用户名: 密码: 验证码:
汽车电磁制动与摩擦制动集成系统控制技术及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,轿车制动系统仍主要以“油液制动系统”为主,即使增加了ABS、TCS等系统,油液制动占主导地位的现状仍未得以改变。虽然安装有ABS的汽车能有效地防止车轮抱死、缩短制动距离,但对于因频繁制动或者下长坡制动而引起的“热衰退”现象并未得到改善。因此,在轿车上除摩擦制动系统外,增加一套电磁制动系统,通过两套制动系统的配合使用来改善轿车制动性能是一种可能的技术途径。为此,研究电磁制动与摩擦制动集成系统有着非常重要的意义。目前国内外虽然已有一些电磁制动研究,但多数是面向客车或货车的电涡流缓速器,而少数面向轿车的电磁制动方面研究均没有考虑两套制动系统的联合控制,且研究多以微缩模型为主,尚未有对轿车电磁制动与摩擦制动集成化研究的相关报道。针对这些问题,本文做了如下工作:
     首先,提出电磁制动与摩擦制动集成系统的结构布置方案,并详细介绍电磁制动与摩擦制动集成系统在某型轿车上的布置方法。根据所提出的电磁制动与摩擦制动集成系统的结构布置方案,给出简化后的集成系统单轮制动模型。
     采用优化设计方法,以提高汽车制动力矩为目标,分析电磁制动与摩擦制动集成系统的结构参数对制动力矩的影响规律,应用提出的集成系统结构参数分析方法,分析不同结构参数方案,利用Mathematica和Maltab软件进行了计算和仿真分析,获得最佳的电磁制动与摩擦制动集成系统结构参数和安装参数方案。
     考虑到磁感应强度的获取对电磁制动器的控制及其力矩计算至关重要,而目前已有的磁感应强度计算公式过于复杂,不适于工程应用。为此根据位势理论和Maxwell方程,建立电磁制动器在制动盘某点处产生的磁感应强度预测模型。针对某一结构的电磁制动器在制动盘上所产生的磁感应强度进行了分析计算,对不同磁极长度、磁极宽度、磁极面与制动盘间距下的磁感应强度进行了预测,通过Ansoft Maxwell2D/3D软件进行了磁场分析。
     基于获得的结构参数方案,提出通过PWM调节电磁制动器线圈通电电流从而改变集成系统总制动力矩的控制方法。利用Proteus仿真软件,结合建立的系统控制模型和控制策略对汽车制动性能进行仿真,证明所提出的PWM调节方法的可行性。
     分别基于模糊控制理论和最优化控制理论构建电磁制动与摩擦制动集成系统控制模型。其中,基于模糊控制理论,提出采用控制电磁制动器线圈电流大小的模糊控制策略。在控制策略中以车辆滑移率为输入量,以电磁制动器线圈通电电流为输出量,设计系统模糊控制器。并以某一安装有电磁制动与摩擦制动集成系统的轿车为应用实例,运用Matlab/Simulink软件对系统进行仿真分析。基于最优化控制理论,利用Matlab/Simulink软件设计电磁制动与摩擦制动集成系统、最优反馈K以及摩擦制动器制动力矩,并由此得到联合制动力矩值。
     根据电磁制动与摩擦制动集成系统原理,结合汽车的性能特性,设计电磁制动与摩擦制动集成系统测试台架,基于LabVIEW软件设计了采集系统软件。并在此基础上进行了联合制动力矩、电磁制动力矩及摩擦制动力矩关系分析、不同参数对集成系统联合制动力矩影响分析等多项试验。
     最后,为了使电磁制动与摩擦制动集成系统更有利于在不同车型上匹配与应用,提出电磁制动与摩擦制动集成系统的五项性能指标,给出了这些指标的评定方法,并且分别基于可拓评价方法以及RS理论评价法等对集成系统进行选型评价。
     本文的创新点在于:
     (1)提出一种电磁制动与摩擦制动集成系统的结构方案,并通过结构优化设计,给出电磁制动与摩擦制动集成系统最佳结构参数和安装参数。
     (2)基于位势理论和Maxwell方程,建立电磁制动器在制动盘某点处产生的磁感应强度预测模型。
     (3)提出通过PWM调节电磁制动器线圈通电电流从而改变集成系统总制动力矩的控制方法。基于模糊控制策略控制电磁制动器线圈电流大小的方法,并设计车辆控制模型。基于最优化控制理论,建立使用终了时间无限的二次型最优控制模型。利用所设计的测试台架开展了多项对比试验及抗热衰退性试验,从而验证集成系统能根据所设计的控制策略对总制动力矩进行调节并具有良好的抗热衰退性。
     (4)提出基于可拓评价方法、RS理论评价法对电磁制动与摩擦制动集成系统进行匹配选型评价的方法。
At present, the braking system of car is still mainly a "hydraulic braking system", even if ABS, TCS and other systems are fitted on the car, the status that hydraulic braking system playing dominant role has not changed. Although the car fitted with ABS can prevent wheels from locking and shorten the braking distance effectively, but the sign of heat fade caused by frequent braking or continous downhill road braking is not improved. Besides the frictional brake system, an electromagnetic brake system is added on the car, to improve the car braking performance by controlling the two systems cooperatively is possible technical approach. Therefore, significance of research on integrated system of electromagnetic brake and frictional brake is very important. While some similar studies have been developped in China and abroad, but most research mainly aimed at the passenger-cars's retarder or truck's retarder, and a few research on the electromagnetic brake for cars is not considered in joint control of the two braking systems, most of the research mainly aimed at the miniature model, no related report mentions about the integrated system of electromagnetic brake and frictional brake. Aiming at these problems, the study in this thesis is focused on the following aspects:
     First, the structure arrangement of the integrated system of electromagnetic brake and frictional brake was presented; layout method of the intergrated system with certain type car was described in detail. According to the structure arrangement, one-wheel braking model of the integrated system after simplification was given.
