. Hahn, K. I. Lee. Development of Shift Control Algorithm UsingEstimated Turbine Torque[C]//Proceedings of the Society of Automotive EngineersWorld Congress. Detroit, Michigan, USA: Paper No.2000-01-1150.
    83 B. Gao, H. Chen, K. Sanada. Two-degree-of-freedom Controller Design for ClutchSlip Control of Automatic Transmission[C]//Proceedings of the Society of Automo-tive Engineers World Congress. Detroit, Michigan, USA: Paper No.2008-01-0537.
    84 B. Gao, H. Chen, H. Zhao, et al. A Reduced-order Nonlinear Clutch Pressure Ob-server for Automatic Transmission Using ISS[C]//IEEE Conference on Decisionand Control. Cancun, 2008:5712–5717.
    85 B. Gao, H. Chen, K. Sanada, et al. Design of Clutch-slip Controller for AutomaticTransmission Using Backstepping[J]. IEEE/ASME Transactions on Mechatronics,2010, 99:01–11.
    86 J. K.Runde. Modeling and Control of an Automatic Transmission[D]. Boston:MIT,1986:41–59.
    87 M. Ibamoto, H. Kuroiwa, T. Minowa, et al. Development of Smooth Shift ControlSystem with Output Torque Estimation[C]//Proceedings of the Society of Automo-tive Engineers World Congress. Detroit, Michigan, USA: Paper No.950900.
    88 K. S. Hong, K. J. Yang, K. I. Lee. An Object-oriented Modular Simula-tion Model for Integrated Gasoline Engine and Automatic Transmission Con-trol[C]//Proceedings of the Society of Automotive Engineers World Congress. De-troit, Michigan, USA: Paper No.1999-01-0750.
    89 D. H. Kim, J. O. Hahn, B. K. Shin, et al. Adaptive Compensation Control of Ve-hicle Automatic Transmissions for Smooth Shift Transients Based on IntelligentSupervisor[J]. KSME International Journal, 2001, 15(11):1472–1481.
    90 J. O. Hahn, J. W. Hur, G. W. Choi, et al. Self-learning Approach to AutomaticTransmission Shift Control in a Commercial Construction Vehicle During the In-ertia Phase[J]. Proc. Instn Mech. Engrs, Part D: J. Automobile Engineering, 2002,216(11):909–919.
    91 A. Kotwicki. Dynamic Models for Torque Converter Equipped Vehi-cles[C]//Proceedings of the Society of Automotive Engineers World Congress. De-troit, Michigan, USA: Paper No.820393.
    92 B. Pohl. Transient Torque Converter Performance, Testing, Simulation and Re-verse Engineering[C]//Proceedings of the Society of Automotive Engineers WorldCongress. Detroit, Michigan, USA: Paper No.2003-01-0249.
    93 J. H. Lee, H. Lee. Dynamic Simulation of Nonlinear Model-based Observer for Hy-drodynamic Torque Converter System[C]//Proceedings of the Society of Automo-tive Engineers World Congress. Detroit, Michigan, USA: Paper No.2004-01-1228.
    94 S. Watechagit. Modeling and Estimation for Stepper Automatic Transmisionwith Clutch-to-clutch Shift Technology[D]. Columbus:The Ohio State University,2004:31–36.
    95 Y. Fujii, W. E. Tobler, K. W. Wang. Review of Wet Friction Component Models forAutomatic Transmission Shift Analysis[C]//Proceedings of the Society of Automo-tive Engineers World Congress. Detroit, Michigan, USA: Paper No.2003-01-1665.
    96 Q. Zheng. Modeling and Control of Powertrains with Stepped Automatic Trans-missions[D]. Columbus:The Ohio State University, 1999:29–34.
    97 S. Watechagit, K. Srinivasan. Modeling and Simulation of a Shift Hydraulic Systemfor a Stepped Automatic Transmission[C]//Proceedings of the Society of Automo-tive Engineers World Congress. Detroit, Michigan, USA: Paper No.2003-01-0314.
    98 Y. Wang, M. Kraska, W. Ortmann. Dynamic Modeling of a Variable ForceSolenoid and a Clutch for Hydraulic Control in Vehicle Transmission Sys-tem[C]//Proceedings of the American Control Conference. Arlington, 2001:1789–1793.
    99 U. Kiencke, L. Nielsen. Automotive Control Systems for Engine, Driveline, andVehicle[M]. 2nd ed., Berlin: Springer, 2005:196–197.
    100 B. H. Cho, J. S. Oh, W. H. Lee. Modeling of Pulse Width Modulation PressureControl System for Automatic Transmission[C]//Proceedings of the Society of Au-tomotive Engineers World Congress. Detroit, Michigan, USA: Paper No.2002-01-1257.
    101 L. Brown, L. Chen, D. Hrovat. Automatic Transmission Gearshift Control Hav-ing Feedforward Response of Clutch and its Hydraulic Actuation[J]. U.S. Patent5123302, Jun. 23, 1992.
    102 H. H. Minoru Kuriyama, H. Kazuo Sasaki, K. Tetsuro Takaba, et al. HydrulicControl System of Automatic Transmission[J]. U.S. Patent 5505675, Apr. 9, 1996.
    103 T. M. Cameron, R. Iyer, H. Maelger, et al. Enhanced Stability of TransmissionClutch Engagement with Temperature-dependent ATF Friction[C]//Proceedings ofthe Society of Automotive Engineers World Congress. Detroit, Michigan, USA:Paper No.2007-01-3977.