     The optimization design method was used. Improved brake torque as possible as goal, the article analyzed the influence law between the main composition parameters of the integrated system and brake torque. Meanwhile, applied the intergrated system composition parameters analysis method, different model selection schemes which was different in composition parameters was proposed on comparative analysis. According to the software Mathematica and Maltab which were applied to calculate, simulate and analyze, the optimum composition parameters were obtained.
     Acquisition of the magnetic induction is very important to control the electromagnetic brake and calculate its torque, and the current calculation formula to the magnetic induction was too complex to apply in engineering. According to potential theory and Maxwell equations, the prediction model of magnetic induction on some point of the brake disc generated by the electromagnetic brake was built. Aimed at certain structure for the electromagnetic brake, magnetic induction on some point of the brake disc was analyzed and calculated. Magnetic induction prediction was carried on under different width and length of magnetic pole and different distance between magnetic pole and brake disc, we developed magnetic field analysis by the software Ansoft Maxwell 2D/3D.
     According to the composition parameters sheme, the article presented the regulation method that the intergrated system total torque varies as the current to the electromagnetic coil changed, which was based on the principle of PWM regulation. The simulation software Proteus was applied, combined with the system control model and control strategy, the vehicle braking performance was simulated. The result shows that PWM regulation method presented is feasible.
     On the basis of fuzzy control theory and the theory of optimal control, the intergrated system of electromagnetic brake and the frictional brake control model was constructed. Based on fuzzy control theory, the control strategy that controlling the current of the electromagnetic brake coil through fuzzy controlled method was proposed, in which the vehicle slip rate was used as input, the current of the electromagnetic brake was used as output. According to the control strategy, fuzzy controller was designed. To prove its validity and feasibility, the vehicle equipped with the integrated system including vehicle electromagnetic brake and frictional brake was taken as example. The simulation analysis to the integrated system was preceded by using software MATLAB/Simulink. Based on the theory of optimal control, the software Matlab/Simulink was applied to design the intergrated system, optimal feedback K and the braking torque of the frictional brake, from which the total braking torque was obtained.
     According to the principle of the intergrated system of electromagnetic brake and frictional brake, combined with the vehicle performance characteristics, the testing bench of the intergrated system was designed, the acquisition system software was designed based on the software Lab VIEW. The expeiments focused on relationship among blend brake torque, electromagnetic brake torque and frictional brake torque and the influence of different parameters to the blend brake torque was carried on.
     Finally, in order to make the intergrated system favorable to attach and apply in different type vehicle, five performance index to the intergrated system was presented, evaluation method to the performance index was given at the same time, the intergrate system type selection was evaluated on the basis of extension assessment method and the rough set theory.
     The innovations of this paper are:
     (1) The structure scheme to the intergrated system of electromagnetic brake and frictional brake was presented. According to the structural optimization design, the optimum structure parameters and installation parameters of the intergrated system were presented.
     (2) According to potential theory and Maxwell equations, the prediction model of magnetic induction on some point of the brake disc generated by the electromagnetic brake was built.
     (3) The regulation method that the intergrated system total torque varies as the current to the electromagnetic coil changed was presented, which was based on the principle of PWM regulation. Based on fuzzy control theory, the control strategy that controlling the current of the electromagnetic brake coil by fuzzy controlled method was proposed, the vehicle control model was designed. Based on the theory of optimal control, finish-time infinite quadratic form optimal control model was constructed. Applying the testing bench, some comtrast test and resistance of heat performance test were carried on, which the integrated system can regulating the gross braking torque under the designed control strategy and having good resistance of heat performance was verified.
     (4) The intergrate system type selection was evaluated on the basis of extension assessment method and the rough set theory.
引文
[1]Eiji Nakamura, Masayuki Soga, Akira Sakai, et al. Development of electronically controlled brake systerm for hybrid vehicle[J]. SAE 2002-01-0300.
    [2]Yeo H, Kim H. Hardware in the loop simulation of regenerative braking for a hybrid electric vehicle[J]. Pro Instn Mech Engrs, Part D:J Automobile Engineering,2002,21(6):855-664.
    [3]Yeo H. Simulation of Regenerative Braking Performance for a Parallel Hybrid Electric Vehicle with CVT [J]. CVT 2002 Congress, Volume 1709,2002:1024-1027.
    [4]Hiroshi Fujimoto, Takeo Saito, Akio Tsumasaka, et alMotion Control and Road Condition Estimation of Electric Vehicles with Two In-Wheel Motors[J]. Proceedings of the 2004 IEEE International Conference on Control Applications,2004.
    [5]Sebastien E. Gay, Mehradad. Integration of eddy current and friction brakes in conventional and hybrid vehicles[J]. SAE:2005-01-3455.
    [6]K. Lee, K. Park. Modeling of the eddy currents with the consideration of the induced magnetic flux[J]. Proc. Int. Conf. electrical electronic technology,2001,19 (7):762-768.
    [7]K. Lee, K. Park. Modeling eddy currents with boundary conditions by using Coulomb's law and the method of images[J]. IEEE Trans. Magn,2002,38(2):1333-1340.
    [8]Lyle O. Hoppie, West Bloomfield, Donald Speranza, Portage. MAGNETIC REGENERATIVE BRAKING SYSTEM[P]. US Patent 4,908,553,199.
    [9]Jae-Woong Lee. MAGNETIC BRAKE SYSTEM FOR A VEHICLE [P]. US Patent 5,746,294, 1998.
    [10]James E. ELECTRO-MAGNETIC BRAKING SYSTEM[P]. US Patent 5,821,712,1998.
    [11]Othmar Booz, Georg Koepff. MAGNETIC BRAKE AND ELECTROMECHANICAL BRAKING DEVICE WITH A MAGNETIC BRAKE[P]. US Patent 6,471,017-1,2002.
    [12]王责明,王金懿.兼有电动、发电回馈和电磁制动功能的电动汽车轮毂式电机[J].上海汽车,2009(4):6-10.
    [13]李国斐、林逸.电动汽车再生制动控制策略研究[J].北京理工大学学报,2009,29(6):520-524.
    [14]韩晓东.电动机电磁制动对电动车制动及其它性能的影响[J].汽车技术,1999(3):42-43.
    [15]李珂,张承慧.电动汽车用高效回馈制动控制策略[J].电机与控制学报,2008,12(3):324-330.
    [16]尹安东,赵韩.微型电动轿车制动能量回收及控制策略的研究[J].合肥工业大学学报,2008,31(11):1760-1763.
    [17]张俊智,李波,薛俊亮.电动汽车混合制动系统:中国,ZL200610113586.8[P].2009-5-27.
    [18]张俊智,张鹏君,陆欣,陈鑫.有防抱死制动功能的混合制动系统及控制方法:中国,200810227380.7[P].2009-4-15.