    104 K. H. Ang, G. Chong, Y. Li. PID Control System Analysis, Design, and Technol-ogy[J]. IEEE Transactions on Automatic Control, 2005, 13(4):559–576.
    105 F. Zheng, Q. G. Wang, T. Lee. On the Design of Multivariable PID Controllers viaLMI Approach[J]. Automatica, 2002, 38(3):517–526.
    106 F. D. Bianchi, R. J. Mantz, C. F. Christiansen. Multivariable PID Control withSet-point Weighting via BMI Optimization[J]. Automatica, 2008, 44(2):472–478.
    107 O. Toker, H. O¨zbay. On the NP-hardness of Solving Bilinear Matrix Inequalitiesand Simultaneous Stabilization with Static Output Feedback[C]//Proceedings of theAmerican Control Conference. Seattle, 1995:2525–2526.
    108 Y. Y. Cao, J. Lam, Y. X. Sun. Static Output Feedback Stabilization: An ILMIApproach[J]. Automatica, 1998, 34(12):1641–1645.
    109 E. Prempain, I. Postlethwaite. Static Output Feedback Stabilisation with H∞Per-formance for a Class of Plants[J]. Syst. Control Lett., 2001, 43(3):159–166.
    110 H. Ouyang, J. Wang, L. Huang. Robust Output Feedback Stabilization for UncertainSystems[J]. IEE Proc.-Control Theory Appl., 2003, 150(5):477–482.
    111 G. I. Bara, M. Boutayeb. A New Sufficient Condition for the Static Output Feed-back Stabilization of Linear Discrete-time Systems[C]//Proceedings of the 45thIEEE Conference on Decision and Control. San Diego, 2006:4723–4728.
    112 R. Orsi, U. Helmke, J. B. Moore. A Newton-like Method for Solving Rank Con-strained Linear Matrix Inequalities[C]//Proceedings of the 43th IEEE Conferenceon Decision and Control. Atlantis, 2004:3138–3144.
    113 C. Lin, Q. G. Wang, T. H. Lee. An Improvement on Multivariable PID ControllerDesign via Iterative LMI Approach[J]. Automatica, 2004, 40(3):519–525.
    114 Y. He, Q. G. Wang. An Improved ILMI Method for Static Output Feedback Controlwith Application to Multivariable PID Control[J]. IEEE Transactions on AutomaticControl, 2006, 51(10):1678–1683.
    115 L. EI Ghaoui, F. Oustry, M. AitRami. A Cone Complementarity Linearization Al-gorithm for Static Output-feedback and Related Problems[J]. IEEE Transactionson Automatic Control, 1997, 42(8):1171–1176.
    116俞立.鲁棒控制-线性矩阵不等式处理方法[M].第1版.,北京:清华大学出版社, 2002:07–40.
    117 C. H. Lien. An Efficient Method to Design Robust Observer-based Controlof Uncertain Linear Systems[J]. Applied Mathematics and Computation, 2004,158(1):29–44.
    118 C. Edwards, A. Akoachere, S. K. Spurgeon. Sliding-mode Output Feedback Con-troller Design Using Linear Matrix Inequalities[J]. IEEE Transactions on Auto-matic Control, 2001, 46(1):115–119.
    119 C. Edwards, S. Spurgeon. Linear Matrix Inequality Method for Designing Slid-ing Mode Output Feedback Controllers[J]. IEE Prp.-Control Theory Appl., 2003,150(5):539–545.
    120项基.静态输出反馈滑模控制算法研究[D].杭州:浙江大学, 2004:40–44.
    121邹博文.基于模型的汽油机空燃比控制技术研究[D].杭州:浙江大学,2006:04–05.
    122 S. B. Choi. Design of a Robust Controller for Automotive Engines: Theory andExperiment[D]. Berkeley:University of California at Berkeley, 1993:08–10.
    123 J. Gerhardt, H. Ho¨nninger, H. Bischof. A New Approach to Functional and Soft-ware Structure for Engine Management Systems-BOSCH ME7[C]//Proceedingsof the Society of Automotive Engineers World Congress. Detroit, Michigan, USA:Paper No.98P-178(49).
    124 N. Heintz, M. Mews, G. Stier, et al. An Approach to Torque-based Engine Man-agement Systems[C]//Proceedings of the Society of Automotive Engineers WorldCongress. Detroit, Michigan, USA: Paper No.2001-01-0269.
    125 Z. Wu, R. Pei. Torque Based Spark Ignition Engine and Powertrain Model-ing[C]//7th World Congress on Intelligent Control and Automation. Chongqing,2008:4767–4772.
    126 D. H. Kim, K. S. Hong, K. Yi. Driving Load Estimation with the Use of an Esti-mated Turbine Torque[J]. JSME International Journal, 2006, 49(1):163–171.
    127 Q. Zheng, J. Kraenzlein, E. Hopkins, et al. Closed Loop Pressure Control Sys-tem Devlopment for an Autoamtic Transmission[C]//Proceedings of the Society ofAutomotive Engineers World Congress. Detroit, Michigan, USA: Paper No.2009-01-0951.
    128 M. Oppenheimer, D. Doman, M. Bolender. Control Allocation for Over-actuatedSystems[C]//The 14th Mediterranean Conference on Control and Automation. An-cona, 2006:01–06.
    129郭孔辉,付皓,丁海涛.汽车电子节气门控制器开发[J].科学技术与仪器,2008, 8(2):446–450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700