    [19]张俊智,薛俊亮,陆欣,李波,张鹏君.用来保障具有再生制动功能的电动车制动系统安全的装置:中国,200710118115.0[P].2007-11-21.
    [20]SEBASTIEN EMMANUEL GAY. CONTACTLESS MAGNETIC BRAKE FOR AUTOMOTIVE APPLICATIONS [D]. USA:May 2005.
    [21]侯永涛.汽车电磁制动器设计关键技术研究与集成平台构建[D],江苏大学博士学位论文,镇江,2008.
    [22]杨泽斌,全力,陈照章.基于MAXWELL3D的电磁制动器电磁体仿真优化设计[J].系统仿真学报,2009,21(20):6662-6665.
    [23]衣丰艳.车用电涡流缓速器设计理论与评价方法研究[C],江苏大学博士学位论文,镇江,2005.
    [24]Garth C. Wheel retarder[P]. US Patent 3771628,2003.
    [25]何仁,衣丰艳,刘成烨.车用缓速器结构参数对制动力矩的影响分析[J].农业机械学报.2005,36(9):21-24.
    [26]何仁,丁福生,张圆圆.轮边缓速器制动力矩的计算方法[J].汽车技术.2008(10):10-12.
    [27]Simeu E, Georges D. Modeling and control of an eddy current brake[J]. Control Eng. Practice,1996,4(1):19-26.
    [28]蔡文.可拓学概述[J].系统工程理论与实践,1998,18(1):76-84.
    [29]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002.
    [30]丁福生.轿车轮边缓速器的设计方法研究[D].镇江:江苏大学,2008.
    [31]W. R. Smythe. On eddy currents in a rotating disk[J]. Trans. AIEE,1942(2):681-684.
    [32]D. Schieber. Braking torque on rotating sheet in stationary magnetic field[J]. Proc.IEE,1974 (2):117-122.
    [33]J. H. Wouterse. Critical torque and speed of eddy current brake with widely separated soft iron poles[J]. IEE proceedings-B,1991(4):153-158.
    [34]陈杰,鲁习文,张荣等.基于位势理论的磁场预测法[J].工程数学学报,2009,10(5):875-882.
    [35]陈杰,鲁习文.基于磁荷面分布的舰船磁场预测方法[J].物理学报,2009(6):3839-3843.
    [36]衣丰艳,何仁,刘成晔.车用电涡流缓速器三维有限元分析[J].交通运输工程学报,2004,4(2):53-56.
    [37]何仁,赵万忠,牛润新.车用永磁式缓速器制动力矩的计算方法[J].交通运输工程学报,2006,6(4):66-69.
    [38]谷超豪等.数学物理方程(第二版)[M].北京:高等教育出版社,2002.
    [39]谷超豪等.数学物理方程(第二版)[M].北京:高等教育出版社,2002.
    [40]陈传璋,侯宗义,李明宗.积分方程论及其应用[M].上海:上海科学技术出版社,1987.
    [41]陈传璋,侯宗义,李明宗.积分方程论及其应用[M].上海:上海科学技术出版社,1987.
    [42]Stratton J A. Electromagnetic Theory[M]. New York:McGraw-Hill,1941.
    [43]徐树方.矩阵计算的理论与方法[M].北京:北京大学出版社,1995.
    [44]刘国强,赵凌志,蒋继娅Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [45]何建清,何仁,衣丰艳.电涡流缓速器制动力矩的计算方法法[J].汽车工程,2004,26(2):197-200.
    [46]J.H. Wouterse. Critical Torque and Speed of Eddy Current Brake With Widely Separated Soft Iron Poles[J]. IEE PROCEEDINGS-B,1991,138(4):153-158.
    [47]Louis H. Cadwell. Magnetic damping:Analysis on a Eddy Current Brake using an Airtrack[J].Am.J.Phys,1996,64(7):917-923.
    [48]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [49]李学礼.基于Proteus的8051单片机实例[M].北京:电子工业出版社,2008.
    [50]周润景,张丽娜,刘印群PROTEUS入门实用教程[M].北京:机械工业出版社,2007.
    [51]袁伟亭.基于PROTEUS的ARM虚拟开发技术[M].北京:北京航空航天大学出版社,2011.
    [52]LEE J, SEOU. Magnetic brake system for a vehicle [P]. US:Patent 5746294.1998-05-05.
    [53]LAYNE R J, PASSINO K M, Yurkovich S. Fuzzy Learning Control for Antiskid Braking Systems[J]. IEEE Transactions on Control Systems Technology,1993,1(2):122-129.
    [54]林逸,沈沉,王军.线控制动系统防抱死特性模糊控制方法的仿真研究[J].公路交通科技,2006,23(10):124-127.
    [55]程军.车辆防抱系统鲁棒控制的研究[J].汽车工程,1998,20(1):17-22.
    [56]羊拯民,尹安东,李伟.轻型客车防抱制动系统模糊控制方法的仿真[J].合肥工业大学学报(自然科学版),2001,24(4):503-506.
    [57]BRUCE M. Distributed Brake-By-Wire based on TTP/C[D]. Sweden:Lund Institute of Technology,2002.
    [58]李德超.车辆半主动悬架系统自适应模糊控制的研究[D].镇江:江苏理工大学,2001.
    [59]Rafael Alcala, Jorge Casillas, Oscar Cordon, Antonio Gonzalez and Francisco Herrera. A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems[J]. Engineering Applications of Artificial Intelligence,2005,18(3): 279-296.
    [60]M Jamei, M Mahfouf, D A Linkens. Elicitation and fine-tuning of fuzzy control rules using symbiotic evolutio[J]. Fuzzy Sets and Systems,2004,147(1):57-74.
    [61]于国业,刘昭度,胡仁喜等.基于等效滑移率变化率的汽车防抱制动系统模糊直接自适应控制[J].机械工程学报,2008,44(11):248-253.
    [62]杨振中,李径定,严大考.基于模糊神经网络的氢燃料汽车发动机最优控制模型[J].汽车工程,2003,25(5):444-450.
    [63]严密.防抱死制动最优控制方法及其防抱死制动系统[P].中国:中请号:CN00111701.7,2000-02-18.
    [64]李欣,程晓鸣.基于LuGre轮胎动力学摩擦模型的路面估计与车辆自适应制动控制[J].传动技术,2007.21(4):27-32.
    [65]Gordon T J, Howell M. et al. Integrated Control Methodologies for Road Vehicles[J]. Vehicle System Dynamics,2003,40(3):157-190.
    [66]Lin Chan Chiao, Kang Jun Mo, Grizzle J W. Energy management strategy for a parallel hybrid-electric truck[J].Proceedings of the American Control Conference,2001:2878-2883.
    [67]Weimin Li, Guoqing Xu. Dynamic Energy Management for Hybrid Electric Vehicle Based on Approximate Dynamic Programming.Proceedings of the 7th World Congress on Intelligent Control and Automation[J]. June2008:7864-7869.
    [68]徐斌,郑钢铁,范轶,刘强.道路破坏的影响因素及悬架参数优化[J].汽车工程,2000,22(6):60-64+50.
    [69]应之丁,夏寅荪,邵丙衡.轨道涡流制动试验与研究[J].上海铁道大学学报,1999,20(6):93-97.
    [70]夏为林,傅俊英,邵丙衡.高速列车轨道涡流制动试验台试制概述[J].机车电传动,1999(10):29-30.
    [71]张雷,吴家麟,应之丁.涡流制动实验台的实现及结果分析[J].郑州大学学报:1999,31(1):54-58.
    [72]国家机械工业局.QC/T564-1999轿车制动器台架试验方法[S].北京:机械工业出版社,1999.
    [73]范超毅,范巍.步进电机的选型与计算[J].机床与液压,2008,36(5):310-313.
    [74]何仁,沈海军,杨效军.商用汽车辅助制动技术综述(英文)[J].交通运输工程学报,2009,9(2):54-63.
    [75]陈无畏,刘翔宇,杨军.基于LabVIEW的车辆稳定性控制硬件在环系统[J].中国机械工程,2010,21(23):114-118.
    [76]田栢苓,林跃,岳有军,宗群.基于LabVIEW的汽车部件实验数据管理系统报表生成技术[J].机械制造与自动化,2010(4):85-87.
    [77]安永东,王悦芳,庞然,赵国迁.基于LabVIEW的汽车ABS性能检测系统仿真研究[J].自动化技术与应用,2010,29(3):72-75.
    [78]卜清.基于P87C552单片机的温室大棚环境与滴灌控制系统设计与研究[D].南京:南京农业大学,2007.
    [79]曹珍贯,吴永祥.87C552在同频信号间相位差测量中的应用[J].煤矿机械,2005(3)120-121.
    [80]孙贵宁.单片机87C552和MAX485构成的“长线”多主机系统[J].电子工程师,2003,(5):38-40.
    [81]庄严.传感器的质量评价方法及选择[J].《仪器仪表标准化与计量》,2002(5):36-38.
    [82]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [83]薛文惠.客车电磁缓速器三维电磁场研究及其应用效能分析[D].武汉理工大学学位论文,2007.
    [84]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术.1996(7):1-8.
    [85]刘景辉.轿车制动系建模与仿真及ABS控制策略[D].上海交通大学学位论文,2007.
    [86]N. burais, A. Foggia. Numerical solution of eddy current problem including moving conducting parts[J]. IEEE Transactions on magnetics,1984, (7):1995-1997.
    [87]Maria Teresa Restivo.A case study of induced eddy currents.Sensors and Actuators A 51 (1996):203-210.
    [88]Zdenek Meistrick.Jacobs new engine brake technology[J].SAE, No.922448,1992:1-5.
    [89]B.J.Chalmers, D.Sc, F.I.E.E., B.J.Dukes, M.I. Mech.E.M.R.Ae.S.High performance eddy current dynamometers [J]. IEEE Proc., Pt.B.1980,127(1):20-27.
    [90]程乾生.属性层次模型AHM--一种新的无结构决策方法[J].北京大学学报(自然科学版),1998,34(1):12-16.
    [91]高洁,盛昭瀚.可拓层次分析法研究[J]系统工程,2002,20(5):7-12.
    [92]王光远.未确知信息及其数学处理[J]哈尔滨建筑工程学院学报,1990,23(4):6-14.
    [93]张恩元,刘瑞军等.基于可拓理论的汽车检测设备选型评价研究[J].汽车技术,2009(1):48-51.
    [94]吕娜.关于汽车制动性能评价指标的探讨[J].广西农业大学学报,1993,12(3):81-84.
    [95]何仁,衣丰艳.电涡流缓速器性能特性评价方法[J].中国公路学报,2006,19(5):118-22.
    [96]蔡文.可拓集合和不相容问题[J].科学探索报,1983(1):83-97.
    [97]陈广宇.可拓评价方法在技术创新项目评价中的应用研究[J].工业技术经济,2004,23(5):65-71.
    [98]蔡文.可拓学概述[J].系统工程理论与实践,1998,18(1):76-84.
    [99]谢永臣.设备可拓更新理论及方法研究[D]:吉林大学学位论文,2006.
    [100]Paw lak Z. Rough sets:theoretical aspect s of reasoning about data[M].Dordrecht:Kluwer Academic Publishers,1991.
    [101]Zadeh L A. Some reflections on soft computing, granular computing and their roles in the concept ion, design an dutilization ofinformation/intelligent systems [J]. Soft Computing, 1998(2):23-25.
    [102]孙秋野,黎明.粗糙集理论及其电力行业应用[M].北京:机械工业出版社,2009.
    [103]陈泽华,谢刚,谢珺等.基于粒计算的Rough集模型[J].计算机科学,2009,36(5):200-203.
    [104]张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2001.
    [105]刘清Rough集及Rough推理[M].北京:科学出版社,2001.
    [106]黄炜,王命延,施志强等.优化的Rough Set综合评价算法在房地产开发和销售中的应用[J].计算机与现代化,2008(10):120-122.
    [107]Paw lak Z. Rough Sets[J]. Communication of ACM.1995,38(11):88-95.
    [108]朱红灿,陈能华.基于距离辅助粗糙集的政府信息公开公众满意度评价模型[J].情报杂志,2010,29(8):94-97.
    [109]赵凯辉.汽车制动器热衰退性能及相关制动安全检测研究[D].长安大学学位论文,2010.
    [110]边明远,李克强.基于车轮信息的制动车辆参考车速算法研[J].农业机械学报,2005,36(6):5-7.
    [111]边明远.汽车防滑控制系统(ABS/ASR)道路识别技术及车身速度算法研究[D].北京理工大学学位论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700